/** @file kmp_stats.cpp
* Statistics gathering and processing.
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_lock.h"
#include "kmp_stats.h"
#include "kmp_str.h"
#include <algorithm>
#include <ctime>
#include <iomanip>
#include <sstream>
#include <stdlib.h> // for atexit
#include <cmath>
#define STRINGIZE2(x) #x
#define STRINGIZE(x) STRINGIZE2(x)
#define expandName(name, flags, ignore) {STRINGIZE(name), flags},
statInfo timeStat::timerInfo[] = {
KMP_FOREACH_TIMER(expandName, 0){"TIMER_LAST", 0}};
const statInfo counter::counterInfo[] = {
KMP_FOREACH_COUNTER(expandName, 0){"COUNTER_LAST", 0}};
#undef expandName
#define expandName(ignore1, ignore2, ignore3) {0.0, 0.0, 0.0},
kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = {
KMP_FOREACH_TIMER(expandName, 0){0.0, 0.0, 0.0}};
#undef expandName
const kmp_stats_output_module::rgb_color
kmp_stats_output_module::globalColorArray[] = {
{1.0, 0.0, 0.0}, // red
{1.0, 0.6, 0.0}, // orange
{1.0, 1.0, 0.0}, // yellow
{0.0, 1.0, 0.0}, // green
{0.0, 0.0, 1.0}, // blue
{0.6, 0.2, 0.8}, // purple
{1.0, 0.0, 1.0}, // magenta
{0.0, 0.4, 0.2}, // dark green
{1.0, 1.0, 0.6}, // light yellow
{0.6, 0.4, 0.6}, // dirty purple
{0.0, 1.0, 1.0}, // cyan
{1.0, 0.4, 0.8}, // pink
{0.5, 0.5, 0.5}, // grey
{0.8, 0.7, 0.5}, // brown
{0.6, 0.6, 1.0}, // light blue
{1.0, 0.7, 0.5}, // peach
{0.8, 0.5, 1.0}, // lavender
{0.6, 0.0, 0.0}, // dark red
{0.7, 0.6, 0.0}, // gold
{0.0, 0.0, 0.0} // black
};
// Ensure that the atexit handler only runs once.
static uint32_t statsPrinted = 0;
// output interface
static kmp_stats_output_module *__kmp_stats_global_output = NULL;
double logHistogram::binMax[] = {1.e1l, 1.e2l, 1.e3l, 1.e4l, 1.e5l, 1.e6l,
1.e7l, 1.e8l, 1.e9l, 1.e10l, 1.e11l, 1.e12l,
1.e13l, 1.e14l, 1.e15l, 1.e16l, 1.e17l, 1.e18l,
1.e19l, 1.e20l, 1.e21l, 1.e22l, 1.e23l, 1.e24l,
1.e25l, 1.e26l, 1.e27l, 1.e28l, 1.e29l, 1.e30l,
// Always have infinity be the last value
std::numeric_limits<double>::infinity()};
/* ************* statistic member functions ************* */
void statistic::addSample(double sample) {
sample -= offset;
KMP_DEBUG_ASSERT(std::isfinite(sample));
double delta = sample - meanVal;
sampleCount = sampleCount + 1;
meanVal = meanVal + delta / sampleCount;
m2 = m2 + delta * (sample - meanVal);
minVal = std::min(minVal, sample);
maxVal = std::max(maxVal, sample);
if (collectingHist)
hist.addSample(sample);
}
statistic &statistic::operator+=(const statistic &other) {
if (other.sampleCount == 0)
return *this;
if (sampleCount == 0) {
*this = other;
return *this;
}
uint64_t newSampleCount = sampleCount + other.sampleCount;
double dnsc = double(newSampleCount);
double dsc = double(sampleCount);
double dscBydnsc = dsc / dnsc;
double dosc = double(other.sampleCount);
double delta = other.meanVal - meanVal;
// Try to order these calculations to avoid overflows. If this were Fortran,
// then the compiler would not be able to re-order over brackets. In C++ it
// may be legal to do that (we certainly hope it doesn't, and CC+ Programming
// Language 2nd edition suggests it shouldn't, since it says that exploitation
// of associativity can only be made if the operation really is associative
// (which floating addition isn't...)).
