//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// <random>
// template <class UIntType, UIntType a, UIntType c, UIntType m>
// class linear_congruential_engine;
// result_type operator()();
#include <random>
#include <cassert>
#include "test_macros.h"
int main(int, char**)
{
typedef unsigned long long T;
// m might overflow, but the overflow is OK so it shouldn't use Schrage's algorithm
typedef std::linear_congruential_engine<T, 25214903917ull, 1, (1ull << 48)> E1;
E1 e1;
// make sure the right algorithm was used
assert(e1() == 25214903918ull);
assert(e1() == 205774354444503ull);
assert(e1() == 158051849450892ull);
// make sure result is in bounds
assert(e1() < (1ull << 48));
assert(e1() < (1ull << 48));
assert(e1() < (1ull << 48));
assert(e1() < (1ull << 48));
assert(e1() < (1ull << 48));
// m might overflow. The overflow is not OK and result will be in bounds
// so we should use Schrage's algorithm
typedef std::linear_congruential_engine<T, (1ull << 32), 0, (1ull << 63) + 1ull> E2;
E2 e2;
// make sure Schrage's algorithm is used (it would be 0s after the first otherwise)
assert(e2() == (1ull << 32));
assert(e2() == (1ull << 63) - 1ull);
assert(e2() == (1ull << 63) - 0x1ffffffffull);
// make sure result is in bounds
assert(e2() < (1ull << 63) + 1);
assert(e2() < (1ull << 63) + 1);
assert(e2() < (1ull << 63) + 1);
assert(e2() < (1ull << 63) + 1);
assert(e2() < (1ull << 63) + 1);
// m might overflow. The overflow is not OK and result will be in bounds
// so we should use Schrage's algorithm. m is even
typedef std::linear_congruential_engine<T, 0x18000001ull, 0x12347ull, (3ull << 56)> E3;
E3 e3;
// make sure Schrage's algorithm is used
assert(e3() == 0x18012348ull);
assert(e3() == 0x2401b4ed802468full);
assert(e3() == 0x18051ec400369d6ull);
// make sure result is in bounds
assert(e3() < (3ull << 56));
assert(e3() < (3ull << 56));
assert(e3() < (3ull << 56));
assert(e3() < (3ull << 56));
assert(e3() < (3ull << 56));
// 32-bit case:
// m might overflow. The overflow is not OK, result will be in bounds,
// and Schrage's algorithm is incompatible here. Need to use 64 bit arithmetic.
typedef std::linear_congruential_engine<unsigned, 0x10009u, 0u, 0x7fffffffu> E4;
E4 e4;
// make sure enough precision is used
assert(e4() == 0x10009u);
assert(e4() == 0x120053u);
assert(e4() == 0xf5030fu);
// make sure result is in bounds
assert(e4() < 0x7fffffffu);
assert(e4() < 0x7fffffffu);
assert(e4() < 0x7fffffffu);
assert(e4() < 0x7fffffffu);
assert(e4() < 0x7fffffffu);
#ifndef _LIBCPP_HAS_NO_INT128
// m might overflow. The overflow is not OK, result will be in bounds,
// and Schrage's algorithm is incompatible here. Need to use 128 bit arithmetic.
typedef std::linear_congruential_engine<T, 0x100000001ull, 0ull, (1ull << 61) - 1ull> E5;
E5 e5;
// make sure enough precision is used
assert(e5() == 0x100000001ull);
assert(e5() == 0x200000009ull);
assert(e5() == 0xb00000019ull);
// make sure result is in bounds
assert(e5() < (1ull << 61) - 1ull);
assert(e5() < (1ull << 61) - 1ull);
assert(e5() < (1ull << 61) - 1ull);
assert(e5() < (1ull << 61) - 1ull);
assert(e5() < (1ull << 61) - 1ull);
#endif
// m will not overflow so we should not use Schrage's algorithm
typedef std::linear_congruential_engine<T, 1ull, 1, (1ull << 48)> E6;
E6 e6;
// make sure the correct algorithm was used
assert(e6() == 2ull);
assert(e6() == 3ull);
assert(e6() == 4ull);
// make sure result is in bounds
assert(e6() < (1ull << 48));
assert(e6() < (1ull << 48));
assert(e6() < (1ull << 48));
assert(e6() < (1ull << 48));
assert(e6() < (1ull << 48));
return 0;
}