# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
# RUN: %PYTHON %s | FileCheck %s
# ===----------------------------------------------------------------------===//
# Chapter 4 : Multistage GEMM with Tensor Core
# ===----------------------------------------------------------------------===//
#
# This program exemplifies a GEMM operation for `f32+=f16*f16`, utilizing the
# Multistage method with a tile size of 128x128x64. The code completely
# parallelizes the two outermost loops into thread blocks. It launches one Warp
# Groups (128 threads in total) and allocates multiple slots/stage in the
# shared memory. The program consists of three main parts: prologue, mainloop,
# and epilogue. In the prologue, thread0 requests for TMA to load data into
# shared memory slots. The mainloop executes MMA while simultaneously loading
# TMA for the utilized slots. This overlap of TMA and MMA operations enhances
# performance by maximizing computational throughput.
#
# Loops illustration:
#
# for s in range(num_stages):
# TMA_128x64_64x128...
# for ti in range(M//128): # -> blockIdx.x
# for tj in range(N//128): # -> blockIdx.y
# for tk in range(K//64):
# MMA_128x128x64...
# TMA_128x64_64x128...
# Epilogue...
#
# This chapter introduces demonstrates:
# 1. Partition shape based on block IDs
# 2. Prologue
# 2.1 Execute TMA Load for two input matrices for each stage
# 3. Main loop
# 3.1 Wait for completion of TMA load with mbarrier
# 3.2 Performs Tensor Core GEMM 64x128x64 by warpgroup
# 3.3 Load next stage if needed
# 4. Epilogue
# 4.1 Store fragmented registers to shared memory
# 4.2 Store shared memory to global
#
# ===----------------------------------------------------------------------===//
from mlir import ir
from mlir.dialects import gpu, scf, nvgpu, nvvm
from mlir.extras import types as T
from tools.nvdsl import *
import numpy as np
def partition_shape():
"""
Calculate the partition shape based on the block IDs.
It partitions the shape like below:
for(.. i < M ...) --> blockIdx.x
for(.. j < N ...) --> blockIdx.y
for(.. k < K ...)
Returns:
dimX (int): Dimension along the x-axis.
dimY (int): Dimension along the y-axis.
"""
bidx = gpu.block_id(gpu.Dimension.x)
bidy = gpu.block_id(gpu.Dimension.y)
dimX = bidx * TILE_M
dimY = bidy * TILE_N
return dimX, dimY
def tma_load(
mbar_group: Mbarriers,
a_tma: TMA,
b_tma: TMA,
slot,
stage,
num_stages,
p=None,
):
"""
TMA loads two input matrices from global memory to shared memory. It performs the following operations:
- tma.load a_shared_memory[off_x] at coordinate [x, z] (Loads 128x64)
- tma.load b_shared_memory[off_y1] at coordinate [y, x] (Loads 64x64)
- tma.load b_shared_memory[off_y2] at coordinate [y + 64, x] (Loads 64x64)
mbarrier.arrive ta_count = 128x64x2x4
"""
dimX, dimY = partition_shape()
tidx = gpu.thread_id(gpu.Dimension.x)
begin_b = num_stages * get_type_size(a_tma.tma_memref)
size_tma_a = get_type_size(a_tma.tma_memref)
size_tma_b = get_type_size(b_tma.tma_memref)
ta_count = size_tma_a + (size_tma_b * 2)
tidx = gpu.thread_id(gpu.Dimension.x)
p = tidx == 0 if p is None else p
off_a = slot * size_tma_a
off_b = (slot * size_tma_a) + begin_b
off_b2 = off_b + size_tma_b
a_elem_ty = a_tma.tma_memref.element_type
b_elem_ty = b_tma.tma_memref.element_type
a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty, off_a)
b1 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b)
b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2)
mbar_group[slot].arrive(ta_count, predicate=p)
c1 = stage * 64
a_tma.load(a, mbar_group[slot], coords=[c1, dimX], predicate=p)
b_tma.load(b1, mbar_group[slot], coords=[dimY, c1], predicate=p)
b_tma.load(b2, mbar_group[slot], coords=[dimY + 64, c1], predicate=p)
def initialize(a_tma: TMA, b_tma: TMA, num_stages):
"""
Initialize mbarriers and prefetch TMA descriptors.
