/*===---- xmmintrin.h - SSE intrinsics -------------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __XMMINTRIN_H
#define __XMMINTRIN_H
#if !defined(__i386__) && !defined(__x86_64__)
#error "This header is only meant to be used on x86 and x64 architecture"
#endif
#include <mmintrin.h>
typedef int __v4si __attribute__((__vector_size__(16)));
typedef float __v4sf __attribute__((__vector_size__(16)));
typedef float __m128 __attribute__((__vector_size__(16), __aligned__(16)));
typedef float __m128_u __attribute__((__vector_size__(16), __aligned__(1)));
/* Unsigned types */
typedef unsigned int __v4su __attribute__((__vector_size__(16)));
/* This header should only be included in a hosted environment as it depends on
* a standard library to provide allocation routines. */
#if __STDC_HOSTED__
#include <mm_malloc.h>
#endif
/* Define the default attributes for the functions in this file. */
#if defined(__EVEX512__) && !defined(__AVX10_1_512__)
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("sse,no-evex512"), \
__min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS_SSE2 \
__attribute__((__always_inline__, __nodebug__, \
__target__("sse2,no-evex512"), __min_vector_width__(128)))
#else
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("sse"), \
__min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS_SSE2 \
__attribute__((__always_inline__, __nodebug__, __target__("sse2"), \
__min_vector_width__(128)))
#endif
#define __trunc64(x) \
(__m64) __builtin_shufflevector((__v2di)(x), __extension__(__v2di){}, 0)
#define __zext128(x) \
(__m128i) __builtin_shufflevector((__v2si)(x), __extension__(__v2si){}, 0, \
1, 2, 3)
#define __anyext128(x) \
(__m128i) __builtin_shufflevector((__v2si)(x), __extension__(__v2si){}, 0, \
1, -1, -1)
#define __zeroupper64(x) \
(__m128i) __builtin_shufflevector((__v4si)(x), __extension__(__v4si){}, 0, \
1, 4, 5)
/// Adds the 32-bit float values in the low-order bits of the operands.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VADDSS / ADDSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// The lower 32 bits of this operand are used in the calculation.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// The lower 32 bits of this operand are used in the calculation.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the sum
/// of the lower 32 bits of both operands. The upper 96 bits are copied from
/// the upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_add_ss(__m128 __a, __m128 __b)
{
__a[0] += __b[0];
return __a;
}
/// Adds two 128-bit vectors of [4 x float], and returns the results of
/// the addition.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VADDPS / ADDPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the sums of both
/// operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_add_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4sf)__a + (__v4sf)__b);
}
/// Subtracts the 32-bit float value in the low-order bits of the second
/// operand from the corresponding value in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSUBSS / SUBSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the minuend. The lower 32 bits
/// of this operand are used in the calculation.
/// \param __b
/// A 128-bit vector of [4 x float] containing the subtrahend. The lower 32
/// bits of this operand are used in the calculation.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// difference of the lower 32 bits of both operands. The upper 96 bits are
/// copied from the upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_sub_ss(__m128 __a, __m128 __b)
{
__a[0] -= __b[0];
return __a;
}
/// Subtracts each of the values of the second operand from the first
/// operand, both of which are 128-bit vectors of [4 x float] and returns
/// the results of the subtraction.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSUBPS / SUBPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the minuend.
/// \param __b
/// A 128-bit vector of [4 x float] containing the subtrahend.
/// \returns A 128-bit vector of [4 x float] containing the differences between
/// both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_sub_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4sf)__a - (__v4sf)__b);
}
/// Multiplies two 32-bit float values in the low-order bits of the
/// operands.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMULSS / MULSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// The lower 32 bits of this operand are used in the calculation.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// The lower 32 bits of this operand are used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the product of the lower
/// 32 bits of both operands. The upper 96 bits are copied from the upper 96
/// bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_mul_ss(__m128 __a, __m128 __b)
{
__a[0] *= __b[0];
return __a;
}
/// Multiplies two 128-bit vectors of [4 x float] and returns the
/// results of the multiplication.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMULPS / MULPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the products of both
/// operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_mul_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4sf)__a * (__v4sf)__b);
}
/// Divides the value in the low-order 32 bits of the first operand by
/// the corresponding value in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDIVSS / DIVSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the dividend. The lower 32
/// bits of this operand are used in the calculation.
/// \param __b
/// A 128-bit vector of [4 x float] containing the divisor. The lower 32 bits
/// of this operand are used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the quotients of the
/// lower 32 bits of both operands. The upper 96 bits are copied from the
/// upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_div_ss(__m128 __a, __m128 __b)
{
__a[0] /= __b[0];
return __a;
}
/// Divides two 128-bit vectors of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDIVPS / DIVPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the dividend.
/// \param __b
/// A 128-bit vector of [4 x float] containing the divisor.
/// \returns A 128-bit vector of [4 x float] containing the quotients of both
/// operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_div_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4sf)__a / (__v4sf)__b);
}
/// Calculates the square root of the value stored in the low-order bits
/// of a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSQRTSS / SQRTSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the square root of the
/// value in the low-order bits of the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_sqrt_ss(__m128 __a)
{
return (__m128)__builtin_ia32_sqrtss((__v4sf)__a);
}
/// Calculates the square roots of the values stored in a 128-bit vector
/// of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSQRTPS / SQRTPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the square roots of the
/// values in the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_sqrt_ps(__m128 __a)
{
return __builtin_ia32_sqrtps((__v4sf)__a);
}
/// Calculates the approximate reciprocal of the value stored in the
/// low-order bits of a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VRCPSS / RCPSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the approximate
/// reciprocal of the value in the low-order bits of the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_rcp_ss(__m128 __a)
{
return (__m128)__builtin_ia32_rcpss((__v4sf)__a);
}
/// Calculates the approximate reciprocals of the values stored in a
/// 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VRCPPS / RCPPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the approximate
/// reciprocals of the values in the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_rcp_ps(__m128 __a)
{
return (__m128)__builtin_ia32_rcpps((__v4sf)__a);
}
/// Calculates the approximate reciprocal of the square root of the value
/// stored in the low-order bits of a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VRSQRTSS / RSQRTSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the approximate
/// reciprocal of the square root of the value in the low-order bits of the
/// operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_rsqrt_ss(__m128 __a)
{
return __builtin_ia32_rsqrtss((__v4sf)__a);
}
/// Calculates the approximate reciprocals of the square roots of the
/// values stored in a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VRSQRTPS / RSQRTPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the approximate
/// reciprocals of the square roots of the values in the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_rsqrt_ps(__m128 __a)
{
return __builtin_ia32_rsqrtps((__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands and returns the lesser value in the low-order bits of the
/// vector of [4 x float].
///
/// If either value in a comparison is NaN, returns the value from \a __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMINSS / MINSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// minimum value between both operands. The upper 96 bits are copied from
/// the upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_min_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_minss((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 128-bit vectors of [4 x float] and returns the lesser
/// of each pair of values.
///
/// If either value in a comparison is NaN, returns the value from \a __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMINPS / MINPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands.
/// \returns A 128-bit vector of [4 x float] containing the minimum values
/// between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_min_ps(__m128 __a, __m128 __b)
{
return __builtin_ia32_minps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands and returns the greater value in the low-order bits of a 128-bit
/// vector of [4 x float].
///
/// If either value in a comparison is NaN, returns the value from \a __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMAXSS / MAXSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// maximum value between both operands. The upper 96 bits are copied from
/// the upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_max_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_maxss((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 128-bit vectors of [4 x float] and returns the greater
/// of each pair of values.
///
/// If either value in a comparison is NaN, returns the value from \a __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMAXPS / MAXPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands.
/// \returns A 128-bit vector of [4 x float] containing the maximum values
/// between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_max_ps(__m128 __a, __m128 __b)
{
return __builtin_ia32_maxps((__v4sf)__a, (__v4sf)__b);
}
/// Performs a bitwise AND of two 128-bit vectors of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VANDPS / ANDPS </c> instructions.
