//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// REQUIRES: can-create-symlinks
// UNSUPPORTED: c++03, c++11, c++14
// UNSUPPORTED: no-filesystem
// UNSUPPORTED: availability-filesystem-missing
// The string reported on errors changed, which makes those tests fail when run
// against a built library that doesn't contain 0aa637b2037d.
// XFAIL: using-built-library-before-llvm-13
// <filesystem>
// file_time_type last_write_time(const path& p);
// file_time_type last_write_time(const path& p, std::error_code& ec) noexcept;
// void last_write_time(const path& p, file_time_type new_time);
// void last_write_time(const path& p, file_time_type new_type,
// std::error_code& ec) noexcept;
#include <filesystem>
#include <chrono>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <ratio>
#include <type_traits>
#include "test_macros.h"
#include "filesystem_test_helper.h"
#include <fcntl.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/time.h>
#include <sys/stat.h>
#endif
namespace fs = std::filesystem;
using namespace fs;
using Sec = std::chrono::duration<file_time_type::rep>;
using Hours = std::chrono::hours;
using Minutes = std::chrono::minutes;
using MilliSec = std::chrono::duration<file_time_type::rep, std::milli>;
using MicroSec = std::chrono::duration<file_time_type::rep, std::micro>;
using NanoSec = std::chrono::duration<file_time_type::rep, std::nano>;
using std::chrono::duration_cast;
#ifdef _WIN32
struct TimeSpec {
std::int64_t tv_sec;
std::int64_t tv_nsec;
};
struct StatT {
TimeSpec st_atim;
TimeSpec st_mtim;
};
// There were 369 years and 89 leap days from the Windows epoch
// (1601) to the Unix epoch (1970).
#define FILE_TIME_OFFSET_SECS (std::uint64_t(369 * 365 + 89) * (24 * 60 * 60))
static TimeSpec filetime_to_timespec(LARGE_INTEGER li) {
TimeSpec ret;
ret.tv_sec = li.QuadPart / 10000000 - FILE_TIME_OFFSET_SECS;
ret.tv_nsec = (li.QuadPart % 10000000) * 100;
return ret;
}
static int stat_file(const char *path, StatT *buf, int flags) {
HANDLE h = CreateFileA(path, FILE_READ_ATTRIBUTES,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
nullptr, OPEN_EXISTING,
FILE_FLAG_BACKUP_SEMANTICS | flags, nullptr);
if (h == INVALID_HANDLE_VALUE)
return -1;
int ret = -1;
FILE_BASIC_INFO basic;
if (GetFileInformationByHandleEx(h, FileBasicInfo, &basic, sizeof(basic))) {
buf->st_mtim = filetime_to_timespec(basic.LastWriteTime);
buf->st_atim = filetime_to_timespec(basic.LastAccessTime);
ret = 0;
}
CloseHandle(h);
return ret;
}
static int stat(const char *path, StatT *buf) {
return stat_file(path, buf, 0);
}
static int lstat(const char *path, StatT *buf) {
return stat_file(path, buf, FILE_FLAG_OPEN_REPARSE_POINT);
}
#elif defined(_AIX)
using TimeSpec = st_timespec_t;
using StatT = struct stat;
#else
using TimeSpec = timespec;
using StatT = struct stat;
#endif
#if defined(__APPLE__)
TimeSpec extract_mtime(StatT const& st) { return st.st_mtimespec; }
TimeSpec extract_atime(StatT const& st) { return st.st_atimespec; }
#else
TimeSpec extract_mtime(StatT const& st) { return st.st_mtim; }
TimeSpec extract_atime(StatT const& st) { return st.st_atim; }
#endif
bool ConvertToTimeSpec(TimeSpec& ts, file_time_type ft) {
using SecFieldT = decltype(TimeSpec::tv_sec);
using NSecFieldT = decltype(TimeSpec::tv_nsec);
using SecLim = std::numeric_limits<SecFieldT>;
using NSecLim = std::numeric_limits<NSecFieldT>;
auto secs = duration_cast<Sec>(ft.time_since_epoch());
auto nsecs = duration_cast<NanoSec>(ft.time_since_epoch() - secs);
if (nsecs.count() < 0) {
if (Sec::min().count() > SecLim::min()) {
secs += Sec(1);
nsecs -= Sec(1);
} else {
nsecs = NanoSec(0);
}
}
if (SecLim::max() < secs.count() || SecLim::min() > secs.count())
return false;
if (NSecLim::max() < nsecs.count() || NSecLim::min() > nsecs.count())
return false;
ts.tv_sec = secs.count();
ts.tv_nsec = nsecs.count();
return true;
}