"""
tidx = gpu.thread_id(gpu.Dimension.x)
mbar_group = Mbarriers(number_of_barriers=num_stages)
isThread0 = tidx == const(0)
with ir.InsertionPoint(scf.IfOp(isThread0).then_block):
for i in scf.for_(0, num_stages, 1):
mbar_group[i].init(1)
scf.yield_([])
a_tma.prefetch()
b_tma.prefetch()
scf.yield_([])
return mbar_group
def prologue(mbar_group: Mbarriers, a_tma: TMA, b_tma: TMA, num_stages):
"""
Prologue of the GEMM kernel. It loads 2 input matrices for each stage in loop like below:
for stage in range(NUM_STAGES):
tma_load x, y, stage
"""
ns = num_stages if num_stages == 1 else num_stages - 1
for iv in scf.for_(0, ns, 1):
tma_load(mbar_group, a_tma, b_tma, iv, iv, num_stages)
scf.yield_([])
def mainloop(mbar_group: Mbarriers, a_tma: TMA, b_tma: TMA, num_stages):
"""
Main loop of the Multistage GEMM kernel. It iterates through
stages and performs matrix multiplication, loading data by TMA to shared memory. It like following
MatrixAccumulator D
for k in range(K // TILE_K):
try_wait(stage, ...) # Wait TMA load
Matrix A(stage, ...) # Find shared memory slot
Matrix B(stage, ...) # Find shared memory slot
D += A @ B # Multiply and accumulate
if(needLoad) # Load next stage if needed
tma_load(x, y, nextSlot, nextStage)
"""
ns = num_stages if num_stages == 1 else num_stages - 1
tidx = gpu.thread_id(gpu.Dimension.x)
begin_b = num_stages * get_type_size(a_tma.tma_memref)
size_a = TILE_M * TILE_K * get_type_size(T.f16())
# Initialize A and B (input matrices) and C (accumulator)
A = WGMMAMatrix(WGMMAType.Descriptor, [TILE_M, TILE_K], desc=a_tma)
B = WGMMAMatrix(WGMMAType.Descriptor, [TILE_K, TILE_N], desc=b_tma)
D = WGMMAMatrix(WGMMAType.Accumulator, shape=[TILE_M, TILE_N], ty=T.f32())
phase = const(False, ty=T.bool())
# Main Loop
for_op = scf.ForOp(const(0), const(K // TILE_K), const(1), [D.acc_op, phase])
with ir.InsertionPoint(for_op.body):
phase = for_op.inner_iter_args[1]
iv = for_op.induction_variable
stage = iv % num_stages
# Wait for current stage
mbar_group[stage].try_wait(phase=phase)
# Find shared memory slot
offset_a = stage * size_a
offset_b = offset_a + begin_b
a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offset_a)
b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offset_b)
# Iterate input matrices, update accumulator
A.update_smem(a_smem)
B.update_smem(b_smem)
D.update_accumulator(for_op.inner_iter_args[0])
# Matrix Multiply
D += A @ B
# Wait Tensor Core for single stage
if num_stages == 1:
nvvm.WgmmaWaitGroupSyncOp(0)
# Load next stage
pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)
nextStage = iv + ns
nextSlot = nextStage % num_stages
tma_load(mbar_group, a_tma, b_tma, nextSlot, nextStage, num_stages, pred)
# Switch phase parity for the mbarrier
newPhase = arith.select(
stage == (num_stages - 1),
(phase ^ const(True, ty=T.bool())),
phase,
)
scf.yield_([D.acc_op, newPhase])
nvvm.WgmmaWaitGroupSyncOp(0)
D.update_accumulator(for_op.results[0])
return D
def epilogue(D: WGMMAMatrix, d_dev):
"""
Epilogue of the GEMM kernel. It stores the fragmented registers to global memory.
MatrixAccumulator D # Fragmented results
store D -> Shared Memory # Store Shared Memory
Shared Memory -> Z[dimX][dimY] # Store Shared Memory to Global Memory
"""
tidx = gpu.thread_id(gpu.Dimension.x)
dimX, dimY = partition_shape()
d_smem = get_dynamic_shared_memory([TILE_M, TILE_N], T.f32())
d_gmem = memref.subview(d_dev, [dimX, dimY], [TILE_M, TILE_N], [1, 1])
# Store (registers -> shared memory)
D.store_accumulator(d_smem)
gpu.barrier()
# Store (shared memory --> global memory)
for i in scf.for_(0, TILE_M, 1):
val = memref.load(d_smem, [i, tidx])
memref.store(val, d_gmem, [i, tidx])
scf.yield_([])
# The decorator generates
# a -> memref<MxKxf16>
# b -> memref<NxKf16>
# d -> memref<MxNxf32>
@NVDSL.mlir_func
def gemm_multistage(a, b, d, num_stages):
token_ty = gpu.AsyncTokenType.get()
t1 = gpu.wait(token_ty, [])
a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [])
b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [])
d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], [])
t5 = gpu.memcpy(token_ty, [t4], a_dev, a)
t6 = gpu.memcpy(token_ty, [t5], b_dev, b)
t7 = gpu.wait(token_ty, [t6])
sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B
a_tma = TMA([128, 64], a.type, swizzle=sw)
b_tma = TMA([64, 64], b.type, swizzle=sw)
a_tma.create_descriptor(a_dev)
b_tma.create_descriptor(b_dev)
grid = [(M // TILE_M), (N // TILE_N), 1]
block = [128, 1, 1]
size_a = get_type_size(a.type.element_type) * TILE_M * TILE_K
size_b = get_type_size(b.type.element_type) * TILE_N * TILE_K
smem_size_in_bytes = (size_a + size_b) * num_stages
@NVDSL.mlir_gpu_launch(grid=grid, block=block, smem=smem_size_in_bytes)
def gemm_multistage_kernel():
# Initialize mbarriers and prefetch TMA descriptors
mbar_group = initialize(a_tma, b_tma, num_stages)
# Fill the pipeline stages
prologue(mbar_group, a_tma, b_tma, num_stages)
# Main loop
D = mainloop(mbar_group, a_tma, b_tma, num_stages)
# Store registers to global memory
epilogue(D, d_dev)
gemm_multistage_kernel()
t8 = gpu.memcpy(token_ty, [t7], d, d_dev)
gpu.wait(None, [t8])
# Python pass arguments to MLIR
N = 256
M = 512
K = 1024
TILE_M = 128
TILE_N = 128
TILE_K = 64
a = np.random.randn(M, K).astype(np.float16)
b = np.random.randn(K, N).astype(np.float16)
d = np.zeros((M, N), np.float32)
gemm_multistage(a, b, d, num_stages=7)
# Verify MLIR with reference computation
ref_d = a.astype(np.float16) @ b.astype(np.float16)
np.testing.assert_allclose(d, ref_d, rtol=5e-03, atol=1e-01)
print("PASS")
# CHECK-NOT: Mismatched elements