///
/// \param __a
/// A 128-bit vector containing one of the source operands.
/// \param __b
/// A 128-bit vector containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the bitwise AND of the
/// values between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_and_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4su)__a & (__v4su)__b);
}
/// Performs a bitwise AND of two 128-bit vectors of [4 x float], using
/// the one's complement of the values contained in the first source
/// operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VANDNPS / ANDNPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the first source operand. The
/// one's complement of this value is used in the bitwise AND.
/// \param __b
/// A 128-bit vector of [4 x float] containing the second source operand.
/// \returns A 128-bit vector of [4 x float] containing the bitwise AND of the
/// one's complement of the first operand and the values in the second
/// operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_andnot_ps(__m128 __a, __m128 __b)
{
return (__m128)(~(__v4su)__a & (__v4su)__b);
}
/// Performs a bitwise OR of two 128-bit vectors of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VORPS / ORPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the bitwise OR of the
/// values between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_or_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4su)__a | (__v4su)__b);
}
/// Performs a bitwise exclusive OR of two 128-bit vectors of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VXORPS / XORPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the bitwise exclusive OR
/// of the values between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_xor_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4su)__a ^ (__v4su)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands for equality.
///
/// The comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector [4 x float].
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPEQSS / CMPEQSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpeq_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpeqss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] for equality.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPEQPS / CMPEQPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpeq_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpeqps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is less than the
/// corresponding value in the second operand.
///
/// The comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLTSS / CMPLTSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmplt_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpltss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are less than those in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLTPS / CMPLTPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmplt_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpltps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is less than or
/// equal to the corresponding value in the second operand.
///
/// The comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true, in
/// the low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLESS / CMPLESS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmple_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpless((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are less than or equal to those in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLEPS / CMPLEPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmple_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpleps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is greater than
/// the corresponding value in the second operand.
///
/// The comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLTSS / CMPLTSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpgt_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_shufflevector((__v4sf)__a,
(__v4sf)__builtin_ia32_cmpltss((__v4sf)__b, (__v4sf)__a),
4, 1, 2, 3);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are greater than those in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLTPS / CMPLTPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpgt_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpltps((__v4sf)__b, (__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is greater than
/// or equal to the corresponding value in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLESS / CMPLESS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpge_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_shufflevector((__v4sf)__a,
(__v4sf)__builtin_ia32_cmpless((__v4sf)__b, (__v4sf)__a),
4, 1, 2, 3);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are greater than or equal to those in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
/// If either value in a comparison is NaN, returns false.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLEPS / CMPLEPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpge_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpleps((__v4sf)__b, (__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both operands
/// for inequality.
///
/// The comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNEQSS / CMPNEQSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpneq_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpneqss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] for inequality.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNEQPS / CMPNEQPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpneq_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpneqps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is not less than
/// the corresponding value in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLTSS / CMPNLTSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnlt_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnltss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are not less than those in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLTPS / CMPNLTPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnlt_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnltps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is not less than
/// or equal to the corresponding value in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLESS / CMPNLESS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnle_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnless((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are not less than or equal to those in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLEPS / CMPNLEPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnle_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnleps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is not greater
/// than the corresponding value in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLTSS / CMPNLTSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpngt_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_shufflevector((__v4sf)__a,
(__v4sf)__builtin_ia32_cmpnltss((__v4sf)__b, (__v4sf)__a),
4, 1, 2, 3);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are not greater than those in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLTPS / CMPNLTPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpngt_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnltps((__v4sf)__b, (__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is not greater
/// than or equal to the corresponding value in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the
/// low-order bits of a vector of [4 x float].
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLESS / CMPNLESS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnge_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_shufflevector((__v4sf)__a,
(__v4sf)__builtin_ia32_cmpnless((__v4sf)__b, (__v4sf)__a),
4, 1, 2, 3);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are not greater than or equal to those in the second operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, returns true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLEPS / CMPNLEPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnge_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnleps((__v4sf)__b, (__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is ordered with
/// respect to the corresponding value in the second operand.
///
/// A pair of floating-point values are ordered with respect to each
/// other if neither value is a NaN. Each comparison returns 0x0 for false,
/// 0xFFFFFFFF for true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPORDSS / CMPORDSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpord_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpordss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are ordered with respect to those in the second operand.
///
/// A pair of floating-point values are ordered with respect to each
/// other if neither value is a NaN. Each comparison returns 0x0 for false,
/// 0xFFFFFFFF for true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPORDPS / CMPORDPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpord_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpordps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is unordered
/// with respect to the corresponding value in the second operand.
///
/// A pair of double-precision values are unordered with respect to each
/// other if one or both values are NaN. Each comparison returns 0x0 for
/// false, 0xFFFFFFFF for true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPUNORDSS / CMPUNORDSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpunord_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpunordss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are unordered with respect to those in the second operand.
///
/// A pair of double-precision values are unordered with respect to each
/// other if one or both values are NaN. Each comparison returns 0x0 for
/// false, 0xFFFFFFFFFFFFFFFF for true.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPUNORDPS / CMPUNORDPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpunord_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpunordps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands for equality.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comieq_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comieq((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is less than the second
/// operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comilt_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comilt((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is less than or equal to the
/// second operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comile_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comile((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is greater than the second
/// operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comigt_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comigt((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is greater than or equal to
/// the second operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comige_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comige((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is not equal to the second
/// operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 1.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comineq_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comineq((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine equality.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomieq_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomieq((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine if the first operand is
/// less than the second operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomilt_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomilt((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine if the first operand is
/// less than or equal to the second operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomile_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomile((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine if the first operand is
/// greater than the second operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomigt_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomigt((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine if the first operand is
/// greater than or equal to the second operand.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomige_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomige((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine inequality.
///
/// The comparison returns 0 for false, 1 for true. If either value in a
/// comparison is NaN, returns 0.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomineq_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomineq((__v4sf)__a, (__v4sf)__b);
}
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 32-bit integer.
///
/// If the converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 32-bit integer containing the converted value.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_cvtss_si32(__m128 __a)
{
return __builtin_ia32_cvtss2si((__v4sf)__a);
}
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 32-bit integer.
///
/// If the converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 32-bit integer containing the converted value.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_cvt_ss2si(__m128 __a)
{
return _mm_cvtss_si32(__a);
}
#ifdef __x86_64__
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 64-bit integer.
///
/// If the converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 64-bit integer containing the converted value.
static __inline__ long long __DEFAULT_FN_ATTRS
_mm_cvtss_si64(__m128 __a)
{
return __builtin_ia32_cvtss2si64((__v4sf)__a);
}
#endif
/// Converts two low-order float values in a 128-bit vector of
/// [4 x float] into a 64-bit vector of [2 x i32].
///
/// If a converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPS2PI </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 64-bit integer vector containing the converted values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtps_pi32(__m128 __a)
{
return __trunc64(__builtin_ia32_cvtps2dq((__v4sf)__zeroupper64(__a)));
}
/// Converts two low-order float values in a 128-bit vector of
/// [4 x float] into a 64-bit vector of [2 x i32].
///
/// If a converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPS2PI </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 64-bit integer vector containing the converted values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_cvt_ps2pi(__m128 __a)
{
return _mm_cvtps_pi32(__a);
}
/// Converts the lower (first) element of a vector of [4 x float] into a signed
/// truncated (rounded toward zero) 32-bit integer.
///
/// If the converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 32-bit integer containing the converted value.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_cvttss_si32(__m128 __a)
{
return __builtin_ia32_cvttss2si((__v4sf)__a);
}
/// Converts the lower (first) element of a vector of [4 x float] into a signed
/// truncated (rounded toward zero) 32-bit integer.
///
/// If the converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 32-bit integer containing the converted value.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_cvtt_ss2si(__m128 __a)
{
return _mm_cvttss_si32(__a);
}
#ifdef __x86_64__
/// Converts the lower (first) element of a vector of [4 x float] into a signed
/// truncated (rounded toward zero) 64-bit integer.
