// RUN: %clang_analyze_cc1 -Wno-array-bounds -analyzer-output=text \
// RUN: -analyzer-checker=core,alpha.security.ArrayBoundV2,unix.Malloc,alpha.security.taint -verify %s
int TenElements[10];
void arrayUnderflow(void) {
TenElements[-3] = 5;
// expected-warning@-1 {{Out of bound access to memory preceding 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at negative byte offset -12}}
}
int underflowWithDeref(void) {
int *p = TenElements;
--p;
return *p;
// expected-warning@-1 {{Out of bound access to memory preceding 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at negative byte offset -4}}
}
int rng(void);
int getIndex(void) {
switch (rng()) {
case 1: return -152;
case 2: return -160;
case 3: return -168;
default: return -172;
}
}
void gh86959(void) {
// Previously code like this produced many almost-identical bug reports that
// only differed in the offset value. Verify that now we only see one report.
// expected-note@+1 {{Entering loop body}}
while (rng())
TenElements[getIndex()] = 10;
// expected-warning@-1 {{Out of bound access to memory preceding 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at negative byte offset -688}}
}
int scanf(const char *restrict fmt, ...);
void taintedIndex(void) {
int index;
scanf("%d", &index);
// expected-note@-1 {{Taint originated here}}
// expected-note@-2 {{Taint propagated to the 2nd argument}}
TenElements[index] = 5;
// expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted index}}
// expected-note@-2 {{Access of 'TenElements' with a tainted index that may be negative or too large}}
}
void taintedIndexNonneg(void) {
int index;
scanf("%d", &index);
// expected-note@-1 {{Taint originated here}}
// expected-note@-2 {{Taint propagated to the 2nd argument}}
// expected-note@+2 {{Assuming 'index' is >= 0}}
// expected-note@+1 {{Taking false branch}}
if (index < 0)
return;
TenElements[index] = 5;
// expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted index}}
// expected-note@-2 {{Access of 'TenElements' with a tainted index that may be too large}}
}
void taintedIndexUnsigned(void) {
unsigned index;
scanf("%u", &index);
// expected-note@-1 {{Taint originated here}}
// expected-note@-2 {{Taint propagated to the 2nd argument}}
TenElements[index] = 5;
// expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted index}}
// expected-note@-2 {{Access of 'TenElements' with a tainted index that may be too large}}
}
int *taintedIndexAfterTheEndPtr(void) {
// NOTE: Technically speaking, this testcase does not trigger any UB because
// &TenElements[10] is the after-the-end pointer which is well-defined; but
// this is a bug-prone situation and far from the idiomatic use of
// `&TenElements[size]`, so it's better to report an error. This report can
// be easily silenced by writing TenElements+index instead of
// &TenElements[index].
int index;
scanf("%d", &index);
// expected-note@-1 {{Taint originated here}}
// expected-note@-2 {{Taint propagated to the 2nd argument}}
if (index < 0 || index > 10)
return TenElements;
// expected-note@-2 {{Assuming 'index' is >= 0}}
// expected-note@-3 {{Left side of '||' is false}}
// expected-note@-4 {{Assuming 'index' is <= 10}}
// expected-note@-5 {{Taking false branch}}
return &TenElements[index];
// expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted index}}
// expected-note@-2 {{Access of 'TenElements' with a tainted index that may be too large}}
}
void taintedOffset(void) {
int index;
scanf("%d", &index);
// expected-note@-1 {{Taint originated here}}
// expected-note@-2 {{Taint propagated to the 2nd argument}}
int *p = TenElements + index;
p[0] = 5;
// expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted offset}}
// expected-note@-2 {{Access of 'TenElements' with a tainted offset that may be negative or too large}}
}
void arrayOverflow(void) {
TenElements[12] = 5;
// expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at index 12, while it holds only 10 'int' elements}}
}
void flippedOverflow(void) {
12[TenElements] = 5;
// expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at index 12, while it holds only 10 'int' elements}}
}
int *afterTheEndPtr(void) {
// This is an unusual but standard-compliant way of writing (TenElements + 10).
return &TenElements[10]; // no-warning
}
int useAfterTheEndPtr(void) {
// ... but dereferencing the after-the-end pointer is still invalid.
