//===-- DecodedThread.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "DecodedThread.h"
#include "TraceCursorIntelPT.h"
#include <intel-pt.h>
#include <memory>
#include <optional>
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::trace_intel_pt;
using namespace llvm;
char IntelPTError::ID;
IntelPTError::IntelPTError(int libipt_error_code, lldb::addr_t address)
: m_libipt_error_code(libipt_error_code), m_address(address) {
assert(libipt_error_code < 0);
}
void IntelPTError::log(llvm::raw_ostream &OS) const {
OS << pt_errstr(pt_errcode(m_libipt_error_code));
if (m_address != LLDB_INVALID_ADDRESS && m_address > 0)
OS << formatv(": {0:x+16}", m_address);
}
bool DecodedThread::TSCRange::InRange(uint64_t item_index) const {
return item_index >= first_item_index &&
item_index < first_item_index + items_count;
}
bool DecodedThread::NanosecondsRange::InRange(uint64_t item_index) const {
return item_index >= first_item_index &&
item_index < first_item_index + items_count;
}
double DecodedThread::NanosecondsRange::GetInterpolatedTime(
uint64_t item_index, uint64_t begin_of_time_nanos,
const LinuxPerfZeroTscConversion &tsc_conversion) const {
uint64_t items_since_last_tsc = item_index - first_item_index;
auto interpolate = [&](uint64_t next_range_start_ns) {
if (next_range_start_ns == nanos) {
// If the resolution of the conversion formula is bad enough to consider
// these two timestamps as equal, then we just increase the next one by 1
// for correction
next_range_start_ns++;
}
long double item_duration =
static_cast<long double>(items_count) / (next_range_start_ns - nanos);
return (nanos - begin_of_time_nanos) + items_since_last_tsc * item_duration;
};
if (!next_range) {
// If this is the last TSC range, so we have to extrapolate. In this case,
// we assume that each instruction took one TSC, which is what an
// instruction would take if no parallelism is achieved and the frequency
// multiplier is 1.
return interpolate(tsc_conversion.ToNanos(tsc + items_count));
}
if (items_count < (next_range->tsc - tsc)) {
// If the numbers of items in this range is less than the total TSC duration
// of this range, i.e. each instruction taking longer than 1 TSC, then we
// can assume that something else happened between these TSCs (e.g. a
// context switch, change to kernel, decoding errors, etc). In this case, we
// also assume that each instruction took 1 TSC. A proper way to improve
// this would be to analize the next events in the trace looking for context
// switches or trace disablement events, but for now, as we only want an
// approximation, we keep it simple. We are also guaranteed that the time in
// nanos of the next range is different to the current one, just because of
// the definition of a NanosecondsRange.
return interpolate(
std::min(tsc_conversion.ToNanos(tsc + items_count), next_range->nanos));
}
// In this case, each item took less than 1 TSC, so some parallelism was
// achieved, which is an indication that we didn't suffered of any kind of
// interruption.
return interpolate(next_range->nanos);
}
uint64_t DecodedThread::GetItemsCount() const { return m_item_data.size(); }
lldb::addr_t
DecodedThread::GetInstructionLoadAddress(uint64_t item_index) const {
return std::get<lldb::addr_t>(m_item_data[item_index]);
}
lldb::addr_t
DecodedThread::GetSyncPointOffsetByIndex(uint64_t item_index) const {
return m_psb_offsets.find(item_index)->second;
}
ThreadSP DecodedThread::GetThread() { return m_thread_sp; }
template <typename Data>
DecodedThread::TraceItemStorage &
DecodedThread::CreateNewTraceItem(lldb::TraceItemKind kind, Data &&data) {
m_item_data.emplace_back(data);
if (m_last_tsc)
(*m_last_tsc)->second.items_count++;
if (m_last_nanoseconds)
(*m_last_nanoseconds)->second.items_count++;
return m_item_data.back();
}
void DecodedThread::NotifySyncPoint(lldb::addr_t psb_offset) {
m_psb_offsets.try_emplace(GetItemsCount(), psb_offset);
AppendEvent(lldb::eTraceEventSyncPoint);
}
void DecodedThread::NotifyTsc(TSC tsc) {
if (m_last_tsc && (*m_last_tsc)->second.tsc == tsc)
return;
if (m_last_tsc)
assert(tsc >= (*m_last_tsc)->second.tsc &&