///
/// If the converted value does not fit in a 64-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 64-bit integer containing the converted value.
static __inline__ long long __DEFAULT_FN_ATTRS
_mm_cvttss_si64(__m128 __a)
{
return __builtin_ia32_cvttss2si64((__v4sf)__a);
}
#endif
/// Converts the lower (first) two elements of a 128-bit vector of [4 x float]
/// into two signed truncated (rounded toward zero) 32-bit integers,
/// returned in a 64-bit vector of [2 x i32].
///
/// If a converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTTPS2PI / VTTPS2PI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 64-bit integer vector containing the converted values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_cvttps_pi32(__m128 __a)
{
return __trunc64(__builtin_ia32_cvttps2dq((__v4sf)__zeroupper64(__a)));
}
/// Converts the lower (first) two elements of a 128-bit vector of [4 x float]
/// into two signed truncated (rounded toward zero) 64-bit integers,
/// returned in a 64-bit vector of [2 x i32].
///
/// If a converted value does not fit in a 32-bit integer, raises a
/// floating-point invalid exception. If the exception is masked, returns
/// the most negative integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTTPS2PI </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 64-bit integer vector containing the converted values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtt_ps2pi(__m128 __a)
{
return _mm_cvttps_pi32(__a);
}
/// Converts a 32-bit signed integer value into a floating point value
/// and writes it to the lower 32 bits of the destination. The remaining
/// higher order elements of the destination vector are copied from the
/// corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 32-bit signed integer operand containing the value to be converted.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// converted value of the second operand. The upper 96 bits are copied from
/// the upper 96 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cvtsi32_ss(__m128 __a, int __b)
{
__a[0] = __b;
return __a;
}
/// Converts a 32-bit signed integer value into a floating point value
/// and writes it to the lower 32 bits of the destination. The remaining
/// higher order elements of the destination are copied from the
/// corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 32-bit signed integer operand containing the value to be converted.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// converted value of the second operand. The upper 96 bits are copied from
/// the upper 96 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cvt_si2ss(__m128 __a, int __b)
{
return _mm_cvtsi32_ss(__a, __b);
}
#ifdef __x86_64__
/// Converts a 64-bit signed integer value into a floating point value
/// and writes it to the lower 32 bits of the destination. The remaining
/// higher order elements of the destination are copied from the
/// corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 64-bit signed integer operand containing the value to be converted.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// converted value of the second operand. The upper 96 bits are copied from
/// the upper 96 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cvtsi64_ss(__m128 __a, long long __b)
{
__a[0] = __b;
return __a;
}
#endif
/// Converts two elements of a 64-bit vector of [2 x i32] into two
/// floating point values and writes them to the lower 64-bits of the
/// destination. The remaining higher order elements of the destination are
/// copied from the corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 64-bit vector of [2 x i32]. The elements in this vector are converted
/// and written to the corresponding low-order elements in the destination.
/// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the
/// converted value of the second operand. The upper 64 bits are copied from
/// the upper 64 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtpi32_ps(__m128 __a, __m64 __b)
{
return (__m128)__builtin_shufflevector(
(__v4sf)__a,
__builtin_convertvector((__v4si)__zext128(__b), __v4sf),
4, 5, 2, 3);
}
/// Converts two elements of a 64-bit vector of [2 x i32] into two
/// floating point values and writes them to the lower 64-bits of the
/// destination. The remaining higher order elements of the destination are
/// copied from the corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 64-bit vector of [2 x i32]. The elements in this vector are converted
/// and written to the corresponding low-order elements in the destination.
/// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the
/// converted value from the second operand. The upper 64 bits are copied
/// from the upper 64 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_SSE2
_mm_cvt_pi2ps(__m128 __a, __m64 __b)
{
return _mm_cvtpi32_ps(__a, __b);
}
/// Extracts a float value contained in the lower 32 bits of a vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic has no corresponding instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the extraction.
/// \returns A 32-bit float containing the extracted value.
static __inline__ float __DEFAULT_FN_ATTRS
_mm_cvtss_f32(__m128 __a)
{
return __a[0];
}
/// Loads two packed float values from the address \a __p into the
/// high-order bits of a 128-bit vector of [4 x float]. The low-order bits
/// are copied from the low-order bits of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVHPD / MOVHPD </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. Bits [63:0] are written to bits [63:0]
/// of the destination.
/// \param __p
/// A pointer to two packed float values. Bits [63:0] are written to bits
/// [127:64] of the destination.
/// \returns A 128-bit vector of [4 x float] containing the moved values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_loadh_pi(__m128 __a, const __m64 *__p)
{
typedef float __mm_loadh_pi_v2f32 __attribute__((__vector_size__(8)));
struct __mm_loadh_pi_struct {
__mm_loadh_pi_v2f32 __u;
} __attribute__((__packed__, __may_alias__));
__mm_loadh_pi_v2f32 __b = ((const struct __mm_loadh_pi_struct*)__p)->__u;
__m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1);
return __builtin_shufflevector(__a, __bb, 0, 1, 4, 5);
}
/// Loads two packed float values from the address \a __p into the
/// low-order bits of a 128-bit vector of [4 x float]. The high-order bits
/// are copied from the high-order bits of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVLPD / MOVLPD </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. Bits [127:64] are written to bits
/// [127:64] of the destination.
/// \param __p
/// A pointer to two packed float values. Bits [63:0] are written to bits
/// [63:0] of the destination.
/// \returns A 128-bit vector of [4 x float] containing the moved values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_loadl_pi(__m128 __a, const __m64 *__p)
{
typedef float __mm_loadl_pi_v2f32 __attribute__((__vector_size__(8)));
struct __mm_loadl_pi_struct {
__mm_loadl_pi_v2f32 __u;
} __attribute__((__packed__, __may_alias__));
__mm_loadl_pi_v2f32 __b = ((const struct __mm_loadl_pi_struct*)__p)->__u;
__m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1);
return __builtin_shufflevector(__a, __bb, 4, 5, 2, 3);
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 32 bits of the vector are initialized with the single-precision
/// floating-point value loaded from a specified memory location. The upper
/// 96 bits are set to zero.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction.
///
/// \param __p
/// A pointer to a 32-bit memory location containing a single-precision
/// floating-point value.
/// \returns An initialized 128-bit floating-point vector of [4 x float]. The
/// lower 32 bits contain the value loaded from the memory location. The
/// upper 96 bits are set to zero.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_load_ss(const float *__p)
{
struct __mm_load_ss_struct {
float __u;
} __attribute__((__packed__, __may_alias__));
float __u = ((const struct __mm_load_ss_struct*)__p)->__u;
return __extension__ (__m128){ __u, 0, 0, 0 };
}
/// Loads a 32-bit float value and duplicates it to all four vector
/// elements of a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VBROADCASTSS / MOVSS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a float value to be loaded and duplicated.
/// \returns A 128-bit vector of [4 x float] containing the loaded and
/// duplicated values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_load1_ps(const float *__p)
{
struct __mm_load1_ps_struct {
float __u;
} __attribute__((__packed__, __may_alias__));
float __u = ((const struct __mm_load1_ps_struct*)__p)->__u;
return __extension__ (__m128){ __u, __u, __u, __u };
}
#define _mm_load_ps1(p) _mm_load1_ps(p)
/// Loads a 128-bit floating-point vector of [4 x float] from an aligned
/// memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location has to be 128-bit aligned.
/// \returns A 128-bit vector of [4 x float] containing the loaded values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_load_ps(const float *__p)
{
return *(const __m128*)__p;
}
/// Loads a 128-bit floating-point vector of [4 x float] from an
/// unaligned memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVUPS / MOVUPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location does not have to be aligned.