meanVal = meanVal * dscBydnsc + other.meanVal * (1 - dscBydnsc);
m2 = m2 + other.m2 + dscBydnsc * dosc * delta * delta;
minVal = std::min(minVal, other.minVal);
maxVal = std::max(maxVal, other.maxVal);
sampleCount = newSampleCount;
if (collectingHist)
hist += other.hist;
return *this;
}
void statistic::scale(double factor) {
minVal = minVal * factor;
maxVal = maxVal * factor;
meanVal = meanVal * factor;
m2 = m2 * factor * factor;
return;
}
std::string statistic::format(char unit, bool total) const {
std::string result = formatSI((double)sampleCount, 9, ' ');
if (sampleCount == 0) {
result = result + std::string(", ") + formatSI(0.0, 9, unit);
result = result + std::string(", ") + formatSI(0.0, 9, unit);
result = result + std::string(", ") + formatSI(0.0, 9, unit);
if (total)
result = result + std::string(", ") + formatSI(0.0, 9, unit);
result = result + std::string(", ") + formatSI(0.0, 9, unit);
} else {
result = result + std::string(", ") + formatSI(minVal, 9, unit);
result = result + std::string(", ") + formatSI(meanVal, 9, unit);
result = result + std::string(", ") + formatSI(maxVal, 9, unit);
if (total)
result =
result + std::string(", ") + formatSI(meanVal * sampleCount, 9, unit);
result = result + std::string(", ") + formatSI(getSD(), 9, unit);
}
return result;
}
/* ************* histogram member functions ************* */
// Lowest bin that has anything in it
int logHistogram::minBin() const {
for (int i = 0; i < numBins; i++) {
if (bins[i].count != 0)
return i - logOffset;
}
return -logOffset;
}
// Highest bin that has anything in it
int logHistogram::maxBin() const {
for (int i = numBins - 1; i >= 0; i--) {
if (bins[i].count != 0)
return i - logOffset;
}
return -logOffset;
}
// Which bin does this sample belong in ?
uint32_t logHistogram::findBin(double sample) {
double v = std::fabs(sample);
// Simply loop up looking which bin to put it in.
// According to a micro-architect this is likely to be faster than a binary
// search, since
// it will only have one branch mis-predict
for (int b = 0; b < numBins - 1; b++)
if (binMax[b] > v)
return b;
return numBins - 1;
}
void logHistogram::addSample(double sample) {
if (sample == 0.0) {
zeroCount += 1;
#ifdef KMP_DEBUG
_total++;
check();
#endif
return;
}
KMP_DEBUG_ASSERT(std::isfinite(sample));
uint32_t bin = findBin(sample);
KMP_DEBUG_ASSERT(0 <= bin && bin < numBins);
bins[bin].count += 1;
bins[bin].total += sample;
#ifdef KMP_DEBUG
_total++;
check();
#endif
}
// This may not be the format we want, but it'll do for now
std::string logHistogram::format(char unit) const {
std::stringstream result;
result << "Bin, Count, Total\n";
if (zeroCount) {
result << "0, " << formatSI(zeroCount, 9, ' ') << ", ",
formatSI(0.0, 9, unit);
if (count(minBin()) == 0)
return result.str();
result << "\n";
}
for (int i = minBin(); i <= maxBin(); i++) {
result << "10**" << i << "<=v<";
if (i + 1 == numBins - 1)
result << "infinity, ";
else
result << "10**" << (i + 1) << ", ";
result << formatSI(count(i), 9, ' ') << ", " << formatSI(total(i), 9, unit);
if (i != maxBin())
result << "\n";
}
return result.str();
}
/* ************* explicitTimer member functions ************* */
void explicitTimer::start(tsc_tick_count tick) {
startTime = tick;
totalPauseTime = 0;
if (timeStat::logEvent(timerEnumValue)) {
__kmp_stats_thread_ptr->incrementNestValue();
}
return;
}
void explicitTimer::stop(tsc_tick_count tick,
kmp_stats_list *stats_ptr /* = nullptr */) {
if (startTime.getValue() == 0)
return;
stat->addSample(((tick - startTime) - totalPauseTime).ticks());
if (timeStat::logEvent(timerEnumValue)) {
if (!stats_ptr)
stats_ptr = __kmp_stats_thread_ptr;
stats_ptr->push_event(
startTime.getValue() - __kmp_stats_start_time.getValue(),
tick.getValue() - __kmp_stats_start_time.getValue(),
__kmp_stats_thread_ptr->getNestValue(), timerEnumValue);
stats_ptr->decrementNestValue();
}
/* We accept the risk that we drop a sample because it really did start at
t==0. */
startTime = 0;
return;
}
/* ************* partitionedTimers member functions ************* */
partitionedTimers::partitionedTimers() { timer_stack.reserve(8); }
// initialize the partitioned timers to an initial timer
void partitionedTimers::init(explicitTimer timer) {
KMP_DEBUG_ASSERT(this->timer_stack.size() == 0);
timer_stack.push_back(timer);
timer_stack.back().start(tsc_tick_count::now());
}
// stop/save the current timer, and start the new timer (timer_pair)
// There is a special condition where if the current timer is equal to
// the one you are trying to push, then it only manipulates the stack,
// and it won't stop/start the currently running timer.
