//===- BuiltinTypes.h - MLIR Builtin Type Classes ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef MLIR_IR_BUILTINTYPES_H #define MLIR_IR_BUILTINTYPES_H #include "mlir/IR/BuiltinAttributeInterfaces.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/Support/ADTExtras.h" namespace llvm { class BitVector; struct fltSemantics; } // namespace llvm //===----------------------------------------------------------------------===// // Tablegen Interface Declarations //===----------------------------------------------------------------------===// namespace mlir { class AffineExpr; class AffineMap; class FloatType; class IndexType; class IntegerType; class MemRefType; class RankedTensorType; class StringAttr; class TypeRange; namespace detail { struct FunctionTypeStorage; struct IntegerTypeStorage; struct TupleTypeStorage; } // namespace detail /// Type trait indicating that the type has value semantics. template <typename ConcreteType> class ValueSemantics : public TypeTrait::TraitBase<ConcreteType, ValueSemantics> { … }; //===----------------------------------------------------------------------===// // FloatType //===----------------------------------------------------------------------===// class FloatType : public Type { … }; //===----------------------------------------------------------------------===// // TensorType //===----------------------------------------------------------------------===// /// Tensor types represent multi-dimensional arrays, and have two variants: /// RankedTensorType and UnrankedTensorType. /// Note: This class attaches the ShapedType trait to act as a mixin to /// provide many useful utility functions. This inheritance has no effect /// on derived tensor types. class TensorType : public Type, public ShapedType::Trait<TensorType> { … }; //===----------------------------------------------------------------------===// // BaseMemRefType //===----------------------------------------------------------------------===// /// This class provides a shared interface for ranked and unranked memref types. /// Note: This class attaches the ShapedType trait to act as a mixin to /// provide many useful utility functions. This inheritance has no effect /// on derived memref types. class BaseMemRefType : public Type, public ShapedType::Trait<BaseMemRefType> { … }; } // namespace mlir //===----------------------------------------------------------------------===// // Tablegen Type Declarations //===----------------------------------------------------------------------===// #define GET_TYPEDEF_CLASSES #include "mlir/IR/BuiltinTypes.h.inc" namespace mlir { #include "mlir/IR/BuiltinTypeConstraints.h.inc" //===----------------------------------------------------------------------===// // MemRefType //===----------------------------------------------------------------------===// /// This is a builder type that keeps local references to arguments. Arguments /// that are passed into the builder must outlive the builder. class MemRefType::Builder { … }; //===----------------------------------------------------------------------===// // RankedTensorType //===----------------------------------------------------------------------===// /// This is a builder type that keeps local references to arguments. Arguments /// that are passed into the builder must outlive the builder. class RankedTensorType::Builder { … }; //===----------------------------------------------------------------------===// // VectorType //===----------------------------------------------------------------------===// /// This is a builder type that keeps local references to arguments. Arguments /// that are passed into the builder must outlive the builder. class VectorType::Builder { … }; /// Given an `originalShape` and a `reducedShape` assumed to be a subset of /// `originalShape` with some `1` entries erased, return the set of indices /// that specifies which of the entries of `originalShape` are dropped to obtain /// `reducedShape`. The returned mask can be applied as a projection to /// `originalShape` to obtain the `reducedShape`. This mask is useful to track /// which dimensions must be kept when e.g. compute MemRef strides under /// rank-reducing operations. Return std::nullopt if reducedShape cannot be /// obtained by dropping only `1` entries in `originalShape`. /// If `matchDynamic` is true, then dynamic dims in `originalShape` and /// `reducedShape` will be considered matching with non-dynamic dims, unless /// the non-dynamic dim is from `originalShape` and equal to 1. For example, /// in ([1, 3, ?], [?, 5]), the mask would be {1, 0, 0}, since 3 and 5 will /// match with the corresponding dynamic dims. std::optional<llvm::SmallDenseSet<unsigned>> computeRankReductionMask(ArrayRef<int64_t> originalShape, ArrayRef<int64_t> reducedShape, bool matchDynamic = false); /// Enum that captures information related to verifier error conditions on /// slice insert/extract type of ops. enum