// RUN: %check_clang_tidy %s modernize-use-nullptr %t -- \
// RUN: -config="{CheckOptions: {modernize-use-nullptr.NullMacros: 'MY_NULL,NULL'}}"
#define NULL 0
namespace std {
typedef decltype(nullptr) nullptr_t;
} // namespace std
// Just to make sure make_null() could have side effects.
void external();
std::nullptr_t make_null() {
external();
return nullptr;
}
void func() {
void *CallTest = make_null();
int var = 1;
void *CommaTest = (var+=2, make_null());
int *CastTest = static_cast<int*>(make_null());
}
void dummy(int*) {}
void side_effect() {}
#define MACRO_EXPANSION_HAS_NULL \
void foo() { \
dummy(0); \
dummy(NULL); \
side_effect(); \
}
MACRO_EXPANSION_HAS_NULL;
#undef MACRO_EXPANSION_HAS_NULL
void test_macro_expansion1() {
#define MACRO_EXPANSION_HAS_NULL \
dummy(NULL); \
side_effect();
MACRO_EXPANSION_HAS_NULL;
#undef MACRO_EXPANSION_HAS_NULL
}
// Test macro expansion with cast sequence, PR15572.
void test_macro_expansion2() {
#define MACRO_EXPANSION_HAS_NULL \
dummy((int*)0); \
side_effect();
MACRO_EXPANSION_HAS_NULL;
#undef MACRO_EXPANSION_HAS_NULL
}
void test_macro_expansion3() {
#define MACRO_EXPANSION_HAS_NULL \
dummy(NULL); \
side_effect();
#define OUTER_MACRO \
MACRO_EXPANSION_HAS_NULL; \
side_effect();
OUTER_MACRO;
#undef OUTER_MACRO
#undef MACRO_EXPANSION_HAS_NULL
}
void test_macro_expansion4() {
#define MY_NULL NULL
int *p = MY_NULL;
// CHECK-MESSAGES: :[[@LINE-1]]:12: warning: use nullptr [modernize-use-nullptr]
// CHECK-FIXES: int *p = nullptr;
#undef MY_NULL
}
#define IS_EQ(x, y) if (x != y) return;
void test_macro_args() {
int i = 0;
int *Ptr;
IS_EQ(static_cast<int*>(0), Ptr);
// CHECK-MESSAGES: :[[@LINE-1]]:27: warning: use nullptr
// CHECK-FIXES: IS_EQ(static_cast<int*>(nullptr), Ptr);
IS_EQ(0, Ptr); // literal
// CHECK-MESSAGES: :[[@LINE-1]]:9: warning: use nullptr
// CHECK-FIXES: IS_EQ(nullptr, Ptr);
IS_EQ(NULL, Ptr); // macro
// CHECK-MESSAGES: :[[@LINE-1]]:9: warning: use nullptr
// CHECK-FIXES: IS_EQ(nullptr, Ptr);
// These are ok since the null literal is not spelled within a macro.
#define myassert(x) if (!(x)) return;
myassert(0 == Ptr);
// CHECK-MESSAGES: :[[@LINE-1]]:12: warning: use nullptr
// CHECK-FIXES: myassert(nullptr == Ptr);
myassert(NULL == Ptr);
// CHECK-MESSAGES: :[[@LINE-1]]:12: warning: use nullptr
// CHECK-FIXES: myassert(nullptr == Ptr);
// These are bad as the null literal is buried in a macro.
#define BLAH(X) myassert(0 == (X));
#define BLAH2(X) myassert(NULL == (X));
BLAH(Ptr);
BLAH2(Ptr);
// Same as above but testing extra macro expansion.
#define EXPECT_NULL(X) IS_EQ(0, X);
#define EXPECT_NULL2(X) IS_EQ(NULL, X);
EXPECT_NULL(Ptr);
EXPECT_NULL2(Ptr);
// Almost the same as above but now null literal is not in a macro so ok
// to transform.
#define EQUALS_PTR(X) IS_EQ(X, Ptr);
EQUALS_PTR(0);
// CHECK-MESSAGES: :[[@LINE-1]]:14: warning: use nullptr
// CHECK-FIXES: EQUALS_PTR(nullptr);
EQUALS_PTR(NULL);
// CHECK-MESSAGES: :[[@LINE-1]]:14: warning: use nullptr
// CHECK-FIXES: EQUALS_PTR(nullptr);
// Same as above but testing extra macro expansion.
#define EQUALS_PTR_I(X) EQUALS_PTR(X)
EQUALS_PTR_I(0);
// CHECK-MESSAGES: :[[@LINE-1]]:16: warning: use nullptr
// CHECK-FIXES: EQUALS_PTR_I(nullptr);
EQUALS_PTR_I(NULL);
// CHECK-MESSAGES: :[[@LINE-1]]:16: warning: use nullptr
// CHECK-FIXES: EQUALS_PTR_I(nullptr);
// Ok since null literal not within macro. However, now testing macro
// used as arg to another macro.
#define decorate(EXPR) side_effect(); EXPR;
decorate(IS_EQ(NULL, Ptr));
// CHECK-MESSAGES: :[[@LINE-1]]:18: warning: use nullptr
// CHECK-FIXES: decorate(IS_EQ(nullptr, Ptr));
decorate(IS_EQ(0, Ptr));
// CHECK-MESSAGES: :[[@LINE-1]]:18: warning: use nullptr
// CHECK-FIXES: decorate(IS_EQ(nullptr, Ptr));
// This macro causes a NullToPointer cast to happen where 0 is assigned to z
// but the 0 literal cannot be replaced because it is also used as an
// integer in the comparison.