void partitionedTimers::push(explicitTimer timer) {
// get the current timer
// pause current timer
// push new timer
// start the new timer
explicitTimer *current_timer, *new_timer;
size_t stack_size;
KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
timer_stack.push_back(timer);
stack_size = timer_stack.size();
current_timer = &(timer_stack[stack_size - 2]);
new_timer = &(timer_stack[stack_size - 1]);
tsc_tick_count tick = tsc_tick_count::now();
current_timer->pause(tick);
new_timer->start(tick);
}
// stop/discard the current timer, and start the previously saved timer
void partitionedTimers::pop() {
// get the current timer
// stop current timer (record event/sample)
// pop current timer
// get the new current timer and resume
explicitTimer *old_timer, *new_timer;
size_t stack_size = timer_stack.size();
KMP_DEBUG_ASSERT(stack_size > 1);
old_timer = &(timer_stack[stack_size - 1]);
new_timer = &(timer_stack[stack_size - 2]);
tsc_tick_count tick = tsc_tick_count::now();
old_timer->stop(tick);
new_timer->resume(tick);
timer_stack.pop_back();
}
void partitionedTimers::exchange(explicitTimer timer) {
// get the current timer
// stop current timer (record event/sample)
// push new timer
// start the new timer
explicitTimer *current_timer, *new_timer;
size_t stack_size;
KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
tsc_tick_count tick = tsc_tick_count::now();
stack_size = timer_stack.size();
current_timer = &(timer_stack[stack_size - 1]);
current_timer->stop(tick);
timer_stack.pop_back();
timer_stack.push_back(timer);
new_timer = &(timer_stack[stack_size - 1]);
new_timer->start(tick);
}
// Wind up all the currently running timers.
// This pops off all the timers from the stack and clears the stack
// After this is called, init() must be run again to initialize the
// stack of timers
void partitionedTimers::windup() {
while (timer_stack.size() > 1) {
this->pop();
}
// Pop the timer from the init() call
if (timer_stack.size() > 0) {
timer_stack.back().stop(tsc_tick_count::now());
timer_stack.pop_back();
}
}
/* ************* kmp_stats_event_vector member functions ************* */
void kmp_stats_event_vector::deallocate() {
__kmp_free(events);
internal_size = 0;
allocated_size = 0;
events = NULL;
}
// This function is for qsort() which requires the compare function to return
// either a negative number if event1 < event2, a positive number if event1 >
// event2 or zero if event1 == event2. This sorts by start time (lowest to
// highest).
int compare_two_events(const void *event1, const void *event2) {
const kmp_stats_event *ev1 = RCAST(const kmp_stats_event *, event1);
const kmp_stats_event *ev2 = RCAST(const kmp_stats_event *, event2);
if (ev1->getStart() < ev2->getStart())
return -1;
else if (ev1->getStart() > ev2->getStart())
return 1;
else
return 0;
}
void kmp_stats_event_vector::sort() {
qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events);
}
/* ************* kmp_stats_list member functions ************* */
// returns a pointer to newly created stats node
kmp_stats_list *kmp_stats_list::push_back(int gtid) {
kmp_stats_list *newnode =
(kmp_stats_list *)__kmp_allocate(sizeof(kmp_stats_list));
// placement new, only requires space and pointer and initializes (so
// __kmp_allocate instead of C++ new[] is used)
new (newnode) kmp_stats_list();
newnode->setGtid(gtid);
newnode->prev = this->prev;
newnode->next = this;
newnode->prev->next = newnode;
newnode->next->prev = newnode;
return newnode;
}
void kmp_stats_list::deallocate() {
kmp_stats_list *ptr = this->next;
kmp_stats_list *delptr = this->next;
while (ptr != this) {
delptr = ptr;
ptr = ptr->next;
// placement new means we have to explicitly call destructor.
