// RUN: %clang_cc1 -std=c++23 -verify %s
namespace usage_invalid {
// FIXME: Should we diagnose a void return type?
void voidreturn(int ¶m [[clang::lifetimebound]]);
int *not_class_member() [[clang::lifetimebound]]; // expected-error {{non-member function has no implicit object parameter}}
struct A {
A() [[clang::lifetimebound]]; // expected-error {{cannot be applied to a constructor}}
~A() [[clang::lifetimebound]]; // expected-error {{cannot be applied to a destructor}}
static int *static_class_member() [[clang::lifetimebound]]; // expected-error {{static member function has no implicit object parameter}}
int *explicit_object(this A&) [[clang::lifetimebound]]; // expected-error {{explicit object member function has no implicit object parameter}}
int not_function [[clang::lifetimebound]]; // expected-error {{only applies to parameters and implicit object parameters}}
int [[clang::lifetimebound]] also_not_function; // expected-error {{cannot be applied to types}}
};
int *attr_with_param(int ¶m [[clang::lifetimebound(42)]]); // expected-error {{takes no arguments}}
}
namespace usage_ok {
struct IntRef { int *target; };
int &refparam(int ¶m [[clang::lifetimebound]]);
int &classparam(IntRef param [[clang::lifetimebound]]);
// Do not diagnose non-void return types; they can still be lifetime-bound.
long long ptrintcast(int ¶m [[clang::lifetimebound]]) {
return (long long)¶m;
}
// Likewise.
int &intptrcast(long long param [[clang::lifetimebound]]) {
return *(int*)param;
}
struct A {
A();
A(int);
int *class_member() [[clang::lifetimebound]];
operator int*() [[clang::lifetimebound]];
};
int *p = A().class_member(); // expected-warning {{temporary whose address is used as value of local variable 'p' will be destroyed at the end of the full-expression}}
int *q = A(); // expected-warning {{temporary whose address is used as value of local variable 'q' will be destroyed at the end of the full-expression}}
int *r = A(1); // expected-warning {{temporary whose address is used as value of local variable 'r' will be destroyed at the end of the full-expression}}
void test_assignment() {
p = A().class_member(); // expected-warning {{object backing the pointer p will be destroyed at the end of the full-expression}}
p = {A().class_member()}; // expected-warning {{object backing the pointer p will be destroyed at the end of the full-expression}}
q = A(); // expected-warning {{object backing the pointer q will be destroyed at the end of the full-expression}}
r = A(1); // expected-warning {{object backing the pointer r will be destroyed at the end of the full-expression}}
}
struct FieldCheck {
struct Set {
int a;
};
struct Pair {
const int& a;
int b;
Set c;
int * d;
};
Pair p;
FieldCheck(const int& a): p(a){}
Pair& getR() [[clang::lifetimebound]] { return p; }
Pair* getP() [[clang::lifetimebound]] { return &p; }
Pair* getNoLB() { return &p; }
};
void test_field_access() {
int x = 0;
const int& a = FieldCheck{x}.getR().a;
const int& b = FieldCheck{x}.getP()->b; // expected-warning {{temporary bound to local reference 'b' will be destroyed at the end of the full-expression}}
const int& c = FieldCheck{x}.getP()->c.a; // expected-warning {{temporary bound to local reference 'c' will be destroyed at the end of the full-expression}}
const int& d = FieldCheck{x}.getNoLB()->c.a;
const int* e = FieldCheck{x}.getR().d;
}
}
# 1 "<std>" 1 3
namespace std {
using size_t = __SIZE_TYPE__;
struct string {
string();
string(const char*);
char &operator[](size_t) const [[clang::lifetimebound]];
};
string operator""s(const char *, size_t);
struct string_view {
string_view();
string_view(const char *p [[clang::lifetimebound]]);
string_view(const string &s [[clang::lifetimebound]]);
};
string_view operator""sv(const char *, size_t);
struct vector {
int *data();
size_t size();
};
template<typename K, typename V> struct map {};
}
# 68 "attr-lifetimebound.cpp" 2
using std::operator""s;
using std::operator""sv;
namespace p0936r0_examples {
std::string_view s = "foo"s; // expected-warning {{temporary}}
std::string operator+(std::string_view s1, std::string_view s2);
void f() {
std::string_view sv = "hi";
std::string_view sv2 = sv + sv; // expected-warning {{temporary}}
sv2 = sv + sv; // FIXME: can we infer that we should warn here too?