/// \returns A 128-bit vector of [4 x float] containing the loaded values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_loadu_ps(const float *__p)
{
struct __loadu_ps {
__m128_u __v;
} __attribute__((__packed__, __may_alias__));
return ((const struct __loadu_ps*)__p)->__v;
}
/// Loads four packed float values, in reverse order, from an aligned
/// memory location to 32-bit elements in a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location has to be 128-bit aligned.
/// \returns A 128-bit vector of [4 x float] containing the moved values, loaded
/// in reverse order.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_loadr_ps(const float *__p)
{
__m128 __a = _mm_load_ps(__p);
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 3, 2, 1, 0);
}
/// Create a 128-bit vector of [4 x float] with undefined values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic has no corresponding instruction.
///
/// \returns A 128-bit vector of [4 x float] containing undefined values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_undefined_ps(void)
{
return (__m128)__builtin_ia32_undef128();
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 32 bits of the vector are initialized with the specified single-precision
/// floating-point value. The upper 96 bits are set to zero.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction.
///
/// \param __w
/// A single-precision floating-point value used to initialize the lower 32
/// bits of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float]. The
/// lower 32 bits contain the value provided in the source operand. The
/// upper 96 bits are set to zero.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_set_ss(float __w)
{
return __extension__ (__m128){ __w, 0.0f, 0.0f, 0.0f };
}
/// Constructs a 128-bit floating-point vector of [4 x float], with each
/// of the four single-precision floating-point vector elements set to the
/// specified single-precision floating-point value.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPERMILPS / PERMILPS </c> instruction.
///
/// \param __w
/// A single-precision floating-point value used to initialize each vector
/// element of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_set1_ps(float __w)
{
return __extension__ (__m128){ __w, __w, __w, __w };
}
/* Microsoft specific. */
/// Constructs a 128-bit floating-point vector of [4 x float], with each
/// of the four single-precision floating-point vector elements set to the
/// specified single-precision floating-point value.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPERMILPS / PERMILPS </c> instruction.
///
/// \param __w
/// A single-precision floating-point value used to initialize each vector
/// element of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_set_ps1(float __w)
{
return _mm_set1_ps(__w);
}
/// Constructs a 128-bit floating-point vector of [4 x float]
/// initialized with the specified single-precision floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic is a utility function and does not correspond to a specific
/// instruction.
///
/// \param __z
/// A single-precision floating-point value used to initialize bits [127:96]
/// of the result.
/// \param __y
/// A single-precision floating-point value used to initialize bits [95:64]
/// of the result.
/// \param __x
/// A single-precision floating-point value used to initialize bits [63:32]
/// of the result.
/// \param __w
/// A single-precision floating-point value used to initialize bits [31:0]
/// of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_set_ps(float __z, float __y, float __x, float __w)
{
return __extension__ (__m128){ __w, __x, __y, __z };
}
/// Constructs a 128-bit floating-point vector of [4 x float],
/// initialized in reverse order with the specified 32-bit single-precision
/// float-point values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic is a utility function and does not correspond to a specific
/// instruction.
///
/// \param __z
/// A single-precision floating-point value used to initialize bits [31:0]
/// of the result.
/// \param __y
/// A single-precision floating-point value used to initialize bits [63:32]
/// of the result.
/// \param __x
/// A single-precision floating-point value used to initialize bits [95:64]
/// of the result.
/// \param __w
/// A single-precision floating-point value used to initialize bits [127:96]
/// of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_setr_ps(float __z, float __y, float __x, float __w)
{
return __extension__ (__m128){ __z, __y, __x, __w };
}
/// Constructs a 128-bit floating-point vector of [4 x float] initialized
/// to zero.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VXORPS / XORPS </c> instruction.
///
/// \returns An initialized 128-bit floating-point vector of [4 x float] with
/// all elements set to zero.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_setzero_ps(void)
{
return __extension__ (__m128){ 0.0f, 0.0f, 0.0f, 0.0f };
}
/// Stores the upper 64 bits of a 128-bit vector of [4 x float] to a
/// memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPEXTRQ / PEXTRQ </c> instruction.
///
/// \param __p
/// A pointer to a 64-bit memory location.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_storeh_pi(__m64 *__p, __m128 __a)
{
typedef float __mm_storeh_pi_v2f32 __attribute__((__vector_size__(8)));
struct __mm_storeh_pi_struct {
__mm_storeh_pi_v2f32 __u;
} __attribute__((__packed__, __may_alias__));
((struct __mm_storeh_pi_struct*)__p)->__u = __builtin_shufflevector(__a, __a, 2, 3);
}
/// Stores the lower 64 bits of a 128-bit vector of [4 x float] to a
/// memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVLPS / MOVLPS </c> instruction.
///
/// \param __p
/// A pointer to a memory location that will receive the float values.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_storel_pi(__m64 *__p, __m128 __a)
{
typedef float __mm_storeh_pi_v2f32 __attribute__((__vector_size__(8)));
struct __mm_storeh_pi_struct {
__mm_storeh_pi_v2f32 __u;
} __attribute__((__packed__, __may_alias__));
((struct __mm_storeh_pi_struct*)__p)->__u = __builtin_shufflevector(__a, __a, 0, 1);
}
/// Stores the lower 32 bits of a 128-bit vector of [4 x float] to a
/// memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction.
///
/// \param __p
/// A pointer to a 32-bit memory location.
/// \param __a
/// A 128-bit vector of [4 x float] containing the value to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_store_ss(float *__p, __m128 __a)
{
struct __mm_store_ss_struct {
float __u;
} __attribute__((__packed__, __may_alias__));
((struct __mm_store_ss_struct*)__p)->__u = __a[0];
}
/// Stores a 128-bit vector of [4 x float] to an unaligned memory
/// location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVUPS / MOVUPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location does not have to be aligned.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_storeu_ps(float *__p, __m128 __a)
{
struct __storeu_ps {
__m128_u __v;
} __attribute__((__packed__, __may_alias__));
((struct __storeu_ps*)__p)->__v = __a;
}
/// Stores a 128-bit vector of [4 x float] into an aligned memory
/// location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location has to be 16-byte aligned.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_store_ps(float *__p, __m128 __a)
{
*(__m128*)__p = __a;
}
/// Stores the lower 32 bits of a 128-bit vector of [4 x float] into
/// four contiguous elements in an aligned memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to <c> VMOVAPS / MOVAPS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location.
/// \param __a
/// A 128-bit vector of [4 x float] whose lower 32 bits are stored to each
/// of the four contiguous elements pointed by \a __p.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_store1_ps(float *__p, __m128 __a)
{
__a = __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 0, 0, 0);
_mm_store_ps(__p, __a);
}
/// Stores the lower 32 bits of a 128-bit vector of [4 x float] into
/// four contiguous elements in an aligned memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to <c> VMOVAPS / MOVAPS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location.
/// \param __a
/// A 128-bit vector of [4 x float] whose lower 32 bits are stored to each
/// of the four contiguous elements pointed by \a __p.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_store_ps1(float *__p, __m128 __a)
{
_mm_store1_ps(__p, __a);
}
/// Stores float values from a 128-bit vector of [4 x float] to an
/// aligned memory location in reverse order.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location has to be 128-bit aligned.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_storer_ps(float *__p, __m128 __a)
{
__a = __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 3, 2, 1, 0);
_mm_store_ps(__p, __a);
}
#define _MM_HINT_ET0 7
#define _MM_HINT_ET1 6
#define _MM_HINT_T0 3
#define _MM_HINT_T1 2
#define _MM_HINT_T2 1
#define _MM_HINT_NTA 0
#ifndef _MSC_VER
/* FIXME: We have to #define this because "sel" must be a constant integer, and
Sema doesn't do any form of constant propagation yet. */
/// Loads one cache line of data from the specified address to a location
/// closer to the processor.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// void _mm_prefetch(const void *a, const int sel);
/// \endcode
///
/// This intrinsic corresponds to the <c> PREFETCHNTA </c> instruction.
