/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float atan2(float y, float x)
{
const float pi = 0x1.921fb6p+1f;
const float piby2 = 0x1.921fb6p+0f;
const float piby4 = 0x1.921fb6p-1f;
const float threepiby4 = 0x1.2d97c8p+1f;
float ax = fabs(x);
float ay = fabs(y);
float v = min(ax, ay);
float u = max(ax, ay);
// Scale since u could be large, as in "regular" divide
float s = u > 0x1.0p+96f ? 0x1.0p-32f : 1.0f;
float vbyu = s * MATH_DIVIDE(v, s*u);
float vbyu2 = vbyu * vbyu;
#define USE_2_2_APPROXIMATION
#if defined USE_2_2_APPROXIMATION
float p = mad(vbyu2, mad(vbyu2, -0x1.7e1f78p-9f, -0x1.7d1b98p-3f), -0x1.5554d0p-2f) * vbyu2 * vbyu;
float q = mad(vbyu2, mad(vbyu2, 0x1.1a714cp-2f, 0x1.287c56p+0f), 1.0f);
#else
float p = mad(vbyu2, mad(vbyu2, -0x1.55cd22p-5f, -0x1.26cf76p-2f), -0x1.55554ep-2f) * vbyu2 * vbyu;
float q = mad(vbyu2, mad(vbyu2, mad(vbyu2, 0x1.9f1304p-5f, 0x1.2656fap-1f), 0x1.76b4b8p+0f), 1.0f);
#endif
// Octant 0 result
float a = mad(p, MATH_RECIP(q), vbyu);
// Fix up 3 other octants
float at = piby2 - a;
a = ay > ax ? at : a;
at = pi - a;
a = x < 0.0F ? at : a;
// y == 0 => 0 for x >= 0, pi for x < 0
at = as_int(x) < 0 ? pi : 0.0f;
a = y == 0.0f ? at : a;
// if (!FINITE_ONLY()) {
// x and y are +- Inf
at = x > 0.0f ? piby4 : threepiby4;
a = ax == INFINITY & ay == INFINITY ? at : a;
// x or y is NaN
a = isnan(x) | isnan(y) ? as_float(QNANBITPATT_SP32) : a;
// }
// Fixup sign and return
return copysign(a, y);
}
_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan2, float, float);
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double atan2(double y, double x)
{
const double pi = 3.1415926535897932e+00; /* 0x400921fb54442d18 */
const double piby2 = 1.5707963267948966e+00; /* 0x3ff921fb54442d18 */
const double piby4 = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */
const double three_piby4 = 2.3561944901923449e+00; /* 0x4002d97c7f3321d2 */
const double pi_head = 3.1415926218032836e+00; /* 0x400921fb50000000 */
const double pi_tail = 3.1786509547056392e-08; /* 0x3e6110b4611a6263 */
const double piby2_head = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
double x2 = x;
int xneg = as_int2(x).hi < 0;
int xexp = (as_int2(x).hi >> 20) & 0x7ff;
double y2 = y;
int yneg = as_int2(y).hi < 0;
int yexp = (as_int2(y).hi >> 20) & 0x7ff;
int cond2 = (xexp < 1021) & (yexp < 1021);
int diffexp = yexp - xexp;
// Scale up both x and y if they are both below 1/4
double x1 = ldexp(x, 1024);
int xexp1 = (as_int2(x1).hi >> 20) & 0x7ff;
double y1 = ldexp(y, 1024);
int yexp1 = (as_int2(y1).hi >> 20) & 0x7ff;
int diffexp1 = yexp1 - xexp1;
diffexp = cond2 ? diffexp1 : diffexp;
x = cond2 ? x1 : x;
y = cond2 ? y1 : y;
// General case: take absolute values of arguments
double u = fabs(x);
double v = fabs(y);
// Swap u and v if necessary to obtain 0 < v < u. Compute v/u.
int swap_vu = u < v;
double uu = u;
u = swap_vu ? v : u;
v = swap_vu ? uu : v;
double vbyu = v / u;
double q1, q2;
// General values of v/u. Use a look-up table and series expansion.