#define INT_AND_PTR_USE(X) do { int *z = X; if (X == 4) break; } while(false)
INT_AND_PTR_USE(0);
// Both uses of X in this case result in NullToPointer casts so replacement
// is possible.
#define PTR_AND_PTR_USE(X) do { int *z = X; if (X != z) break; } while(false)
PTR_AND_PTR_USE(0);
// CHECK-MESSAGES: :[[@LINE-1]]:19: warning: use nullptr
// CHECK-FIXES: PTR_AND_PTR_USE(nullptr);
PTR_AND_PTR_USE(NULL);
// CHECK-MESSAGES: :[[@LINE-1]]:19: warning: use nullptr
// CHECK-FIXES: PTR_AND_PTR_USE(nullptr);
#define OPTIONAL_CODE(...) __VA_ARGS__
#define NOT_NULL dummy(0)
#define CALL(X) X
OPTIONAL_CODE(NOT_NULL);
CALL(NOT_NULL);
#define ENTRY(X) {X}
struct A {
int *Ptr;
} a[2] = {ENTRY(0), {0}};
// CHECK-MESSAGES: :[[@LINE-1]]:19: warning: use nullptr
// CHECK-MESSAGES: :[[@LINE-2]]:24: warning: use nullptr
// CHECK-FIXES: a[2] = {ENTRY(nullptr), {nullptr}};
#undef ENTRY
#define assert1(expr) (expr) ? 0 : 1
#define assert2 assert1
int *p;
assert2(p == 0);
// CHECK-MESSAGES: :[[@LINE-1]]:16: warning: use nullptr
// CHECK-FIXES: assert2(p == nullptr);
assert2(p == NULL);
// CHECK-MESSAGES: :[[@LINE-1]]:16: warning: use nullptr
// CHECK-FIXES: assert2(p == nullptr);
#undef assert2
#undef assert1
#define ASSERT_EQ(a, b) a == b
#define ASSERT_NULL(x) ASSERT_EQ(static_cast<void *>(NULL), x)
int *pp;
ASSERT_NULL(pp);
ASSERT_NULL(NULL);
// CHECK-MESSAGES: :[[@LINE-1]]:15: warning: use nullptr
// CHECK-FIXES: ASSERT_NULL(nullptr);
#undef ASSERT_NULL
#undef ASSERT_EQ
}
// One of the ancestor of the cast is a NestedNameSpecifierLoc.
class NoDef;
char function(NoDef *p);
#define F(x) (sizeof(function(x)) == 1)
template<class T, T t>
class C {};
C<bool, F(0)> c;
// CHECK-MESSAGES: :[[@LINE-1]]:11: warning: use nullptr
// CHECK-FIXES: C<bool, F(nullptr)> c;
#undef F
// Test default argument expression.
struct D {
explicit D(void *t, int *c = NULL) {}
// CHECK-MESSAGES: :[[@LINE-1]]:32: warning: use nullptr
// CHECK-FIXES: explicit D(void *t, int *c = nullptr) {}
};
void test_default_argument() {
D(nullptr);
}
// Test on two neighbour CXXDefaultArgExprs nodes.
typedef unsigned long long uint64;
struct ZZ {
explicit ZZ(uint64, const uint64* = NULL) {}
// CHECK-MESSAGES: :[[@LINE-1]]:39: warning: use nullptr
// CHECK-FIXES: explicit ZZ(uint64, const uint64* = nullptr) {}
operator bool() { return true; }
};
uint64 Hash(uint64 seed = 0) { return 0; }
void f() {
bool a;
a = ZZ(Hash());
}
// Test on ignoring substituted template types.
template<typename T>
class TemplateClass {
public:
explicit TemplateClass(int a, T default_value = 0) {}
void h(T *default_value = 0) {}
void f(int* p = 0) {}
// CHECK-MESSAGES: :[[@LINE-1]]:19: warning: use nullptr
// CHECK-FIXES: void f(int* p = nullptr) {}
};
void IgnoreSubstTemplateType() {
TemplateClass<int*> a(1);
}
// Test on casting nullptr.
struct G {
explicit G(bool, const char * = NULL) {}
// CHECK-MESSAGES: :[[@LINE-1]]:35: warning: use nullptr
// CHECK-FIXES: explicit G(bool, const char * = nullptr) {}
};
bool g(const char*);
void test_cast_nullptr() {
G(g(nullptr));
G(g((nullptr)));
G(g(static_cast<char*>(nullptr)));
G(g(static_cast<const char*>(nullptr)));
}
// Test on recognizing multiple NULLs.
class H {
public:
H(bool);
};
#define T(expression) H(expression);
bool h(int *, int *, int * = nullptr);
void test_multiple_nulls() {
T(h(NULL, NULL));
// CHECK-MESSAGES: :[[@LINE-1]]:7: warning: use nullptr
// CHECK-MESSAGES: :[[@LINE-2]]:13: warning: use nullptr
// CHECK-FIXES: T(h(nullptr, nullptr));
T(h(NULL, nullptr));
// CHECK-MESSAGES: :[[@LINE-1]]:7: warning: use nullptr
// CHECK-FIXES: T(h(nullptr, nullptr));
T(h(nullptr, NULL));
// CHECK-MESSAGES: :[[@LINE-1]]:16: warning: use nullptr
// CHECK-FIXES: T(h(nullptr, nullptr));
T(h(nullptr, nullptr));
T(h(NULL, NULL, NULL));
// CHECK-MESSAGES: :[[@LINE-1]]:7: warning: use nullptr
// CHECK-MESSAGES: :[[@LINE-2]]:13: warning: use nullptr
// CHECK-MESSAGES: :[[@LINE-3]]:19: warning: use nullptr
// CHECK-FIXES: T(h(nullptr, nullptr, nullptr));
}
#undef T