///
/// \param a
/// A pointer to a memory location containing a cache line of data.
/// \param sel
/// A predefined integer constant specifying the type of prefetch
/// operation: \n
/// _MM_HINT_NTA: Move data using the non-temporal access (NTA) hint. The
/// PREFETCHNTA instruction will be generated. \n
/// _MM_HINT_T0: Move data using the T0 hint. The PREFETCHT0 instruction will
/// be generated. \n
/// _MM_HINT_T1: Move data using the T1 hint. The PREFETCHT1 instruction will
/// be generated. \n
/// _MM_HINT_T2: Move data using the T2 hint. The PREFETCHT2 instruction will
/// be generated.
#define _mm_prefetch(a, sel) (__builtin_prefetch((const void *)(a), \
((sel) >> 2) & 1, (sel) & 0x3))
#endif
/// Stores a 64-bit integer in the specified aligned memory location. To
/// minimize caching, the data is flagged as non-temporal (unlikely to be
/// used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> MOVNTQ </c> instruction.
///
/// \param __p
/// A pointer to an aligned memory location used to store the register value.
/// \param __a
/// A 64-bit integer containing the value to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_stream_pi(void *__p, __m64 __a)
{
__builtin_nontemporal_store(__a, (__m64 *)__p);
}
/// Moves packed float values from a 128-bit vector of [4 x float] to a
/// 128-bit aligned memory location. To minimize caching, the data is flagged
/// as non-temporal (unlikely to be used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVNTPS / MOVNTPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit aligned memory location that will receive the
/// single-precision floating-point values.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be moved.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_stream_ps(void *__p, __m128 __a)
{
__builtin_nontemporal_store((__v4sf)__a, (__v4sf*)__p);
}
#if defined(__cplusplus)
extern "C" {
#endif
/// Forces strong memory ordering (serialization) between store
/// instructions preceding this instruction and store instructions following
/// this instruction, ensuring the system completes all previous stores
/// before executing subsequent stores.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> SFENCE </c> instruction.
///
void _mm_sfence(void);
#if defined(__cplusplus)
} // extern "C"
#endif
/// Extracts 16-bit element from a 64-bit vector of [4 x i16] and
/// returns it, as specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// int _mm_extract_pi16(__m64 a, int n);
/// \endcode
///
/// This intrinsic corresponds to the <c> VPEXTRW / PEXTRW </c> instruction.
///
/// \param a
/// A 64-bit vector of [4 x i16].
/// \param n
/// An immediate integer operand that determines which bits are extracted: \n
/// 0: Bits [15:0] are copied to the destination. \n
/// 1: Bits [31:16] are copied to the destination. \n
/// 2: Bits [47:32] are copied to the destination. \n
/// 3: Bits [63:48] are copied to the destination.
/// \returns A 16-bit integer containing the extracted 16 bits of packed data.
#define _mm_extract_pi16(a, n) \
((int)(unsigned short)__builtin_ia32_vec_ext_v4hi((__v4hi)a, (int)n))
/// Copies data from the 64-bit vector of [4 x i16] to the destination,
/// and inserts the lower 16-bits of an integer operand at the 16-bit offset
/// specified by the immediate operand \a n.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m64 _mm_insert_pi16(__m64 a, int d, int n);
/// \endcode
///
/// This intrinsic corresponds to the <c> PINSRW </c> instruction.
///
/// \param a
/// A 64-bit vector of [4 x i16].
/// \param d
/// An integer. The lower 16-bit value from this operand is written to the
/// destination at the offset specified by operand \a n.
/// \param n
/// An immediate integer operant that determines which the bits to be used
/// in the destination. \n
/// 0: Bits [15:0] are copied to the destination. \n
/// 1: Bits [31:16] are copied to the destination. \n
/// 2: Bits [47:32] are copied to the destination. \n
/// 3: Bits [63:48] are copied to the destination. \n
/// The remaining bits in the destination are copied from the corresponding
/// bits in operand \a a.
/// \returns A 64-bit integer vector containing the copied packed data from the
/// operands.
#define _mm_insert_pi16(a, d, n) \
((__m64)__builtin_ia32_vec_set_v4hi((__v4hi)a, (int)d, (int)n))
/// Compares each of the corresponding packed 16-bit integer values of
/// the 64-bit integer vectors, and writes the greater value to the
/// corresponding bits in the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMAXSW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the comparison results.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_max_pi16(__m64 __a, __m64 __b)
{
return (__m64)__builtin_elementwise_max((__v4hi)__a, (__v4hi)__b);
}
/// Compares each of the corresponding packed 8-bit unsigned integer
/// values of the 64-bit integer vectors, and writes the greater value to the
/// corresponding bits in the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMAXUB </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the comparison results.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_max_pu8(__m64 __a, __m64 __b)
{
return (__m64)__builtin_elementwise_max((__v8qu)__a, (__v8qu)__b);
}
/// Compares each of the corresponding packed 16-bit integer values of
/// the 64-bit integer vectors, and writes the lesser value to the
/// corresponding bits in the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMINSW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the comparison results.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_min_pi16(__m64 __a, __m64 __b)
{
return (__m64)__builtin_elementwise_min((__v4hi)__a, (__v4hi)__b);
}
/// Compares each of the corresponding packed 8-bit unsigned integer
/// values of the 64-bit integer vectors, and writes the lesser value to the
/// corresponding bits in the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMINUB </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the comparison results.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_min_pu8(__m64 __a, __m64 __b)
{
return (__m64)__builtin_elementwise_min((__v8qu)__a, (__v8qu)__b);
}
/// Takes the most significant bit from each 8-bit element in a 64-bit
/// integer vector to create an 8-bit mask value. Zero-extends the value to
/// 32-bit integer and writes it to the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMOVMSKB </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing the values with bits to be extracted.
/// \returns The most significant bit from each 8-bit element in \a __a,
/// written to bits [7:0].
static __inline__ int __DEFAULT_FN_ATTRS_SSE2
_mm_movemask_pi8(__m64 __a)
{
return __builtin_ia32_pmovmskb128((__v16qi)__zext128(__a));
}
/// Multiplies packed 16-bit unsigned integer values and writes the
/// high-order 16 bits of each 32-bit product to the corresponding bits in
/// the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMULHUW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the products of both operands.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_mulhi_pu16(__m64 __a, __m64 __b)
{
return __trunc64(__builtin_ia32_pmulhuw128((__v8hi)__anyext128(__a),
(__v8hi)__anyext128(__b)));
}
/// Shuffles the 4 16-bit integers from a 64-bit integer vector to the
/// destination, as specified by the immediate value operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m64 _mm_shuffle_pi16(__m64 a, const int n);
/// \endcode
///
/// This intrinsic corresponds to the <c> PSHUFW </c> instruction.
///
/// \param a
/// A 64-bit integer vector containing the values to be shuffled.
/// \param n
/// An immediate value containing an 8-bit value specifying which elements to
/// copy from \a a. The destinations within the 64-bit destination are
/// assigned values as follows: \n
/// Bits [1:0] are used to assign values to bits [15:0] in the
/// destination. \n
/// Bits [3:2] are used to assign values to bits [31:16] in the
/// destination. \n
/// Bits [5:4] are used to assign values to bits [47:32] in the
/// destination. \n
/// Bits [7:6] are used to assign values to bits [63:48] in the
/// destination. \n
/// Bit value assignments: \n
/// 00: assigned from bits [15:0] of \a a. \n
/// 01: assigned from bits [31:16] of \a a. \n
/// 10: assigned from bits [47:32] of \a a. \n
/// 11: assigned from bits [63:48] of \a a. \n
/// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
/// <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
/// <c>[b6, b4, b2, b0]</c>.
/// \returns A 64-bit integer vector containing the shuffled values.