bool ConvertFromTimeSpec(file_time_type& ft, TimeSpec ts) {
auto secs_part = duration_cast<file_time_type::duration>(Sec(ts.tv_sec));
if (duration_cast<Sec>(secs_part).count() != ts.tv_sec)
return false;
auto subsecs = duration_cast<file_time_type::duration>(NanoSec(ts.tv_nsec));
auto dur = secs_part + subsecs;
if (dur < secs_part && subsecs.count() >= 0)
return false;
ft = file_time_type(dur);
return true;
}
bool CompareTimeExact(TimeSpec ts, TimeSpec ts2) {
return ts2.tv_sec == ts.tv_sec && ts2.tv_nsec == ts.tv_nsec;
}
bool CompareTimeExact(file_time_type ft, TimeSpec ts) {
TimeSpec ts2 = {};
if (!ConvertToTimeSpec(ts2, ft))
return false;
return CompareTimeExact(ts, ts2);
}
bool CompareTimeExact(TimeSpec ts, file_time_type ft) {
return CompareTimeExact(ft, ts);
}
struct Times {
TimeSpec access, write;
};
Times GetTimes(path const& p) {
StatT st;
if (::stat(p.string().c_str(), &st) == -1) {
std::error_code ec(errno, std::generic_category());
#ifndef TEST_HAS_NO_EXCEPTIONS
throw ec;
#else
std::exit(EXIT_FAILURE);
#endif
}
return {extract_atime(st), extract_mtime(st)};
}
TimeSpec LastAccessTime(path const& p) { return GetTimes(p).access; }
TimeSpec LastWriteTime(path const& p) { return GetTimes(p).write; }
Times GetSymlinkTimes(path const& p) {
StatT st;
if (::lstat(p.string().c_str(), &st) == -1) {
std::error_code ec(errno, std::generic_category());
#ifndef TEST_HAS_NO_EXCEPTIONS
throw ec;
#else
std::exit(EXIT_FAILURE);
#endif
}
Times res;
res.access = extract_atime(st);
res.write = extract_mtime(st);
return res;
}
namespace {
// In some configurations, the comparison is tautological and the test is valid.
// We disable the warning so that we can actually test it regardless.
TEST_DIAGNOSTIC_PUSH
TEST_CLANG_DIAGNOSTIC_IGNORED("-Wtautological-constant-compare")
static const bool SupportsNegativeTimes = [] {
using namespace std::chrono;
std::error_code ec;
TimeSpec old_write_time, new_write_time;
{ // WARNING: Do not assert in this scope.
scoped_test_env env;
const path file = env.create_file("file", 42);
old_write_time = LastWriteTime(file);
file_time_type tp(seconds(-5));
fs::last_write_time(file, tp, ec);
new_write_time = LastWriteTime(file);
}
return !ec && new_write_time.tv_sec < 0;
}();
static const bool SupportsMaxTime = [] {
using namespace std::chrono;
TimeSpec max_ts = {};
if (!ConvertToTimeSpec(max_ts, file_time_type::max()))
return false;
std::error_code ec;
TimeSpec old_write_time, new_write_time;
{ // WARNING: Do not assert in this scope.
scoped_test_env env;
const path file = env.create_file("file", 42);
old_write_time = LastWriteTime(file);
file_time_type tp = file_time_type::max();
fs::last_write_time(file, tp, ec);
new_write_time = LastWriteTime(file);
}
return !ec && new_write_time.tv_sec > max_ts.tv_sec - 1;
}();
static const bool SupportsMinTime = [] {
using namespace std::chrono;
TimeSpec min_ts = {};
if (!ConvertToTimeSpec(min_ts, file_time_type::min()))
return false;
std::error_code ec;
TimeSpec old_write_time, new_write_time;
{ // WARNING: Do not assert in this scope.
scoped_test_env env;
const path file = env.create_file("file", 42);
old_write_time = LastWriteTime(file);
file_time_type tp = file_time_type::min();
fs::last_write_time(file, tp, ec);
new_write_time = LastWriteTime(file);
}
return !ec && new_write_time.tv_sec < min_ts.tv_sec + 1;
}();
static const bool SupportsNanosecondRoundTrip = [] {
NanoSec ns(3);
static_assert(std::is_same<file_time_type::period, std::nano>::value, "");
// Test that the system call we use to set the times also supports nanosecond
// resolution. (utimes does not)
file_time_type ft(ns);
{
scoped_test_env env;
const path p = env.create_file("file", 42);
last_write_time(p, ft);
return last_write_time(p) == ft;
}
}();
// The HFS+ filesystem (used by default before macOS 10.13) stores timestamps at
// a 1-second granularity, and APFS (now the default) at a 1 nanosecond granularity.