return *afterTheEndPtr();
// expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at index 10, while it holds only 10 'int' elements}}
}
int *afterAfterTheEndPtr(void) {
// This is UB, it's invalid to form an after-after-the-end pointer.
return &TenElements[11];
// expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at index 11, while it holds only 10 'int' elements}}
}
int *potentialAfterTheEndPtr(int idx) {
if (idx < 10) { /* ...do something... */ }
// expected-note@-1 {{Assuming 'idx' is >= 10}}
// expected-note@-2 {{Taking false branch}}
return &TenElements[idx];
// expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at an overflowing index, while it holds only 10 'int' elements}}
// NOTE: On the idx >= 10 branch the normal "optimistic" behavior would've
// been continuing with the assumption that idx == 10 and the return value is
// a legitimate after-the-end pointer. The checker deviates from this by
// reporting an error because this situation is very suspicious and far from
// the idiomatic `&TenElements[size]` expressions. If the report is FP, the
// developer can easily silence it by writing TenElements+idx instead of
// &TenElements[idx].
}
int overflowOrUnderflow(int arg) {
// expected-note@+2 {{Assuming 'arg' is < 0}}
// expected-note@+1 {{Taking false branch}}
if (arg >= 0)
return 0;
return TenElements[arg - 1];
// expected-warning@-1 {{Out of bound access to memory around 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at a negative or overflowing index, while it holds only 10 'int' elements}}
}
char TwoElements[2] = {11, 22};
char overflowOrUnderflowConcrete(int arg) {
// expected-note@#cond {{Assuming 'arg' is < 3}}
// expected-note@#cond {{Left side of '||' is false}}
// expected-note@#cond {{Assuming 'arg' is not equal to 0}}
// expected-note@#cond {{Left side of '||' is false}}
// expected-note@#cond {{Assuming 'arg' is not equal to 1}}
// expected-note@#cond {{Taking false branch}}
if (arg >= 3 || arg == 0 || arg == 1) // #cond
return 0;
return TwoElements[arg];
// expected-warning@-1 {{Out of bound access to memory around 'TwoElements'}}
// expected-note@-2 {{Access of 'TwoElements' at a negative or overflowing index, while it holds only 2 'char' elements}}
}
int scalar;
int scalarOverflow(void) {
return (&scalar)[1];
// expected-warning@-1 {{Out of bound access to memory after the end of 'scalar'}}
// expected-note@-2 {{Access of 'scalar' at index 1, while it holds only a single 'int' element}}
}
int oneElementArray[1];
int oneElementArrayOverflow(void) {
return oneElementArray[1];
// expected-warning@-1 {{Out of bound access to memory after the end of 'oneElementArray'}}
// expected-note@-2 {{Access of 'oneElementArray' at index 1, while it holds only a single 'int' element}}
}
struct vec {
int len;
double elems[64];
} v;
double arrayInStruct(void) {
return v.elems[64];
// expected-warning@-1 {{Out of bound access to memory after the end of 'v.elems'}}
// expected-note@-2 {{Access of 'v.elems' at index 64, while it holds only 64 'double' elements}}
}
double arrayInStructPtr(struct vec *pv) {
return pv->elems[64];
// expected-warning@-1 {{Out of bound access to memory after the end of the field 'elems'}}
// expected-note@-2 {{Access of the field 'elems' at index 64, while it holds only 64 'double' elements}}
}
struct item {
int a, b;
} itemArray[20] = {0};
int arrayOfStructs(void) {
return itemArray[35].a;
// expected-warning@-1 {{Out of bound access to memory after the end of 'itemArray'}}
// expected-note@-2 {{Access of 'itemArray' at index 35, while it holds only 20 'struct item' elements}}
}
int arrayOfStructsArrow(void) {
return (itemArray + 35)->b;
// expected-warning@-1 {{Out of bound access to memory after the end of 'itemArray'}}
// expected-note@-2 {{Access of 'itemArray' at index 35, while it holds only 20 'struct item' elements}}
}
short convertedArray(void) {
return ((short*)TenElements)[47];
// expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at index 47, while it holds only 20 'short' elements}}
}
struct two_bytes {
char lo, hi;
};
struct two_bytes convertedArray2(void) {
// We report this with byte offsets because the offset is not divisible by the element size.