#define _mm_shuffle_pi16(a, n) \
((__m64)__builtin_shufflevector((__v4hi)(__m64)(a), __extension__(__v4hi){}, \
(n) & 0x3, ((n) >> 2) & 0x3, \
((n) >> 4) & 0x3, ((n) >> 6) & 0x3))
/// Conditionally copies the values from each 8-bit element in the first
/// 64-bit integer vector operand to the specified memory location, as
/// specified by the most significant bit in the corresponding element in the
/// second 64-bit integer vector operand.
///
/// To minimize caching, the data is flagged as non-temporal
/// (unlikely to be used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> MASKMOVQ </c> instruction.
///
/// \param __d
/// A 64-bit integer vector containing the values with elements to be copied.
/// \param __n
/// A 64-bit integer vector operand. The most significant bit from each 8-bit
/// element determines whether the corresponding element in operand \a __d
/// is copied. If the most significant bit of a given element is 1, the
/// corresponding element in operand \a __d is copied.
/// \param __p
/// A pointer to a 64-bit memory location that will receive the conditionally
/// copied integer values. The address of the memory location does not have
/// to be aligned.
static __inline__ void __DEFAULT_FN_ATTRS_SSE2
_mm_maskmove_si64(__m64 __d, __m64 __n, char *__p)
{
// This is complex, because we need to support the case where __p is pointing
// within the last 15 to 8 bytes of a page. In that case, using a 128-bit
// write might cause a trap where a 64-bit maskmovq would not. (Memory
// locations not selected by the mask bits might still cause traps.)
__m128i __d128 = __anyext128(__d);
__m128i __n128 = __zext128(__n);
if (((__SIZE_TYPE__)__p & 0xfff) >= 4096-15 &&
((__SIZE_TYPE__)__p & 0xfff) <= 4096-8) {
// If there's a risk of spurious trap due to a 128-bit write, back up the
// pointer by 8 bytes and shift values in registers to match.
__p -= 8;
__d128 = __builtin_ia32_pslldqi128_byteshift((__v2di)__d128, 8);
__n128 = __builtin_ia32_pslldqi128_byteshift((__v2di)__n128, 8);
}
__builtin_ia32_maskmovdqu((__v16qi)__d128, (__v16qi)__n128, __p);
}
/// Computes the rounded averages of the packed unsigned 8-bit integer
/// values and writes the averages to the corresponding bits in the
/// destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PAVGB </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the averages of both operands.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_avg_pu8(__m64 __a, __m64 __b)
{
return __trunc64(__builtin_ia32_pavgb128((__v16qi)__anyext128(__a),
(__v16qi)__anyext128(__b)));
}
/// Computes the rounded averages of the packed unsigned 16-bit integer
/// values and writes the averages to the corresponding bits in the
/// destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PAVGW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the averages of both operands.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_avg_pu16(__m64 __a, __m64 __b)
{
return __trunc64(__builtin_ia32_pavgw128((__v8hi)__anyext128(__a),
(__v8hi)__anyext128(__b)));
}
/// Subtracts the corresponding 8-bit unsigned integer values of the two
/// 64-bit vector operands and computes the absolute value for each of the
/// difference. Then sum of the 8 absolute differences is written to the
/// bits [15:0] of the destination; the remaining bits [63:16] are cleared.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PSADBW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector whose lower 16 bits contain the sums of the
/// sets of absolute differences between both operands. The upper bits are
/// cleared.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_sad_pu8(__m64 __a, __m64 __b)
{
return __trunc64(__builtin_ia32_psadbw128((__v16qi)__zext128(__a),
(__v16qi)__zext128(__b)));
}
#if defined(__cplusplus)
extern "C" {
#endif
/// Returns the contents of the MXCSR register as a 32-bit unsigned
/// integer value.
///
/// There are several groups of macros associated with this
/// intrinsic, including:
/// <ul>
/// <li>
/// For checking exception states: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO,
/// _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW,
/// _MM_EXCEPT_INEXACT. There is a convenience wrapper
/// _MM_GET_EXCEPTION_STATE().
/// </li>
/// <li>
/// For checking exception masks: _MM_MASK_UNDERFLOW, _MM_MASK_OVERFLOW,
/// _MM_MASK_INVALID, _MM_MASK_DENORM, _MM_MASK_DIV_ZERO, _MM_MASK_INEXACT.
/// There is a convenience wrapper _MM_GET_EXCEPTION_MASK().
/// </li>
/// <li>
/// For checking rounding modes: _MM_ROUND_NEAREST, _MM_ROUND_DOWN,
/// _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO. There is a convenience wrapper
/// _MM_GET_ROUNDING_MODE().
/// </li>
/// <li>
/// For checking flush-to-zero mode: _MM_FLUSH_ZERO_ON, _MM_FLUSH_ZERO_OFF.
/// There is a convenience wrapper _MM_GET_FLUSH_ZERO_MODE().
/// </li>
/// <li>
/// For checking denormals-are-zero mode: _MM_DENORMALS_ZERO_ON,
/// _MM_DENORMALS_ZERO_OFF. There is a convenience wrapper
/// _MM_GET_DENORMALS_ZERO_MODE().
/// </li>
/// </ul>
///
/// For example, the following expression checks if an overflow exception has
/// occurred:
/// \code
/// ( _mm_getcsr() & _MM_EXCEPT_OVERFLOW )
/// \endcode
///
/// The following expression gets the current rounding mode:
/// \code
/// _MM_GET_ROUNDING_MODE()
/// \endcode
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSTMXCSR / STMXCSR </c> instruction.
///
/// \returns A 32-bit unsigned integer containing the contents of the MXCSR
/// register.
unsigned int _mm_getcsr(void);
/// Sets the MXCSR register with the 32-bit unsigned integer value.
///
/// There are several groups of macros associated with this intrinsic,
/// including:
/// <ul>
/// <li>
/// For setting exception states: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO,
/// _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW,
/// _MM_EXCEPT_INEXACT. There is a convenience wrapper
/// _MM_SET_EXCEPTION_STATE(x) where x is one of these macros.
/// </li>
/// <li>
/// For setting exception masks: _MM_MASK_UNDERFLOW, _MM_MASK_OVERFLOW,
/// _MM_MASK_INVALID, _MM_MASK_DENORM, _MM_MASK_DIV_ZERO, _MM_MASK_INEXACT.
/// There is a convenience wrapper _MM_SET_EXCEPTION_MASK(x) where x is one
/// of these macros.
/// </li>
/// <li>
/// For setting rounding modes: _MM_ROUND_NEAREST, _MM_ROUND_DOWN,
/// _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO. There is a convenience wrapper
/// _MM_SET_ROUNDING_MODE(x) where x is one of these macros.
/// </li>
/// <li>
/// For setting flush-to-zero mode: _MM_FLUSH_ZERO_ON, _MM_FLUSH_ZERO_OFF.
/// There is a convenience wrapper _MM_SET_FLUSH_ZERO_MODE(x) where x is
/// one of these macros.
/// </li>
/// <li>
/// For setting denormals-are-zero mode: _MM_DENORMALS_ZERO_ON,
/// _MM_DENORMALS_ZERO_OFF. There is a convenience wrapper
/// _MM_SET_DENORMALS_ZERO_MODE(x) where x is one of these macros.
/// </li>
/// </ul>
///
/// For example, the following expression causes subsequent floating-point
/// operations to round up:
/// _mm_setcsr(_mm_getcsr() | _MM_ROUND_UP)
///
/// The following example sets the DAZ and FTZ flags:
/// \code
/// void setFlags() {
/// _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
/// _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
/// }
/// \endcode
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VLDMXCSR / LDMXCSR </c> instruction.
///
/// \param __i
/// A 32-bit unsigned integer value to be written to the MXCSR register.
void _mm_setcsr(unsigned int __i);
#if defined(__cplusplus)
} // extern "C"
#endif
/// Selects 4 float values from the 128-bit operands of [4 x float], as
/// specified by the immediate value operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_shuffle_ps(__m128 a, __m128 b, const int mask);
/// \endcode
///
/// This intrinsic corresponds to the <c> VSHUFPS / SHUFPS </c> instruction.