// 1-second granularity is also the norm on many of the supported filesystems
// on Linux as well.
static const bool WorkaroundStatTruncatesToSeconds = [] {
MicroSec micros(3);
static_assert(std::is_same<file_time_type::period, std::nano>::value, "");
file_time_type ft(micros);
{
scoped_test_env env;
const path p = env.create_file("file", 42);
if (LastWriteTime(p).tv_nsec != 0)
return false;
last_write_time(p, ft);
return last_write_time(p) != ft && LastWriteTime(p).tv_nsec == 0;
}
}();
static const bool SupportsMinRoundTrip = [] {
TimeSpec ts = {};
if (!ConvertToTimeSpec(ts, file_time_type::min()))
return false;
file_time_type min_val = {};
if (!ConvertFromTimeSpec(min_val, ts))
return false;
return min_val == file_time_type::min();
}();
} // end namespace
static bool CompareTime(TimeSpec t1, TimeSpec t2) {
if (SupportsNanosecondRoundTrip)
return CompareTimeExact(t1, t2);
if (t1.tv_sec != t2.tv_sec)
return false;
auto diff = std::abs(t1.tv_nsec - t2.tv_nsec);
if (WorkaroundStatTruncatesToSeconds)
return diff < duration_cast<NanoSec>(Sec(1)).count();
return diff < duration_cast<NanoSec>(MicroSec(1)).count();
}
static bool CompareTime(file_time_type t1, TimeSpec t2) {
TimeSpec ts1 = {};
if (!ConvertToTimeSpec(ts1, t1))
return false;
return CompareTime(ts1, t2);
}
static bool CompareTime(TimeSpec t1, file_time_type t2) {
return CompareTime(t2, t1);
}
static bool CompareTime(file_time_type t1, file_time_type t2) {
auto min_secs = duration_cast<Sec>(file_time_type::min().time_since_epoch());
bool IsMin =
t1.time_since_epoch() < min_secs || t2.time_since_epoch() < min_secs;
if (SupportsNanosecondRoundTrip && (!IsMin || SupportsMinRoundTrip))
return t1 == t2;
if (IsMin) {
return duration_cast<Sec>(t1.time_since_epoch()) ==
duration_cast<Sec>(t2.time_since_epoch());
}
file_time_type::duration dur;
if (t1 > t2)
dur = t1 - t2;
else
dur = t2 - t1;
if (WorkaroundStatTruncatesToSeconds)
return duration_cast<Sec>(dur).count() == 0;
return duration_cast<MicroSec>(dur).count() == 0;
}
// Check if a time point is representable on a given filesystem. Check that:
// (A) 'tp' is representable as a time_t
// (B) 'tp' is non-negative or the filesystem supports negative times.
// (C) 'tp' is not 'file_time_type::max()' or the filesystem supports the max
// value.
// (D) 'tp' is not 'file_time_type::min()' or the filesystem supports the min
// value.
inline bool TimeIsRepresentableByFilesystem(file_time_type tp) {
TimeSpec ts = {};
if (!ConvertToTimeSpec(ts, tp))
return false;
else if (tp.time_since_epoch().count() < 0 && !SupportsNegativeTimes)
return false;
else if (tp == file_time_type::max() && !SupportsMaxTime)
return false;
else if (tp == file_time_type::min() && !SupportsMinTime)
return false;
return true;
}
TEST_DIAGNOSTIC_POP
// Create a sub-second duration using the smallest period the filesystem supports.
file_time_type::duration SubSec(long long val) {
using SubSecT = file_time_type::duration;
if (SupportsNanosecondRoundTrip) {
return duration_cast<SubSecT>(NanoSec(val));
} else {
return duration_cast<SubSecT>(MicroSec(val));
}
}
static void signature_test()
{
const file_time_type t;
const path p; ((void)p);
std::error_code ec; ((void)ec);
ASSERT_SAME_TYPE(decltype(last_write_time(p)), file_time_type);
ASSERT_SAME_TYPE(decltype(last_write_time(p, ec)), file_time_type);
ASSERT_SAME_TYPE(decltype(last_write_time(p, t)), void);
ASSERT_SAME_TYPE(decltype(last_write_time(p, t, ec)), void);
ASSERT_NOT_NOEXCEPT(last_write_time(p));
ASSERT_NOT_NOEXCEPT(last_write_time(p, t));
ASSERT_NOEXCEPT(last_write_time(p, ec));
ASSERT_NOEXCEPT(last_write_time(p, t, ec));
}
static void read_last_write_time_static_env_test()
{
static_test_env static_env;
using C = file_time_type::clock;
file_time_type min = file_time_type::min();
// Sleep a little to make sure that static_env.File created above is
// strictly older than C::now() even with a coarser clock granularity
// in C::now(). (GetSystemTimeAsFileTime on windows has a fairly coarse
// granularity.)