delptr->_event_vector.deallocate();
delptr->~kmp_stats_list();
__kmp_free(delptr);
}
}
kmp_stats_list::iterator kmp_stats_list::begin() {
kmp_stats_list::iterator it;
it.ptr = this->next;
return it;
}
kmp_stats_list::iterator kmp_stats_list::end() {
kmp_stats_list::iterator it;
it.ptr = this;
return it;
}
int kmp_stats_list::size() {
int retval;
kmp_stats_list::iterator it;
for (retval = 0, it = begin(); it != end(); it++, retval++) {
}
return retval;
}
/* ************* kmp_stats_list::iterator member functions ************* */
kmp_stats_list::iterator::iterator() : ptr(NULL) {}
kmp_stats_list::iterator::~iterator() {}
kmp_stats_list::iterator kmp_stats_list::iterator::operator++() {
this->ptr = this->ptr->next;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) {
this->ptr = this->ptr->next;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator--() {
this->ptr = this->ptr->prev;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) {
this->ptr = this->ptr->prev;
return *this;
}
bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator &rhs) {
return this->ptr != rhs.ptr;
}
bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator &rhs) {
return this->ptr == rhs.ptr;
}
kmp_stats_list *kmp_stats_list::iterator::operator*() const {
return this->ptr;
}
/* ************* kmp_stats_output_module functions ************** */
const char *kmp_stats_output_module::eventsFileName = NULL;
const char *kmp_stats_output_module::plotFileName = NULL;
int kmp_stats_output_module::printPerThreadFlag = 0;
int kmp_stats_output_module::printPerThreadEventsFlag = 0;
static char const *lastName(char *name) {
int l = (int)strlen(name);
for (int i = l - 1; i >= 0; --i) {
if (name[i] == '.')
name[i] = '_';
if (name[i] == '/')
return name + i + 1;
}
return name;
}
/* Read the name of the executable from /proc/self/cmdline */
static char const *getImageName(char *buffer, size_t buflen) {
FILE *f = fopen("/proc/self/cmdline", "r");
buffer[0] = char(0);
if (!f)
return buffer;
// The file contains char(0) delimited words from the commandline.
// This just returns the last filename component of the first word on the
// line.
size_t n = fread(buffer, 1, buflen, f);
if (n == 0) {
fclose(f);
KMP_CHECK_SYSFAIL("fread", 1)
}
fclose(f);
buffer[buflen - 1] = char(0);
return lastName(buffer);
}
static void getTime(char *buffer, size_t buflen, bool underscores = false) {
time_t timer;
time(&timer);
struct tm *tm_info = localtime(&timer);
if (underscores)
strftime(buffer, buflen, "%Y-%m-%d_%H%M%S", tm_info);
else
strftime(buffer, buflen, "%Y-%m-%d %H%M%S", tm_info);
}
/* Generate a stats file name, expanding prototypes */
static std::string generateFilename(char const *prototype,
char const *imageName) {
std::string res;
for (int i = 0; prototype[i] != char(0); i++) {
char ch = prototype[i];
if (ch == '%') {
i++;
if (prototype[i] == char(0))
break;
switch (prototype[i]) {
case 't': // Insert time and date
{
char date[26];
getTime(date, sizeof(date), true);
res += date;
} break;
case 'e': // Insert executable name
res += imageName;
break;
case 'p': // Insert pid
{
std::stringstream ss;
ss << getpid();
res += ss.str();
} break;
default:
res += prototype[i];
break;
}
} else
res += ch;
}
return res;
}
// init() is called very near the beginning of execution time in the constructor
// of __kmp_stats_global_output
void kmp_stats_output_module::init() {
char *statsFileName = getenv("KMP_STATS_FILE");
eventsFileName = getenv("KMP_STATS_EVENTS_FILE");
plotFileName = getenv("KMP_STATS_PLOT_FILE");
char *threadStats = getenv("KMP_STATS_THREADS");
char *threadEvents = getenv("KMP_STATS_EVENTS");
// set the stats output filenames based on environment variables and defaults
if (statsFileName) {
char imageName[1024];
// Process any escapes (e.g., %p, %e, %t) in the name
outputFileName = generateFilename(
statsFileName, getImageName(&imageName[0], sizeof(imageName)));
}
eventsFileName = eventsFileName ? eventsFileName : "events.dat";
plotFileName = plotFileName ? plotFileName : "events.plt";
// set the flags based on environment variables matching: true, on, 1, .true.