///
/// \param a
/// A 128-bit vector of [4 x float].
/// \param b
/// A 128-bit vector of [4 x float].
/// \param mask
/// An immediate value containing an 8-bit value specifying which elements to
/// copy from \a a and \a b. \n
/// Bits [3:0] specify the values copied from operand \a a. \n
/// Bits [7:4] specify the values copied from operand \a b. \n
/// The destinations within the 128-bit destination are assigned values as
/// follows: \n
/// Bits [1:0] are used to assign values to bits [31:0] in the
/// destination. \n
/// Bits [3:2] are used to assign values to bits [63:32] in the
/// destination. \n
/// Bits [5:4] are used to assign values to bits [95:64] in the
/// destination. \n
/// Bits [7:6] are used to assign values to bits [127:96] in the
/// destination. \n
/// Bit value assignments: \n
/// 00: Bits [31:0] copied from the specified operand. \n
/// 01: Bits [63:32] copied from the specified operand. \n
/// 10: Bits [95:64] copied from the specified operand. \n
/// 11: Bits [127:96] copied from the specified operand. \n
/// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
/// <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
/// <c>[b6, b4, b2, b0]</c>.
/// \returns A 128-bit vector of [4 x float] containing the shuffled values.
#define _mm_shuffle_ps(a, b, mask) \
((__m128)__builtin_ia32_shufps((__v4sf)(__m128)(a), (__v4sf)(__m128)(b), \
(int)(mask)))
/// Unpacks the high-order (index 2,3) values from two 128-bit vectors of
/// [4 x float] and interleaves them into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUNPCKHPS / UNPCKHPS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. \n
/// Bits [95:64] are written to bits [31:0] of the destination. \n
/// Bits [127:96] are written to bits [95:64] of the destination.
/// \param __b
/// A 128-bit vector of [4 x float].
/// Bits [95:64] are written to bits [63:32] of the destination. \n
/// Bits [127:96] are written to bits [127:96] of the destination.
/// \returns A 128-bit vector of [4 x float] containing the interleaved values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_unpackhi_ps(__m128 __a, __m128 __b)
{
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 2, 6, 3, 7);
}
/// Unpacks the low-order (index 0,1) values from two 128-bit vectors of
/// [4 x float] and interleaves them into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUNPCKLPS / UNPCKLPS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. \n
/// Bits [31:0] are written to bits [31:0] of the destination. \n
/// Bits [63:32] are written to bits [95:64] of the destination.
/// \param __b
/// A 128-bit vector of [4 x float]. \n
/// Bits [31:0] are written to bits [63:32] of the destination. \n
/// Bits [63:32] are written to bits [127:96] of the destination.
/// \returns A 128-bit vector of [4 x float] containing the interleaved values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_unpacklo_ps(__m128 __a, __m128 __b)
{
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 0, 4, 1, 5);
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 32 bits are set to the lower 32 bits of the second parameter. The upper
/// 96 bits are set to the upper 96 bits of the first parameter.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VBLENDPS / BLENDPS / MOVSS </c>
/// instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float]. The upper 96 bits are
/// written to the upper 96 bits of the result.
/// \param __b
/// A 128-bit floating-point vector of [4 x float]. The lower 32 bits are
/// written to the lower 32 bits of the result.
/// \returns A 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_move_ss(__m128 __a, __m128 __b)
{
__a[0] = __b[0];
return __a;
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 64 bits are set to the upper 64 bits of the second parameter. The upper
/// 64 bits are set to the upper 64 bits of the first parameter.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUNPCKHPD / UNPCKHPD </c> instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float]. The upper 64 bits are
/// written to the upper 64 bits of the result.
/// \param __b
/// A 128-bit floating-point vector of [4 x float]. The upper 64 bits are
/// written to the lower 64 bits of the result.
/// \returns A 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_movehl_ps(__m128 __a, __m128 __b)
{
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 6, 7, 2, 3);
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 64 bits are set to the lower 64 bits of the first parameter. The upper
/// 64 bits are set to the lower 64 bits of the second parameter.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUNPCKLPD / UNPCKLPD </c> instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float]. The lower 64 bits are
/// written to the lower 64 bits of the result.
/// \param __b
/// A 128-bit floating-point vector of [4 x float]. The lower 64 bits are
/// written to the upper 64 bits of the result.
/// \returns A 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_movelh_ps(__m128 __a, __m128 __b)
{
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 0, 1, 4, 5);
}
/// Converts a 64-bit vector of [4 x i16] into a 128-bit vector of [4 x
/// float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of [4 x i16]. The elements of the destination are copied
/// from the corresponding elements in this operand.
/// \returns A 128-bit vector of [4 x float] containing the copied and converted
/// values from the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtpi16_ps(__m64 __a)
{
return __builtin_convertvector((__v4hi)__a, __v4sf);
}
/// Converts a 64-bit vector of 16-bit unsigned integer values into a
/// 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of 16-bit unsigned integer values. The elements of the
/// destination are copied from the corresponding elements in this operand.
/// \returns A 128-bit vector of [4 x float] containing the copied and converted
/// values from the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtpu16_ps(__m64 __a)
{
return __builtin_convertvector((__v4hu)__a, __v4sf);
}
/// Converts the lower four 8-bit values from a 64-bit vector of [8 x i8]
/// into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of [8 x i8]. The elements of the destination are copied
/// from the corresponding lower 4 elements in this operand.
/// \returns A 128-bit vector of [4 x float] containing the copied and converted
/// values from the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtpi8_ps(__m64 __a)
{
return __builtin_convertvector(
__builtin_shufflevector((__v8qs)__a, __extension__ (__v8qs){},
0, 1, 2, 3), __v4sf);
}
/// Converts the lower four unsigned 8-bit integer values from a 64-bit
/// vector of [8 x u8] into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of unsigned 8-bit integer values. The elements of the
/// destination are copied from the corresponding lower 4 elements in this
/// operand.
/// \returns A 128-bit vector of [4 x float] containing the copied and converted
/// values from the source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtpu8_ps(__m64 __a)
{
return __builtin_convertvector(
__builtin_shufflevector((__v8qu)__a, __extension__ (__v8qu){},
0, 1, 2, 3), __v4sf);
}
/// Converts the two 32-bit signed integer values from each 64-bit vector
/// operand of [2 x i32] into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of [2 x i32]. The lower elements of the destination are
/// copied from the elements in this operand.
/// \param __b
/// A 64-bit vector of [2 x i32]. The upper elements of the destination are
/// copied from the elements in this operand.
/// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the
/// copied and converted values from the first operand. The upper 64 bits
/// contain the copied and converted values from the second operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtpi32x2_ps(__m64 __a, __m64 __b)
{
return __builtin_convertvector(
__builtin_shufflevector((__v2si)__a, (__v2si)__b,
0, 1, 2, 3), __v4sf);
}
/// Converts each single-precision floating-point element of a 128-bit
/// floating-point vector of [4 x float] into a 16-bit signed integer, and
/// packs the results into a 64-bit integer vector of [4 x i16].
///
/// If the floating-point element is NaN or infinity, or if the
/// floating-point element is greater than 0x7FFFFFFF or less than -0x8000,
/// it is converted to 0x8000. Otherwise if the floating-point element is
/// greater than 0x7FFF, it is converted to 0x7FFF.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPS2PI + COMPOSITE </c> instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float].
/// \returns A 64-bit integer vector of [4 x i16] containing the converted
/// values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtps_pi16(__m128 __a)
{
return __trunc64(__builtin_ia32_packssdw128(
(__v4si)__builtin_ia32_cvtps2dq((__v4sf)__a), (__v4si)_mm_setzero_ps()));
}
/// Converts each single-precision floating-point element of a 128-bit
/// floating-point vector of [4 x float] into an 8-bit signed integer, and
/// packs the results into the lower 32 bits of a 64-bit integer vector of
/// [8 x i8]. The upper 32 bits of the vector are set to 0.