SleepFor(MilliSec(30));
{
file_time_type ret = last_write_time(static_env.File);
assert(ret != min);
assert(ret < C::now());
assert(CompareTime(ret, LastWriteTime(static_env.File)));
file_time_type ret2 = last_write_time(static_env.SymlinkToFile);
assert(CompareTime(ret, ret2));
assert(CompareTime(ret2, LastWriteTime(static_env.SymlinkToFile)));
}
{
file_time_type ret = last_write_time(static_env.Dir);
assert(ret != min);
assert(ret < C::now());
assert(CompareTime(ret, LastWriteTime(static_env.Dir)));
file_time_type ret2 = last_write_time(static_env.SymlinkToDir);
assert(CompareTime(ret, ret2));
assert(CompareTime(ret2, LastWriteTime(static_env.SymlinkToDir)));
}
}
static void get_last_write_time_dynamic_env_test()
{
scoped_test_env env;
const path file = env.create_file("file", 42);
const path dir = env.create_dir("dir");
const auto file_times = GetTimes(file);
const TimeSpec file_write_time = file_times.write;
const auto dir_times = GetTimes(dir);
const TimeSpec dir_write_time = dir_times.write;
file_time_type ftime = last_write_time(file);
assert(CompareTime(ftime, file_write_time));
file_time_type dtime = last_write_time(dir);
assert(CompareTime(dtime, dir_write_time));
SleepFor(std::chrono::seconds(2));
// update file and add a file to the directory. Make sure the times increase.
std::FILE* of = std::fopen(file.string().c_str(), "a");
std::fwrite("hello", 1, sizeof("hello"), of);
std::fclose(of);
env.create_file("dir/file1", 1);
file_time_type ftime2 = last_write_time(file);
file_time_type dtime2 = last_write_time(dir);
assert(ftime2 > ftime);
assert(dtime2 > dtime);
assert(CompareTime(LastWriteTime(file), ftime2));
assert(CompareTime(LastWriteTime(dir), dtime2));
}
static void set_last_write_time_dynamic_env_test()
{
using Clock = file_time_type::clock;
scoped_test_env env;
const path file = env.create_file("file", 42);
const path dir = env.create_dir("dir");
const auto now = Clock::now();
const file_time_type epoch_time = now - now.time_since_epoch();
const file_time_type future_time = now + Hours(3) + Sec(42) + SubSec(17);
const file_time_type past_time = now - Minutes(3) - Sec(42) - SubSec(17);
const file_time_type before_epoch_time =
epoch_time - Minutes(3) - Sec(42) - SubSec(17);
(void)before_epoch_time;
// FreeBSD has a bug in their utimes implementation where the time is not update
// when the number of seconds is '-1'.
#if defined(__FreeBSD__) || defined(__NetBSD__)
const file_time_type just_before_epoch_time =
epoch_time - Sec(2) - SubSec(17);
#else
const file_time_type just_before_epoch_time = epoch_time - SubSec(17);
(void)just_before_epoch_time;
#endif
struct TestCase {
const char * case_name;
path p;
file_time_type new_time;
} cases[] = {
{"file, epoch_time", file, epoch_time},
{"dir, epoch_time", dir, epoch_time},
{"file, future_time", file, future_time},
{"dir, future_time", dir, future_time},
{"file, past_time", file, past_time},
{"dir, past_time", dir, past_time}
// Exclude file time types of before epoch time from testing on AIX
// because AIX system call utimensat() does not accept the times
// parameter having a negative tv_sec or tv_nsec field.
