/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float log1p(float x)
{
float w = x;
uint ux = as_uint(x);
uint ax = ux & EXSIGNBIT_SP32;
// |x| < 2^-4
float u2 = MATH_DIVIDE(x, 2.0f + x);
float u = u2 + u2;
float v = u * u;
// 2/(5 * 2^5), 2/(3 * 2^3)
float zsmall = mad(-u2, x, mad(v, 0x1.99999ap-7f, 0x1.555556p-4f) * v * u) + x;
// |x| >= 2^-4
ux = as_uint(x + 1.0f);
int m = (int)((ux >> EXPSHIFTBITS_SP32) & 0xff) - EXPBIAS_SP32;
float mf = (float)m;
uint indx = (ux & 0x007f0000) + ((ux & 0x00008000) << 1);
float F = as_float(indx | 0x3f000000);
// x > 2^24
float fg24 = F - as_float(0x3f000000 | (ux & MANTBITS_SP32));
// x <= 2^24
uint xhi = ux & 0xffff8000;
float xh = as_float(xhi);
float xt = (1.0f - xh) + w;
uint xnm = ((~(xhi & 0x7f800000)) - 0x00800000) & 0x7f800000;
xt = xt * as_float(xnm) * 0.5f;
float fl24 = F - as_float(0x3f000000 | (xhi & MANTBITS_SP32)) - xt;
float f = mf > 24.0f ? fg24 : fl24;
indx = indx >> 16;
float r = f * USE_TABLE(log_inv_tbl, indx);
// 1/3, 1/2
float poly = mad(mad(r, 0x1.555556p-2f, 0x1.0p-1f), r*r, r);
const float LOG2_HEAD = 0x1.62e000p-1f; // 0.693115234
const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833
float2 tv = USE_TABLE(loge_tbl, indx);
float z1 = mad(mf, LOG2_HEAD, tv.s0);
float z2 = mad(mf, LOG2_TAIL, -poly) + tv.s1;
float z = z1 + z2;
z = ax < 0x3d800000U ? zsmall : z;
// Edge cases
z = ax >= PINFBITPATT_SP32 ? w : z;
z = w < -1.0f ? as_float(QNANBITPATT_SP32) : z;
z = w == -1.0f ? as_float(NINFBITPATT_SP32) : z;
//fix subnormals
z = ax < 0x33800000 ? x : z;
return z;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, log1p, float);
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double log1p(double x)
{
// Computes natural log(1+x). Algorithm based on:
// Ping-Tak Peter Tang
// "Table-driven implementation of the logarithm function in IEEE
// floating-point arithmetic"
// ACM Transactions on Mathematical Software (TOMS)
// Volume 16, Issue 4 (December 1990)
// Note that we use a lookup table of size 64 rather than 128,
// and compensate by having extra terms in the minimax polynomial
// for the kernel approximation.
// Process Inside the threshold now
ulong ux = as_ulong(1.0 + x);
int xexp = ((as_int2(ux).hi >> 20) & 0x7ff) - EXPBIAS_DP64;
double f = as_double(ONEEXPBITS_DP64 | (ux & MANTBITS_DP64));
int j = as_int2(ux).hi >> 13;
j = ((0x80 | (j & 0x7e)) >> 1) + (j & 0x1);
double f1 = (double)j * 0x1.0p-6;
j -= 64;
double f2temp = f - f1;
double m2 = as_double(convert_ulong(0x3ff - xexp) << EXPSHIFTBITS_DP64);
double f2l = fma(m2, x, m2 - f1);
double f2g = fma(m2, x, -f1) + m2;
double f2 = xexp <= MANTLENGTH_DP64-1 ? f2l : f2g;
f2 = (xexp <= -2) | (xexp >= MANTLENGTH_DP64+8) ? f2temp : f2;
double2 tv = USE_TABLE(ln_tbl, j);
double z1 = tv.s0;
double q = tv.s1;
double u = MATH_DIVIDE(f2, fma(0.5, f2, f1));
double v = u * u;
double poly = v * fma(v,
fma(v, 2.23219810758559851206e-03, 1.24999999978138668903e-02),
8.33333333333333593622e-02);
// log2_lead and log2_tail sum to an extra-precise version of log(2)
const double log2_lead = 6.93147122859954833984e-01; /* 0x3fe62e42e0000000 */
const double log2_tail = 5.76999904754328540596e-08; /* 0x3e6efa39ef35793c */
double z2 = q + fma(u, poly, u);
double dxexp = (double)xexp;
double r1 = fma(dxexp, log2_lead, z1);
double r2 = fma(dxexp, log2_tail, z2);
double result1 = r1 + r2;
// Process Outside the threshold now
double r = x;
u = r / (2.0 + r);
double correction = r * u;
u = u + u;
v = u * u;
r1 = r;
poly = fma(v,
fma(v,
fma(v, 4.34887777707614552256e-04, 2.23213998791944806202e-03),
1.25000000037717509602e-02),
8.33333333333317923934e-02);
r2 = fma(u*v, poly, -correction);
// The values exp(-1/16)-1 and exp(1/16)-1
const double log1p_thresh1 = -0x1.f0540438fd5c3p-5;
const double log1p_thresh2 = 0x1.082b577d34ed8p-4;
double result2 = r1 + r2;
result2 = x < log1p_thresh1 | x > log1p_thresh2 ? result1 : result2;
result2 = isinf(x) ? x : result2;
result2 = x < -1.0 ? as_double(QNANBITPATT_DP64) : result2;
result2 = x == -1.0 ? as_double(NINFBITPATT_DP64) : result2;
return result2;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, log1p, double);
#endif // cl_khr_fp64
_CLC_DEFINE_UNARY_BUILTIN_FP16(log1p)