//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Test libc++'s implementation of align_val_t, and the relevant new/delete
// overloads in all dialects when -faligned-allocation is present.
// Libc++ when built for z/OS doesn't contain the aligned allocation functions,
// nor does the dynamic library shipped with z/OS.
// XFAIL: target={{.+}}-zos{{.*}}
// XFAIL: sanitizer-new-delete && !hwasan
// TODO: Investigate this failure
// UNSUPPORTED: ubsan
// GCC doesn't support the aligned-allocation flags.
// XFAIL: gcc
// RUN: %{build} -faligned-allocation -fsized-deallocation
// RUN: %{run}
// RUN: %{build} -faligned-allocation -fno-sized-deallocation -DNO_SIZE
// RUN: %{run}
// RUN: %{build} -fno-aligned-allocation -fsized-deallocation -DNO_ALIGN
// RUN: %{run}
// RUN: %{build} -fno-aligned-allocation -fno-sized-deallocation -DNO_ALIGN -DNO_SIZE
// RUN: %{run}
#include <cassert>
#include <cstdlib>
#include <new>
#include "test_macros.h"
TEST_DIAGNOSTIC_PUSH
TEST_CLANG_DIAGNOSTIC_IGNORED("-Wprivate-header")
#include <__memory/aligned_alloc.h>
TEST_DIAGNOSTIC_POP
struct alloc_stats {
alloc_stats() { reset(); }
int aligned_sized_called;
int aligned_called;
int sized_called;
int plain_called;
int last_size;
int last_align;
void reset() {
aligned_sized_called = aligned_called = sized_called = plain_called = 0;
last_align = last_size = -1;
}
bool expect_plain() const {
assert(aligned_sized_called == 0);
assert(aligned_called == 0);
assert(sized_called == 0);
assert(last_size == -1);
assert(last_align == -1);
return plain_called == 1;
}
bool expect_size(int n) const {
assert(plain_called == 0);
assert(aligned_sized_called == 0);
assert(aligned_called == 0);
assert(last_size == n);
assert(last_align == -1);
return sized_called == 1;
}
bool expect_align(int a) const {
assert(plain_called == 0);
assert(aligned_sized_called == 0);
assert(sized_called == 0);
assert(last_size == -1);
assert(last_align == a);
return aligned_called == 1;
}
bool expect_size_align(int n, int a) const {
assert(plain_called == 0);
assert(sized_called == 0);
assert(aligned_called == 0);
assert(last_size == n);
assert(last_align == a);
return aligned_sized_called == 1;
}
};
alloc_stats stats;
void operator delete(void* p)TEST_NOEXCEPT {
::free(p);
stats.plain_called++;
stats.last_size = stats.last_align = -1;
}
#ifndef NO_SIZE
void operator delete(void* p, std::size_t n)TEST_NOEXCEPT {
::free(p);
stats.sized_called++;
stats.last_size = n;
stats.last_align = -1;
}
#endif
#ifndef NO_ALIGN
void operator delete(void* p, std::align_val_t a)TEST_NOEXCEPT {
std::__libcpp_aligned_free(p);
stats.aligned_called++;
stats.last_align = static_cast<int>(a);
stats.last_size = -1;
}
void operator delete(void* p, std::size_t n, std::align_val_t a)TEST_NOEXCEPT {
std::__libcpp_aligned_free(p);
stats.aligned_sized_called++;
stats.last_align = static_cast<int>(a);
stats.last_size = n;
}
#endif
void test_libcpp_dealloc() {
void* p = nullptr;
#ifdef __STDCPP_DEFAULT_NEW_ALIGNMENT__
std::size_t over_align_val = __STDCPP_DEFAULT_NEW_ALIGNMENT__ * 2;
#else
std::size_t over_align_val = TEST_ALIGNOF(std::max_align_t) * 2;
#endif
std::size_t under_align_val = TEST_ALIGNOF(int);
std::size_t with_size_val = 2;
{
std::__libcpp_deallocate_unsized(p, under_align_val);
assert(stats.expect_plain());
}
stats.reset();
#if defined(NO_SIZE) && defined(NO_ALIGN)
{
std::__libcpp_deallocate(p, with_size_val, over_align_val);
assert(stats.expect_plain());
}
stats.reset();
#elif defined(NO_SIZE)
{
std::__libcpp_deallocate(p, with_size_val, over_align_val);
assert(stats.expect_align(over_align_val));
}
stats.reset();
#elif defined(NO_ALIGN)
{
std::__libcpp_deallocate(p, with_size_val, over_align_val);
assert(stats.expect_size(with_size_val));
}
stats.reset();
#else
{
std::__libcpp_deallocate(p, with_size_val, over_align_val);
assert(stats.expect_size_align(with_size_val, over_align_val));
}
stats.reset();
{
std::__libcpp_deallocate_unsized(p, over_align_val);
assert(stats.expect_align(over_align_val));
}
stats.reset();
{
std::__libcpp_deallocate(p, with_size_val, under_align_val);
assert(stats.expect_size(with_size_val));
}
stats.reset();
#endif
}
struct TEST_ALIGNAS(128) AlignedType {
AlignedType() : elem(0) {}
TEST_ALIGNAS(128) char elem;
};
void test_allocator_and_new_match() {
stats.reset();
#if defined(NO_SIZE) && defined(NO_ALIGN)
{
int* x = DoNotOptimize(new int(42));
delete x;
assert(stats.expect_plain());
}
stats.reset();
{
AlignedType* a = DoNotOptimize(new AlignedType());
delete a;
assert(stats.expect_plain());
}
stats.reset();
#elif defined(NO_SIZE)
stats.reset();
#if TEST_STD_VER >= 11
{
int* x = DoNotOptimize(new int(42));
delete x;
assert(stats.expect_plain());
}
#endif
stats.reset();
{
AlignedType* a = DoNotOptimize(new AlignedType());
delete a;
assert(stats.expect_align(TEST_ALIGNOF(AlignedType)));
}
stats.reset();
#elif defined(NO_ALIGN)
stats.reset();
{
int* x = DoNotOptimize(new int(42));
delete x;
assert(stats.expect_size(sizeof(int)));
}
stats.reset();
{
AlignedType* a = DoNotOptimize(new AlignedType());
delete a;
assert(stats.expect_size(sizeof(AlignedType)));
}
stats.reset();
#else
stats.reset();
{
int* x = DoNotOptimize(new int(42));
delete x;
assert(stats.expect_size(sizeof(int)));
}
stats.reset();
{
AlignedType* a = DoNotOptimize(new AlignedType());
delete a;
assert(stats.expect_size_align(sizeof(AlignedType),
TEST_ALIGNOF(AlignedType)));
}
stats.reset();
#endif
}
int main(int, char**) {
test_libcpp_dealloc();
test_allocator_and_new_match();
return 0;
}