#if !defined(_AIX)
,
{"file, before_epoch_time", file, before_epoch_time},
{"dir, before_epoch_time", dir, before_epoch_time},
{"file, just_before_epoch_time", file, just_before_epoch_time},
{"dir, just_before_epoch_time", dir, just_before_epoch_time}
#endif
};
for (const auto& TC : cases) {
const auto old_times = GetTimes(TC.p);
file_time_type old_time;
assert(ConvertFromTimeSpec(old_time, old_times.write));
std::error_code ec = GetTestEC();
last_write_time(TC.p, TC.new_time, ec);
assert(!ec);
ec = GetTestEC();
file_time_type got_time = last_write_time(TC.p, ec);
assert(!ec);
if (TimeIsRepresentableByFilesystem(TC.new_time)) {
assert(got_time != old_time);
assert(CompareTime(got_time, TC.new_time));
assert(CompareTime(LastAccessTime(TC.p), old_times.access));
}
}
}
static void last_write_time_symlink_test()
{
using Clock = file_time_type::clock;
scoped_test_env env;
const path file = env.create_file("file", 42);
const path sym = env.create_symlink("file", "sym");
const file_time_type new_time = Clock::now() + Hours(3);
const auto old_times = GetTimes(sym);
const auto old_sym_times = GetSymlinkTimes(sym);
std::error_code ec = GetTestEC();
last_write_time(sym, new_time, ec);
assert(!ec);
file_time_type got_time = last_write_time(sym);
assert(!CompareTime(got_time, old_times.write));
if (!WorkaroundStatTruncatesToSeconds) {
assert(got_time == new_time);
} else {
assert(CompareTime(got_time, new_time));
}
assert(CompareTime(LastWriteTime(file), new_time));
assert(CompareTime(LastAccessTime(sym), old_times.access));
Times sym_times = GetSymlinkTimes(sym);
assert(CompareTime(sym_times.write, old_sym_times.write));
}
static void test_write_min_time()
{
scoped_test_env env;
const path p = env.create_file("file", 42);
const file_time_type old_time = last_write_time(p);
file_time_type new_time = file_time_type::min();
std::error_code ec = GetTestEC();
last_write_time(p, new_time, ec);
file_time_type tt = last_write_time(p);
if (TimeIsRepresentableByFilesystem(new_time)) {
assert(!ec);
assert(CompareTime(tt, new_time));
last_write_time(p, old_time);
new_time = file_time_type::min() + SubSec(1);
ec = GetTestEC();
last_write_time(p, new_time, ec);
tt = last_write_time(p);
if (TimeIsRepresentableByFilesystem(new_time)) {
assert(!ec);
assert(CompareTime(tt, new_time));
} else {
assert(ErrorIs(ec, std::errc::value_too_large));
assert(tt == old_time);
}
} else {
assert(ErrorIs(ec, std::errc::value_too_large));
assert(tt == old_time);
}
}
static void test_write_max_time() {
scoped_test_env env;
const path p = env.create_file("file", 42);
const file_time_type old_time = last_write_time(p);
file_time_type new_time = file_time_type::max();
std::error_code ec = GetTestEC();
last_write_time(p, new_time, ec);
file_time_type tt = last_write_time(p);
if (TimeIsRepresentableByFilesystem(new_time)) {
assert(!ec);
assert(CompareTime(tt, new_time));
} else {
assert(ErrorIs(ec, std::errc::value_too_large));
assert(tt == old_time);
}
}
static void test_value_on_failure()
{
static_test_env static_env;
const path p = static_env.DNE;
std::error_code ec = GetTestEC();
assert(last_write_time(p, ec) == file_time_type::min());
assert(ErrorIs(ec, std::errc::no_such_file_or_directory));
}
// Windows doesn't support setting perms::none to trigger failures
// reading directories.
#ifndef TEST_WIN_NO_FILESYSTEM_PERMS_NONE
static void test_exists_fails()
{
scoped_test_env env;
const path dir = env.create_dir("dir");
const path file = env.create_file("dir/file", 42);
permissions(dir, perms::none);
std::error_code ec = GetTestEC();
assert(last_write_time(file, ec) == file_time_type::min());
assert(ErrorIs(ec, std::errc::permission_denied));
ExceptionChecker Checker(file, std::errc::permission_denied,
"last_write_time");
TEST_VALIDATE_EXCEPTION(filesystem_error, Checker, last_write_time(file));
}
#endif // TEST_WIN_NO_FILESYSTEM_PERMS_NONE
int main(int, char**) {
signature_test();
read_last_write_time_static_env_test();
get_last_write_time_dynamic_env_test();
set_last_write_time_dynamic_env_test();
last_write_time_symlink_test();
test_write_min_time();
test_write_max_time();
test_value_on_failure();
#ifndef TEST_WIN_NO_FILESYSTEM_PERMS_NONE
test_exists_fails();
#endif
return 0;
}