struct two_bytes a = {0, 0};
char *p = (char*)&a;
return *((struct two_bytes*)(p + 7));
// expected-warning@-1 {{Out of bound access to memory after the end of 'a'}}
// expected-note@-2 {{Access of 'a' at byte offset 7, while it holds only 2 bytes}}
}
int intFromString(void) {
// We report this with byte offsets because the extent is not divisible by the element size.
return ((const int*)"this is a string of 33 characters")[20];
// expected-warning@-1 {{Out of bound access to memory after the end of the string literal}}
// expected-note@-2 {{Access of the string literal at byte offset 80, while it holds only 34 bytes}}
}
int intFromStringDivisible(void) {
// However, this is reported with indices/elements, because the extent
// (of the string that consists of 'a', 'b', 'c' and '\0') happens to be a
// multiple of 4 bytes (= sizeof(int)).
return ((const int*)"abc")[20];
// expected-warning@-1 {{Out of bound access to memory after the end of the string literal}}
// expected-note@-2 {{Access of the string literal at index 20, while it holds only a single 'int' element}}
}
typedef __typeof(sizeof(int)) size_t;
void *malloc(size_t size);
int *mallocRegion(void) {
int *mem = (int*)malloc(2*sizeof(int));
mem[3] = -2;
// expected-warning@-1 {{Out of bound access to memory after the end of the heap area}}
// expected-note@-2 {{Access of the heap area at index 3, while it holds only 2 'int' elements}}
return mem;
}
int *mallocRegionDeref(void) {
int *mem = (int*)malloc(2*sizeof(int));
*(mem + 3) = -2;
// expected-warning@-1 {{Out of bound access to memory after the end of the heap area}}
// expected-note@-2 {{Access of the heap area at index 3, while it holds only 2 'int' elements}}
return mem;
}
void *alloca(size_t size);
int allocaRegion(void) {
int *mem = (int*)alloca(2*sizeof(int));
mem[3] = -2;
// expected-warning@-1 {{Out of bound access to memory after the end of the memory returned by 'alloca'}}
// expected-note@-2 {{Access of the memory returned by 'alloca' at index 3, while it holds only 2 'int' elements}}
return *mem;
}
int *symbolicExtent(int arg) {
// expected-note@+2 {{Assuming 'arg' is < 5}}
// expected-note@+1 {{Taking false branch}}
if (arg >= 5)
return 0;
int *mem = (int*)malloc(arg);
// TODO: without the following reference to 'arg', the analyzer would discard
// the range information about (the symbolic value of) 'arg'. This is
// incorrect because while the variable itself is inaccessible, it becomes
// the symbolic extent of 'mem', so we still want to reason about its
// potential values.
(void)arg;
mem[8] = -2;
// expected-warning@-1 {{Out of bound access to memory after the end of the heap area}}
// expected-note@-2 {{Access of 'int' element in the heap area at index 8}}
return mem;
}
int *symbolicExtentDiscardedRangeInfo(int arg) {
// This is a copy of the case 'symbolicExtent' without the '(void)arg' hack.
// TODO: if the analyzer can detect the out-of-bounds access within this
// testcase, then remove this and the `(void)arg` hack from `symbolicExtent`.
if (arg >= 5)
return 0;
int *mem = (int*)malloc(arg);
mem[8] = -2;
return mem;
}
void symbolicIndex(int arg) {
// expected-note@+2 {{Assuming 'arg' is >= 12}}
// expected-note@+1 {{Taking true branch}}
if (arg >= 12)
TenElements[arg] = -2;
// expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
// expected-note@-2 {{Access of 'TenElements' at an overflowing index, while it holds only 10 'int' elements}}
}
int *nothingIsCertain(int x, int y) {
if (x >= 2)
return 0;
int *mem = (int*)malloc(x);
if (y >= 8)
mem[y] = -2;
// FIXME: this should produce
// {{Out of bound access to memory after the end of the heap area}}
// {{Access of 'int' element in the heap area at an overflowing index}}
// but apparently the analyzer isn't smart enough to deduce this.
// Keep constraints alive. (Without this, the overeager garbage collection of
// constraints would _also_ prevent the intended behavior in this testcase.)
(void)x;
return mem;
}