class SliceVerificationResult { … }; /// Check if `originalType` can be rank reduced to `candidateReducedType` type /// by dropping some dimensions with static size `1`. /// Return `SliceVerificationResult::Success` on success or an appropriate error /// code. SliceVerificationResult isRankReducedType(ShapedType originalType, ShapedType candidateReducedType); //===----------------------------------------------------------------------===// // Deferred Method Definitions //===----------------------------------------------------------------------===// inline bool BaseMemRefType::classof(Type type) { … } inline bool BaseMemRefType::isValidElementType(Type type) { … } inline bool FloatType::classof(Type type) { … } inline FloatType FloatType::getFloat8E5M2(MLIRContext *ctx) { … } inline FloatType FloatType::getFloat8E4M3(MLIRContext *ctx) { … } inline FloatType FloatType::getFloat8E4M3FN(MLIRContext *ctx) { … } inline FloatType FloatType::getFloat8E5M2FNUZ(MLIRContext *ctx) { … } inline FloatType FloatType::getFloat8E4M3FNUZ(MLIRContext *ctx) { … } inline FloatType FloatType::getFloat8E4M3B11FNUZ(MLIRContext *ctx) { … } inline FloatType FloatType::getFloat8E3M4(MLIRContext *ctx) { … } inline FloatType FloatType::getBF16(MLIRContext *ctx) { … } inline FloatType FloatType::getF16(MLIRContext *ctx) { … } inline FloatType FloatType::getTF32(MLIRContext *ctx) { … } inline FloatType FloatType::getF32(MLIRContext *ctx) { … } inline FloatType FloatType::getF64(MLIRContext *ctx) { … } inline FloatType FloatType::getF80(MLIRContext *ctx) { … } inline FloatType FloatType::getF128(MLIRContext *ctx) { … } inline bool TensorType::classof(Type type) { … } //===----------------------------------------------------------------------===// // Type Utilities //===----------------------------------------------------------------------===// /// Returns the strides of the MemRef if the layout map is in strided form. /// MemRefs with a layout map in strided form include: /// 1. empty or identity layout map, in which case the stride information is /// the canonical form computed from sizes; /// 2. a StridedLayoutAttr layout; /// 3. any other layout that be converted into a single affine map layout of /// the form `K + k0 * d0 + ... kn * dn`, where K and ki's are constants or /// symbols. /// /// A stride specification is a list of integer values that are either static /// or dynamic (encoded with ShapedType::kDynamic). Strides encode /// the distance in the number of elements between successive entries along a /// particular dimension. LogicalResult getStridesAndOffset(MemRefType t, SmallVectorImpl<int64_t> &strides, int64_t &offset); /// Wrapper around getStridesAndOffset(MemRefType, SmallVectorImpl<int64_t>, /// int64_t) that will assert if the logical result is not succeeded. std::pair<SmallVector<int64_t>, int64_t> getStridesAndOffset(MemRefType t); /// Return a version of `t` with identity layout if it can be determined /// statically that the layout is the canonical contiguous strided layout. /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of /// `t` with simplified layout. MemRefType canonicalizeStridedLayout(MemRefType t); /// Given MemRef `sizes` that are either static or dynamic, returns the /// canonical "contiguous" strides AffineExpr. Strides are multiplicative and /// once a dynamic dimension is encountered, all canonical strides become /// dynamic and need to be encoded with a different symbol. /// For canonical strides expressions, the offset is always 0 and the fastest /// varying stride is always `1`. /// /// Examples: /// - memref<3x4x5xf32> has canonical stride expression /// `20*exprs[0] + 5*exprs[1] + exprs[2]`. /// - memref<3x?x5xf32> has canonical stride expression /// `s0*exprs[0] + 5*exprs[1] + exprs[2]`. /// - memref<3x4x?xf32> has canonical stride expression /// `s1*exprs[0] + s0*exprs[1] + exprs[2]`. AffineExpr makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, ArrayRef<AffineExpr> exprs, MLIRContext *context); /// Return the result of makeCanonicalStrudedLayoutExpr for the common case /// where `exprs` is {d0, d1, .., d_(sizes.size()-1)} AffineExpr makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, MLIRContext *context); /// Return "true" if the layout for `t` is compatible with strided semantics. bool isStrided(MemRefType t); /// Return "true" if the last dimension of the given type has a static unit /// stride. Also return "true" for types with no strides. bool isLastMemrefDimUnitStride(MemRefType type); /// Return "true" if the last N dimensions of the given type are contiguous. /// /// Examples: /// - memref<5x4x3x2xi8, strided<[24, 6, 2, 1]> is contiguous when /// considering both _all_ and _only_ the trailing 3 dims, /// - memref<5x4x3x2xi8, strided<[48, 6, 2, 1]> is _only_ contiguous when /// considering the trailing 3 dims. /// bool trailingNDimsContiguous(MemRefType type, int64_t n); } // namespace mlir #endif // MLIR_IR_BUILTINTYPES_H