// , .t. , yes
printPerThreadFlag = __kmp_str_match_true(threadStats);
printPerThreadEventsFlag = __kmp_str_match_true(threadEvents);
if (printPerThreadEventsFlag) {
// assigns a color to each timer for printing
setupEventColors();
} else {
// will clear flag so that no event will be logged
timeStat::clearEventFlags();
}
}
void kmp_stats_output_module::setupEventColors() {
int i;
int globalColorIndex = 0;
int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color);
for (i = 0; i < TIMER_LAST; i++) {
if (timeStat::logEvent((timer_e)i)) {
timerColorInfo[i] = globalColorArray[globalColorIndex];
globalColorIndex = (globalColorIndex + 1) % numGlobalColors;
}
}
}
void kmp_stats_output_module::printTimerStats(FILE *statsOut,
statistic const *theStats,
statistic const *totalStats) {
fprintf(statsOut,
"Timer, SampleCount, Min, "
"Mean, Max, Total, SD\n");
for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
statistic const *stat = &theStats[s];
char tag = timeStat::noUnits(s) ? ' ' : 'T';
fprintf(statsOut, "%-35s, %s\n", timeStat::name(s),
stat->format(tag, true).c_str());
}
// Also print the Total_ versions of times.
for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
char tag = timeStat::noUnits(s) ? ' ' : 'T';
if (totalStats && !timeStat::noTotal(s))
fprintf(statsOut, "Total_%-29s, %s\n", timeStat::name(s),
totalStats[s].format(tag, true).c_str());
}
// Print histogram of statistics
if (theStats[0].haveHist()) {
fprintf(statsOut, "\nTimer distributions\n");
for (int s = 0; s < TIMER_LAST; s++) {
statistic const *stat = &theStats[s];
if (stat->getCount() != 0) {
char tag = timeStat::noUnits(timer_e(s)) ? ' ' : 'T';
fprintf(statsOut, "%s\n", timeStat::name(timer_e(s)));
fprintf(statsOut, "%s\n", stat->getHist()->format(tag).c_str());
}
}
}
}
void kmp_stats_output_module::printCounterStats(FILE *statsOut,
statistic const *theStats) {
fprintf(statsOut, "Counter, ThreadCount, Min, Mean, "
" Max, Total, SD\n");
for (int s = 0; s < COUNTER_LAST; s++) {
statistic const *stat = &theStats[s];
fprintf(statsOut, "%-25s, %s\n", counter::name(counter_e(s)),
stat->format(' ', true).c_str());
}
// Print histogram of counters
if (theStats[0].haveHist()) {
fprintf(statsOut, "\nCounter distributions\n");
for (int s = 0; s < COUNTER_LAST; s++) {
statistic const *stat = &theStats[s];
if (stat->getCount() != 0) {
fprintf(statsOut, "%s\n", counter::name(counter_e(s)));
fprintf(statsOut, "%s\n", stat->getHist()->format(' ').c_str());
}
}
}
}
void kmp_stats_output_module::printCounters(FILE *statsOut,
counter const *theCounters) {
// We print all the counters even if they are zero.