{
double val = vbyu > 0.0625 ? vbyu : 0.063;
int index = convert_int(fma(256.0, val, 0.5));
double2 tv = USE_TABLE(atan_jby256_tbl, index - 16);
q1 = tv.s0;
q2 = tv.s1;
double c = (double)index * 0x1.0p-8;
// We're going to scale u and v by 2^(-u_exponent) to bring them close to 1
// u_exponent could be EMAX so we have to do it in 2 steps
int m = -((int)(as_ulong(u) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
//double um = __amdil_ldexp_f64(u, m);
//double vm = __amdil_ldexp_f64(v, m);
double um = ldexp(u, m);
double vm = ldexp(v, m);
// 26 leading bits of u
double u1 = as_double(as_ulong(um) & 0xfffffffff8000000UL);
double u2 = um - u1;
double r = MATH_DIVIDE(fma(-c, u2, fma(-c, u1, vm)), fma(c, vm, um));
// Polynomial approximation to atan(r)
double s = r * r;
q2 = q2 + fma((s * fma(-s, 0.19999918038989143496, 0.33333333333224095522)), -r, r);
}
double q3, q4;
{
q3 = 0.0;
q4 = vbyu;
}
double q5, q6;
{
double u1 = as_double(as_ulong(u) & 0xffffffff00000000UL);
double u2 = u - u1;
double vu1 = as_double(as_ulong(vbyu) & 0xffffffff00000000UL);
double vu2 = vbyu - vu1;
q5 = 0.0;
double s = vbyu * vbyu;
q6 = vbyu + fma(-vbyu * s,
fma(-s,
fma(-s,
fma(-s,
fma(-s, 0.90029810285449784439E-01,
0.11110736283514525407),
0.14285713561807169030),
0.19999999999393223405),
0.33333333333333170500),
MATH_DIVIDE(fma(-u, vu2, fma(-u2, vu1, fma(-u1, vu1, v))), u));
}
q3 = vbyu < 0x1.d12ed0af1a27fp-27 ? q3 : q5;
q4 = vbyu < 0x1.d12ed0af1a27fp-27 ? q4 : q6;
q1 = vbyu > 0.0625 ? q1 : q3;
q2 = vbyu > 0.0625 ? q2 : q4;
// Tidy-up according to which quadrant the arguments lie in
double res1, res2, res3, res4;
q1 = swap_vu ? piby2_head - q1 : q1;
q2 = swap_vu ? piby2_tail - q2 : q2;
q1 = xneg ? pi_head - q1 : q1;
q2 = xneg ? pi_tail - q2 : q2;
q1 = q1 + q2;
res4 = yneg ? -q1 : q1;
res1 = yneg ? -three_piby4 : three_piby4;
res2 = yneg ? -piby4 : piby4;
res3 = xneg ? res1 : res2;
res3 = isinf(x2) & isinf(y2) ? res3 : res4;
res1 = yneg ? -pi : pi;
// abs(x)/abs(y) > 2^56 and x < 0
res3 = (diffexp < -56 && xneg) ? res1 : res3;
res4 = MATH_DIVIDE(y, x);
// x positive and dominant over y by a factor of 2^28
res3 = diffexp < -28 & xneg == 0 ? res4 : res3;
// abs(y)/abs(x) > 2^56
res4 = yneg ? -piby2 : piby2; // atan(y/x) is insignificant compared to piby2
res3 = diffexp > 56 ? res4 : res3;
res3 = x2 == 0.0 ? res4 : res3; // Zero x gives +- pi/2 depending on sign of y
res4 = xneg ? res1 : y2;
res3 = y2 == 0.0 ? res4 : res3; // Zero y gives +-0 for positive x and +-pi for negative x
res3 = isnan(y2) ? y2 : res3;
res3 = isnan(x2) ? x2 : res3;
return res3;
}
_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan2, double, double);
#endif
_CLC_DEFINE_BINARY_BUILTIN_FP16(atan2)