"We can't have decreasing times");
m_last_tsc =
m_tscs.emplace(GetItemsCount(), TSCRange{tsc, 0, GetItemsCount()}).first;
if (m_tsc_conversion) {
uint64_t nanos = m_tsc_conversion->ToNanos(tsc);
if (!m_last_nanoseconds || (*m_last_nanoseconds)->second.nanos != nanos) {
m_last_nanoseconds =
m_nanoseconds
.emplace(GetItemsCount(), NanosecondsRange{nanos, tsc, nullptr, 0,
GetItemsCount()})
.first;
if (*m_last_nanoseconds != m_nanoseconds.begin()) {
auto prev_range = prev(*m_last_nanoseconds);
prev_range->second.next_range = &(*m_last_nanoseconds)->second;
}
}
}
AppendEvent(lldb::eTraceEventHWClockTick);
}
void DecodedThread::NotifyCPU(lldb::cpu_id_t cpu_id) {
if (!m_last_cpu || *m_last_cpu != cpu_id) {
m_cpus.emplace(GetItemsCount(), cpu_id);
m_last_cpu = cpu_id;
AppendEvent(lldb::eTraceEventCPUChanged);
}
}
lldb::cpu_id_t DecodedThread::GetCPUByIndex(uint64_t item_index) const {
auto it = m_cpus.upper_bound(item_index);
return it == m_cpus.begin() ? LLDB_INVALID_CPU_ID : prev(it)->second;
}
std::optional<DecodedThread::TSCRange>
DecodedThread::GetTSCRangeByIndex(uint64_t item_index) const {
auto next_it = m_tscs.upper_bound(item_index);
if (next_it == m_tscs.begin())
return std::nullopt;
return prev(next_it)->second;
}
std::optional<DecodedThread::NanosecondsRange>
DecodedThread::GetNanosecondsRangeByIndex(uint64_t item_index) {
auto next_it = m_nanoseconds.upper_bound(item_index);
if (next_it == m_nanoseconds.begin())
return std::nullopt;
return prev(next_it)->second;
}
uint64_t DecodedThread::GetTotalInstructionCount() const {
return m_insn_count;
}
void DecodedThread::AppendEvent(lldb::TraceEvent event) {
CreateNewTraceItem(lldb::eTraceItemKindEvent, event);
m_events_stats.RecordEvent(event);
}
void DecodedThread::AppendInstruction(const pt_insn &insn) {
CreateNewTraceItem(lldb::eTraceItemKindInstruction, insn.ip);
m_insn_count++;
}
void DecodedThread::AppendError(const IntelPTError &error) {
CreateNewTraceItem(lldb::eTraceItemKindError, error.message());
m_error_stats.RecordError(/*fatal=*/false);
}
void DecodedThread::AppendCustomError(StringRef err, bool fatal) {
CreateNewTraceItem(lldb::eTraceItemKindError, err.str());
m_error_stats.RecordError(fatal);
}
lldb::TraceEvent DecodedThread::GetEventByIndex(int item_index) const {
return std::get<lldb::TraceEvent>(m_item_data[item_index]);
}
const DecodedThread::EventsStats &DecodedThread::GetEventsStats() const {
return m_events_stats;
}
void DecodedThread::EventsStats::RecordEvent(lldb::TraceEvent event) {
events_counts[event]++;
total_count++;
}
uint64_t DecodedThread::ErrorStats::GetTotalCount() const {
uint64_t total = 0;
for (const auto &[kind, count] : libipt_errors)
total += count;
return total + other_errors + fatal_errors;
}
void DecodedThread::ErrorStats::RecordError(bool fatal) {
if (fatal)
fatal_errors++;
else
other_errors++;
}
void DecodedThread::ErrorStats::RecordError(int libipt_error_code) {
libipt_errors[pt_errstr(pt_errcode(libipt_error_code))]++;
}
const DecodedThread::ErrorStats &DecodedThread::GetErrorStats() const {
return m_error_stats;
}
lldb::TraceItemKind
DecodedThread::GetItemKindByIndex(uint64_t item_index) const {
return std::visit(
llvm::makeVisitor(
[](const std::string &) { return lldb::eTraceItemKindError; },
[](lldb::TraceEvent) { return lldb::eTraceItemKindEvent; },
[](lldb::addr_t) { return lldb::eTraceItemKindInstruction; }),
m_item_data[item_index]);
}
llvm::StringRef DecodedThread::GetErrorByIndex(uint64_t item_index) const {
if (item_index >= m_item_data.size())
return llvm::StringRef();
return std::get<std::string>(m_item_data[item_index]);
}
DecodedThread::DecodedThread(
ThreadSP thread_sp,
const std::optional<LinuxPerfZeroTscConversion> &tsc_conversion)
: m_thread_sp(thread_sp), m_tsc_conversion(tsc_conversion) {}
size_t DecodedThread::CalculateApproximateMemoryUsage() const {
return sizeof(TraceItemStorage) * m_item_data.size() +
(sizeof(uint64_t) + sizeof(TSC)) * m_tscs.size() +
(sizeof(uint64_t) + sizeof(uint64_t)) * m_nanoseconds.size() +
(sizeof(uint64_t) + sizeof(lldb::cpu_id_t)) * m_cpus.size();
}