// That makes it easier to slice them into a spreadsheet if you need to.
fprintf(statsOut, "\nCounter, Count\n");
for (int c = 0; c < COUNTER_LAST; c++) {
counter const *stat = &theCounters[c];
fprintf(statsOut, "%-25s, %s\n", counter::name(counter_e(c)),
formatSI((double)stat->getValue(), 9, ' ').c_str());
}
}
void kmp_stats_output_module::printEvents(FILE *eventsOut,
kmp_stats_event_vector *theEvents,
int gtid) {
// sort by start time before printing
theEvents->sort();
for (int i = 0; i < theEvents->size(); i++) {
kmp_stats_event ev = theEvents->at(i);
rgb_color color = getEventColor(ev.getTimerName());
fprintf(eventsOut, "%d %llu %llu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n", gtid,
static_cast<unsigned long long>(ev.getStart()),
static_cast<unsigned long long>(ev.getStop()),
1.2 - (ev.getNestLevel() * 0.2), color.r, color.g, color.b,
timeStat::name(ev.getTimerName()));
}
return;
}
void kmp_stats_output_module::windupExplicitTimers() {
// Wind up any explicit timers. We assume that it's fair at this point to just
// walk all the explicit timers in all threads and say "it's over".
// If the timer wasn't running, this won't record anything anyway.
kmp_stats_list::iterator it;
for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
kmp_stats_list *ptr = *it;
ptr->getPartitionedTimers()->windup();
ptr->endLife();
}
}
void kmp_stats_output_module::printPloticusFile() {
int i;
int size = __kmp_stats_list->size();
kmp_safe_raii_file_t plotOut(plotFileName, "w+");
fprintf(plotOut, "#proc page\n"
" pagesize: 15 10\n"
" scale: 1.0\n\n");
fprintf(plotOut,
"#proc getdata\n"
" file: %s\n\n",
eventsFileName);
fprintf(plotOut,
"#proc areadef\n"
" title: OpenMP Sampling Timeline\n"
" titledetails: align=center size=16\n"
" rectangle: 1 1 13 9\n"
" xautorange: datafield=2,3\n"
" yautorange: -1 %d\n\n",
size);
fprintf(plotOut, "#proc xaxis\n"
" stubs: inc\n"
" stubdetails: size=12\n"
" label: Time (ticks)\n"
" labeldetails: size=14\n\n");
fprintf(plotOut,
"#proc yaxis\n"
" stubs: inc 1\n"
" stubrange: 0 %d\n"
" stubdetails: size=12\n"
" label: Thread #\n"
" labeldetails: size=14\n\n",
size - 1);
fprintf(plotOut, "#proc bars\n"
" exactcolorfield: 5\n"
" axis: x\n"
" locfield: 1\n"
" segmentfields: 2 3\n"
" barwidthfield: 4\n\n");
// create legend entries corresponding to the timer color
for (i = 0; i < TIMER_LAST; i++) {
if (timeStat::logEvent((timer_e)i)) {
rgb_color c = getEventColor((timer_e)i);
fprintf(plotOut,
"#proc legendentry\n"
" sampletype: color\n"
" label: %s\n"
" details: rgb(%1.1f,%1.1f,%1.1f)\n\n",
timeStat::name((timer_e)i), c.r, c.g, c.b);
}
}
fprintf(plotOut, "#proc legend\n"
" format: down\n"
" location: max max\n\n");
return;
}
static void outputEnvVariable(FILE *statsOut, char const *name) {
char const *value = getenv(name);
fprintf(statsOut, "# %s = %s\n", name, value ? value : "*unspecified*");
}
/* Print some useful information about
* the date and time this experiment ran.
* the machine on which it ran.
We output all of this as stylised comments, though we may decide to parse
some of it. */
void kmp_stats_output_module::printHeaderInfo(FILE *statsOut) {
std::time_t now = std::time(0);
char buffer[40];
char hostName[80];
std::strftime(&buffer[0], sizeof(buffer), "%c", std::localtime(&now));
fprintf(statsOut, "# Time of run: %s\n", &buffer[0]);
if (gethostname(&hostName[0], sizeof(hostName)) == 0)
fprintf(statsOut, "# Hostname: %s\n", &hostName[0]);
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
fprintf(statsOut, "# CPU: %s\n", &__kmp_cpuinfo.name[0]);
fprintf(statsOut, "# Family: %d, Model: %d, Stepping: %d\n",
__kmp_cpuinfo.family, __kmp_cpuinfo.model, __kmp_cpuinfo.stepping);
if (__kmp_cpuinfo.frequency == 0)
fprintf(statsOut, "# Nominal frequency: Unknown\n");
else
fprintf(statsOut, "# Nominal frequency: %sz\n",
formatSI(double(__kmp_cpuinfo.frequency), 9, 'H').c_str());
outputEnvVariable(statsOut, "KMP_HW_SUBSET");
outputEnvVariable(statsOut, "KMP_AFFINITY");
outputEnvVariable(statsOut, "KMP_BLOCKTIME");
outputEnvVariable(statsOut, "KMP_LIBRARY");
fprintf(statsOut, "# Production runtime built " __DATE__ " " __TIME__ "\n");
#endif
}
void kmp_stats_output_module::outputStats(const char *heading) {
// Stop all the explicit timers in all threads
// Do this before declaring the local statistics because thay have
// constructors so will take time to create.