///
/// If the floating-point element is NaN or infinity, or if the
/// floating-point element is greater than 0x7FFFFFFF or less than -0x80, it
/// is converted to 0x80. Otherwise if the floating-point element is greater
/// than 0x7F, it is converted to 0x7F.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPS2PI + COMPOSITE </c> instruction.
///
/// \param __a
/// 128-bit floating-point vector of [4 x float].
/// \returns A 64-bit integer vector of [8 x i8]. The lower 32 bits contain the
/// converted values and the uppper 32 bits are set to zero.
static __inline__ __m64 __DEFAULT_FN_ATTRS_SSE2
_mm_cvtps_pi8(__m128 __a)
{
__m64 __b, __c;
__b = _mm_cvtps_pi16(__a);
__c = _mm_setzero_si64();
return _mm_packs_pi16(__b, __c);
}
/// Extracts the sign bits from each single-precision floating-point
/// element of a 128-bit floating-point vector of [4 x float] and returns the
/// sign bits in bits [0:3] of the result. Bits [31:4] of the result are set
/// to zero.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVMSKPS / MOVMSKPS </c> instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float].
/// \returns A 32-bit integer value. Bits [3:0] contain the sign bits from each
/// single-precision floating-point element of the parameter. Bits [31:4] are
/// set to zero.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_movemask_ps(__m128 __a)
{
return __builtin_ia32_movmskps((__v4sf)__a);
}
/* Compare */
#define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */
#define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */
#define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */
#define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */
#define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */
#define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */
#define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */
#define _CMP_ORD_Q 0x07 /* Ordered (non-signaling) */
/// Compares each of the corresponding values of two 128-bit vectors of
/// [4 x float], using the operation specified by the immediate integer
/// operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, comparisons that are ordered
/// return false, and comparisons that are unordered return true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the <c> (V)CMPPS </c> instruction.
///
/// \param a
/// A 128-bit vector of [4 x float].
/// \param b
/// A 128-bit vector of [4 x float].
/// \param c
/// An immediate integer operand, with bits [4:0] specifying which comparison
/// operation to use: \n
/// 0x00: Equal (ordered, non-signaling) \n
/// 0x01: Less-than (ordered, signaling) \n
/// 0x02: Less-than-or-equal (ordered, signaling) \n
/// 0x03: Unordered (non-signaling) \n
/// 0x04: Not-equal (unordered, non-signaling) \n
/// 0x05: Not-less-than (unordered, signaling) \n
/// 0x06: Not-less-than-or-equal (unordered, signaling) \n
/// 0x07: Ordered (non-signaling) \n
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
#define _mm_cmp_ps(a, b, c) \
((__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), (__v4sf)(__m128)(b), (c)))
/// Compares each of the corresponding scalar values of two 128-bit
/// vectors of [4 x float], using the operation specified by the immediate
/// integer operand.
///
/// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
/// If either value in a comparison is NaN, comparisons that are ordered
/// return false, and comparisons that are unordered return true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the <c> (V)CMPSS </c> instruction.
///
/// \param a
/// A 128-bit vector of [4 x float].
/// \param b
/// A 128-bit vector of [4 x float].
/// \param c
/// An immediate integer operand, with bits [4:0] specifying which comparison
/// operation to use: \n
/// 0x00: Equal (ordered, non-signaling) \n
/// 0x01: Less-than (ordered, signaling) \n
/// 0x02: Less-than-or-equal (ordered, signaling) \n
/// 0x03: Unordered (non-signaling) \n
/// 0x04: Not-equal (unordered, non-signaling) \n
/// 0x05: Not-less-than (unordered, signaling) \n
/// 0x06: Not-less-than-or-equal (unordered, signaling) \n
/// 0x07: Ordered (non-signaling) \n
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
#define _mm_cmp_ss(a, b, c) \
((__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), (__v4sf)(__m128)(b), (c)))
#define _MM_ALIGN16 __attribute__((aligned(16)))
#define _MM_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
#define _MM_EXCEPT_INVALID (0x0001U)
#define _MM_EXCEPT_DENORM (0x0002U)
#define _MM_EXCEPT_DIV_ZERO (0x0004U)
#define _MM_EXCEPT_OVERFLOW (0x0008U)
#define _MM_EXCEPT_UNDERFLOW (0x0010U)
#define _MM_EXCEPT_INEXACT (0x0020U)
#define _MM_EXCEPT_MASK (0x003fU)
#define _MM_MASK_INVALID (0x0080U)
#define _MM_MASK_DENORM (0x0100U)
#define _MM_MASK_DIV_ZERO (0x0200U)
#define _MM_MASK_OVERFLOW (0x0400U)
#define _MM_MASK_UNDERFLOW (0x0800U)
#define _MM_MASK_INEXACT (0x1000U)
#define _MM_MASK_MASK (0x1f80U)
#define _MM_ROUND_NEAREST (0x0000U)
#define _MM_ROUND_DOWN (0x2000U)
#define _MM_ROUND_UP (0x4000U)
#define _MM_ROUND_TOWARD_ZERO (0x6000U)
#define _MM_ROUND_MASK (0x6000U)
#define _MM_FLUSH_ZERO_MASK (0x8000U)
#define _MM_FLUSH_ZERO_ON (0x8000U)
#define _MM_FLUSH_ZERO_OFF (0x0000U)
#define _MM_GET_EXCEPTION_MASK() (_mm_getcsr() & _MM_MASK_MASK)
#define _MM_GET_EXCEPTION_STATE() (_mm_getcsr() & _MM_EXCEPT_MASK)
#define _MM_GET_FLUSH_ZERO_MODE() (_mm_getcsr() & _MM_FLUSH_ZERO_MASK)
#define _MM_GET_ROUNDING_MODE() (_mm_getcsr() & _MM_ROUND_MASK)
#define _MM_SET_EXCEPTION_MASK(x) (_mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | (x)))
#define _MM_SET_EXCEPTION_STATE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | (x)))
#define _MM_SET_FLUSH_ZERO_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | (x)))
#define _MM_SET_ROUNDING_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | (x)))
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
do { \
__m128 tmp3, tmp2, tmp1, tmp0; \
tmp0 = _mm_unpacklo_ps((row0), (row1)); \
tmp2 = _mm_unpacklo_ps((row2), (row3)); \
tmp1 = _mm_unpackhi_ps((row0), (row1)); \
tmp3 = _mm_unpackhi_ps((row2), (row3)); \
(row0) = _mm_movelh_ps(tmp0, tmp2); \
(row1) = _mm_movehl_ps(tmp2, tmp0); \
(row2) = _mm_movelh_ps(tmp1, tmp3); \
(row3) = _mm_movehl_ps(tmp3, tmp1); \
} while (0)
/* Aliases for compatibility. */
#define _m_pextrw _mm_extract_pi16
#define _m_pinsrw _mm_insert_pi16
#define _m_pmaxsw _mm_max_pi16
#define _m_pmaxub _mm_max_pu8
#define _m_pminsw _mm_min_pi16
#define _m_pminub _mm_min_pu8
#define _m_pmovmskb _mm_movemask_pi8
#define _m_pmulhuw _mm_mulhi_pu16
#define _m_pshufw _mm_shuffle_pi16
#define _m_maskmovq _mm_maskmove_si64
#define _m_pavgb _mm_avg_pu8
#define _m_pavgw _mm_avg_pu16
#define _m_psadbw _mm_sad_pu8
#define _m_ _mm_
#undef __trunc64
#undef __zext128
#undef __anyext128
#undef __zeroupper64
#undef __DEFAULT_FN_ATTRS
#undef __DEFAULT_FN_ATTRS_SSE2
/* Ugly hack for backwards-compatibility (compatible with gcc) */
#if defined(__SSE2__) && !__building_module(_Builtin_intrinsics)
#include <emmintrin.h>
#endif
#endif /* __XMMINTRIN_H */