// RUN: %clang_cc1 -fsyntax-only -std=c++11 -verify %s
// RUN: %clang_cc1 -fsyntax-only -std=c++14 -verify %s
// RUN: %clang_cc1 -fsyntax-only -std=c++20 -verify %s
// expected-no-diagnostics
// Test default template arguments for function templates.
template<typename T = int>
void f0();
template<typename T>
void f0();
void g0() {
f0(); // okay!
}
template<typename T, int N = T::value>
int &f1(T);
float &f1(...);
struct HasValue {
static const int value = 17;
};
void g1() {
float &fr = f1(15);
int &ir = f1(HasValue());
}
namespace PR16689 {
template <typename T1, typename T2> class tuple {
public:
template <typename = T2>
constexpr tuple() {}
};
template <class X, class... Y> struct a : public X {
using X::X;
};
auto x = a<tuple<int, int> >();
}
namespace PR16975 {
template <typename...> struct is {
constexpr operator bool() const { return false; }
};
template <typename... Types>
struct bar {
template <typename T,
bool = is<Types...>()>
bar(T);
};
bar<> foo{0};
struct baz : public bar<> {
using bar::bar;
};
baz data{0};
}
// An IRGen failure due to a symbol collision due to a default argument
// being instantiated twice. Credit goes to Richard Smith for this
// reduction to a -fsyntax-only failure.
namespace rdar23810407 {
// Instantiating the default argument multiple times will produce two
// different lambda types and thus instantiate this function multiple
// times, which will produce conflicting extern variable declarations.
template<typename T> int f(T t) {
extern T rdar23810407_variable;
return 0;
}
template<typename T> int g(int a = f([] {}));
void test() {
g<int>();
g<int>();
}
}
namespace PR13986 {
constexpr unsigned Dynamic = 0;
template <unsigned> class A { template <unsigned = Dynamic> void m_fn1(); };
class Test {
~Test() {}
A<1> m_target;
};
}
// Template B is instantiated during checking if defaulted A copy constructor
// is constexpr. For this we check if S<int> copy constructor is constexpr. And
// for this we check S constructor template with default argument that mentions
// template B. In turn, template instantiation triggers checking defaulted
// members exception spec. The problem is that it checks defaulted members not
// for instantiated class only, but all defaulted members so far. In this case
// we try to check exception spec for A default constructor which requires
// initializer for the field _a. But initializers are added after constexpr
// check so we reject the code because cannot find _a initializer.
namespace rdar34167492 {
template <typename T> struct B { using type = bool; };
template <typename T> struct S {
S() noexcept;
template <typename U, typename B<U>::type = true>
S(const S<U>&) noexcept;
};
class A {
A() noexcept = default;
A(const A&) noexcept = default;
S<int> _a{};
};
}
namespace use_of_earlier_param {
template<typename T> void f(T a, int = decltype(a)());
void g() { f(0); }
}
#if __cplusplus >= 201402L
namespace lambda {
// Verify that a default argument in a lambda can refer to the type of a
// previous `auto` argument without crashing.
template <class T>
void bar() {
(void) [](auto c, int x = sizeof(decltype(c))) {};
}
void foo() {
bar<int>();
}
#if __cplusplus >= 202002L
// PR46648: ensure we don't reject this by triggering default argument
// instantiation spuriously.
auto x = []<typename T>(T x = 123) {};
void y() { x(nullptr); }
template<int A> struct X {
template<int B> constexpr int f() {
auto l = []<int C>(int n = A + B + C) { return n; };
return l.template operator()<3>();
}
};
static_assert(X<100>().f<20>() == 123);
template<> template<int B> constexpr int X<200>::f() {
auto l = []<int C>(int n = 300 + B + C) { return n; };
return l.template operator()<1>();
}
static_assert(X<200>().f<20>() == 321);
template<> template<> constexpr int X<300>::f<20>() {
auto l = []<int C>(int n = 450 + C) { return n; };
return l.template operator()<6>();
}
static_assert(X<300>().f<20>() == 456);
#endif
} // namespace lambda
#endif