windupExplicitTimers();
statistic allStats[TIMER_LAST];
statistic totalStats[TIMER_LAST]; /* Synthesized, cross threads versions of
normal timer stats */
statistic allCounters[COUNTER_LAST];
kmp_safe_raii_file_t statsOut;
if (!outputFileName.empty()) {
statsOut.open(outputFileName.c_str(), "a+");
} else {
statsOut.set_stderr();
}
kmp_safe_raii_file_t eventsOut;
if (eventPrintingEnabled()) {
eventsOut.open(eventsFileName, "w+");
}
printHeaderInfo(statsOut);
fprintf(statsOut, "%s\n", heading);
// Accumulate across threads.
kmp_stats_list::iterator it;
for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
int t = (*it)->getGtid();
// Output per thread stats if requested.
if (printPerThreadFlag) {
fprintf(statsOut, "Thread %d\n", t);
printTimerStats(statsOut, (*it)->getTimers(), 0);
printCounters(statsOut, (*it)->getCounters());
fprintf(statsOut, "\n");
}
// Output per thread events if requested.
if (eventPrintingEnabled()) {
kmp_stats_event_vector events = (*it)->getEventVector();
printEvents(eventsOut, &events, t);
}
// Accumulate timers.
for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
// See if we should ignore this timer when aggregating
if ((timeStat::masterOnly(s) && (t != 0)) || // Timer only valid on
// primary thread and this thread is worker
(timeStat::workerOnly(s) && (t == 0)) // Timer only valid on worker
// and this thread is the primary thread
) {
continue;
}
statistic *threadStat = (*it)->getTimer(s);
allStats[s] += *threadStat;
// Add Total stats for timers that are valid in more than one thread
if (!timeStat::noTotal(s))
totalStats[s].addSample(threadStat->getTotal());
}
// Accumulate counters.
for (counter_e c = counter_e(0); c < COUNTER_LAST; c = counter_e(c + 1)) {
if (counter::masterOnly(c) && t != 0)
continue;
allCounters[c].addSample((double)(*it)->getCounter(c)->getValue());
}
}
if (eventPrintingEnabled()) {
printPloticusFile();
}
fprintf(statsOut, "Aggregate for all threads\n");
printTimerStats(statsOut, &allStats[0], &totalStats[0]);
fprintf(statsOut, "\n");
printCounterStats(statsOut, &allCounters[0]);
}
/* ************* exported C functions ************** */
// no name mangling for these functions, we want the c files to be able to get
// at these functions
extern "C" {
void __kmp_reset_stats() {
kmp_stats_list::iterator it;
for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
timeStat *timers = (*it)->getTimers();
counter *counters = (*it)->getCounters();
for (int t = 0; t < TIMER_LAST; t++)
timers[t].reset();
for (int c = 0; c < COUNTER_LAST; c++)
counters[c].reset();
// reset the event vector so all previous events are "erased"
(*it)->resetEventVector();
}
}
// This function will reset all stats and stop all threads' explicit timers if
// they haven't been stopped already.
void __kmp_output_stats(const char *heading) {
__kmp_stats_global_output->outputStats(heading);
__kmp_reset_stats();
}
void __kmp_accumulate_stats_at_exit(void) {
// Only do this once.
if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0)
return;
__kmp_output_stats("Statistics on exit");
}
void __kmp_stats_init(void) {
__kmp_init_tas_lock(&__kmp_stats_lock);
__kmp_stats_start_time = tsc_tick_count::now();
__kmp_stats_global_output = new kmp_stats_output_module();
__kmp_stats_list = new kmp_stats_list();
}
void __kmp_stats_fini(void) {
__kmp_accumulate_stats_at_exit();
__kmp_stats_list->deallocate();
delete __kmp_stats_global_output;
delete __kmp_stats_list;
}
} // extern "C"