}
struct X { int a, b; };
const int &f(const X &x [[clang::lifetimebound]]) { return x.a; }
const int &r = f(X()); // expected-warning {{temporary}}
char &c = std::string("hello my pretty long strong")[0]; // expected-warning {{temporary}}
struct reversed_range {
int *begin();
int *end();
int *p;
std::size_t n;
};
template <typename R> reversed_range reversed(R &&r [[clang::lifetimebound]]) {
return reversed_range{r.data(), r.size()};
}
std::vector make_vector();
void use_reversed_range() {
// FIXME: Don't expose the name of the internal range variable.
for (auto x : reversed(make_vector())) {} // expected-warning {{temporary implicitly bound to local reference will be destroyed at the end of the full-expression}}
}
template <typename K, typename V>
const V &findOrDefault(const std::map<K, V> &m [[clang::lifetimebound]],
const K &key,
const V &defvalue [[clang::lifetimebound]]);
// FIXME: Maybe weaken the wording here: "local reference 'v' could bind to temporary that will be destroyed at end of full-expression"?
std::map<std::string, std::string> m;
const std::string &v = findOrDefault(m, "foo"s, "bar"s); // expected-warning {{temporary bound to local reference 'v'}}
}
// definitions for std::move, std::forward et al.
namespace std {
inline namespace foo {
template <class T> struct remove_reference {
typedef T type;
};
template <class T> struct remove_reference<T &> {
typedef T type;
};
template <class T> struct remove_reference<T &&> {
typedef T type;
};
template <class T> constexpr typename remove_reference<T>::type &&move(T &&t) {
return static_cast<typename remove_reference<T>::type>(t);
}
template <class T>
constexpr T &&forward(typename remove_reference<T>::type &t) {
return static_cast<T &&>(t);
}
template <class T>
constexpr T &&forward(typename remove_reference<T>::type &&t) {
return static_cast<T &&>(t);
}
template <class T> constexpr const T &as_const(T &x) { return x; }
template <class T, bool RValueRef> struct PickRef {
using type = typename remove_reference<T>::type &;
};
template <class T> struct PickRef<T, true> {
using type = typename remove_reference<T>::type &&;
};
template <class T> struct is_lvalue_reference {
static constexpr bool value = false;
};
template <class T> struct is_lvalue_reference<T &> {
static constexpr bool value = true;
};
template <class T> struct is_const {
static constexpr bool value = false;
};
template <class T> struct is_const<const T> {
static constexpr bool value = true;
};
template <bool B, class T, class F> struct conditional {
using type = T;
};
template <class T, class F> struct conditional<false, T, F> {
using type = F;
};
template <class U, class T>
using CopyConst = typename conditional<is_const<remove_reference<U>>::value,
const T, T>::type;
template <class U, class T>
using OverrideRef =
typename conditional<is_lvalue_reference<U &&>::value,
typename remove_reference<T>::type &,
typename remove_reference<T>::type &&>::type;
template <class U, class T>
using ForwardLikeRetType = OverrideRef<U &&, CopyConst<U, T>>;
template <class U>
constexpr auto forward_like(auto &&t) -> ForwardLikeRetType<U, decltype(t)> {
return static_cast<ForwardLikeRetType<U, decltype(t)>>(t);
}
template <class T>
auto move_if_noexcept(T &t) ->
typename PickRef<T, noexcept(T(static_cast<T &&>(t)))>::type {
return static_cast<
typename PickRef<T, noexcept(T(static_cast<T &&>(t)))>::type>(t);
}
template <class T> T *addressof(T &arg) {
return reinterpret_cast<T *>(
&const_cast<char &>(reinterpret_cast<const volatile char &>(arg)));
}
template<typename T>
struct basic_string_view {
basic_string_view(const T *);
};
template <class T> struct span {
template<size_t _ArrayExtent>
span(const T (&__arr)[_ArrayExtent]) noexcept;
};
} // namespace foo
} // namespace std
namespace move_forward_et_al_examples {
struct S {
S &self() [[clang::lifetimebound]] { return *this; }
};
S &&Move = std::move(S{}); // expected-warning {{temporary bound to local reference 'Move' will be destroyed at the end of the full-expression}}
S MoveOk = std::move(S{});
S &&Forward = std::forward<S &&>(S{}); // expected-warning {{temporary bound to local reference 'Forward' will be destroyed at the end of the full-expression}}
S ForwardOk = std::forward<S &&>(S{});
S &&ForwardLike = std::forward_like<int&&>(S{}); // expected-warning {{temporary bound to local reference 'ForwardLike' will be destroyed at the end of the full-expression}}
S ForwardLikeOk = std::forward_like<int&&>(S{});
const S &Const = std::as_const(S{}.self()); // expected-warning {{temporary bound to local reference 'Const' will be destroyed at the end of the full-expression}}
const S ConstOk = std::as_const(S{}.self());
S &&MoveIfNoExcept = std::move_if_noexcept(S{}.self()); // expected-warning {{temporary bound to local reference 'MoveIfNoExcept' will be destroyed at the end of the full-expression}}
S MoveIfNoExceptOk = std::move_if_noexcept(S{}.self());
S *AddressOf = std::addressof(S{}.self()); // expected-warning {{temporary whose address is used as value of local variable 'AddressOf' will be destroyed at the end of the full-expression}}
S X;
S *AddressOfOk = std::addressof(X);
} // namespace move_forward_et_al_examples
namespace ctor_cases {
std::basic_string_view<char> test1() {
char abc[10];
return abc; // expected-warning {{address of stack memory associated with local variable}}
}
std::span<int> test2() {
int abc[10];
return abc; // expected-warning {{address of stack memory associated with local variable}}
}
} // namespace ctor_cases