//===-- DecodedThread.h -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_SOURCE_PLUGINS_TRACE_INTEL_PT_DECODEDTHREAD_H
#define LLDB_SOURCE_PLUGINS_TRACE_INTEL_PT_DECODEDTHREAD_H
#include "intel-pt.h"
#include "lldb/Target/Trace.h"
#include "lldb/Utility/TraceIntelPTGDBRemotePackets.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include <deque>
#include <optional>
#include <utility>
#include <variant>
namespace lldb_private {
namespace trace_intel_pt {
/// Class for representing a libipt decoding error.
class IntelPTError : public llvm::ErrorInfo<IntelPTError> {
public:
static char ID;
/// \param[in] libipt_error_code
/// Negative number returned by libipt when decoding the trace and
/// signaling errors.
///
/// \param[in] address
/// Optional instruction address. When decoding an individual instruction,
/// its address might be available in the \a pt_insn object, and should be
/// passed to this constructor. Other errors don't have an associated
/// address.
IntelPTError(int libipt_error_code,
lldb::addr_t address = LLDB_INVALID_ADDRESS);
std::error_code convertToErrorCode() const override {
return llvm::errc::not_supported;
}
int GetLibiptErrorCode() const { return m_libipt_error_code; }
void log(llvm::raw_ostream &OS) const override;
private:
int m_libipt_error_code;
lldb::addr_t m_address;
};
/// \class DecodedThread
/// Class holding the instructions and function call hierarchy obtained from
/// decoding a trace, as well as a position cursor used when reverse debugging
/// the trace.
///
/// Each decoded thread contains a cursor to the current position the user is
/// stopped at. See \a Trace::GetCursorPosition for more information.
class DecodedThread : public std::enable_shared_from_this<DecodedThread> {
public:
using TSC = uint64_t;
/// A structure that represents a maximal range of trace items associated to
/// the same TSC value.
struct TSCRange {
TSC tsc;
/// Number of trace items in this range.
uint64_t items_count;
/// Index of the first trace item in this range.
uint64_t first_item_index;
/// \return
/// \b true if and only if the given \p item_index is covered by this
/// range.
bool InRange(uint64_t item_index) const;
};
/// A structure that represents a maximal range of trace items associated to
/// the same non-interpolated timestamps in nanoseconds.
struct NanosecondsRange {
/// The nanoseconds value for this range.
uint64_t nanos;
/// The corresponding TSC value for this range.
TSC tsc;
/// A nullable pointer to the next range.
NanosecondsRange *next_range;
/// Number of trace items in this range.
uint64_t items_count;
/// Index of the first trace item in this range.
uint64_t first_item_index;
/// Calculate an interpolated timestamp in nanoseconds for the given item
/// index. It's guaranteed that two different item indices will produce
/// different interpolated values.
///
/// \param[in] item_index
/// The index of the item whose timestamp will be estimated. It has to be
/// part of this range.
///
/// \param[in] beginning_of_time_nanos
/// The timestamp at which tracing started.
///
/// \param[in] tsc_conversion
/// The tsc -> nanos conversion utility
///
/// \return
/// An interpolated timestamp value for the given trace item.
double
GetInterpolatedTime(uint64_t item_index, uint64_t beginning_of_time_nanos,
const LinuxPerfZeroTscConversion &tsc_conversion) const;
/// \return
/// \b true if and only if the given \p item_index is covered by this
/// range.
bool InRange(uint64_t item_index) const;
};
// Struct holding counts for events
struct EventsStats {
/// A count for each individual event kind. We use an unordered map instead
/// of a DenseMap because DenseMap can't understand enums.
///
/// Note: We can't use DenseMap because lldb::TraceEvent is not
/// automatically handled correctly by DenseMap. We'd need to implement a
/// custom DenseMapInfo struct for TraceEvent and that's a bit too much for
/// such a simple structure.
std::unordered_map<lldb::TraceEvent, uint64_t> events_counts;
uint64_t total_count = 0;
void RecordEvent(lldb::TraceEvent event);
};
// Struct holding counts for errors
struct ErrorStats {
/// The following counters are mutually exclusive
/// \{
uint64_t other_errors = 0;
uint64_t fatal_errors = 0;
// libipt error -> count
llvm::DenseMap<const char *, uint64_t> libipt_errors;
/// \}
uint64_t GetTotalCount() const;
void RecordError(int libipt_error_code);
void RecordError(bool fatal);
};
DecodedThread(
lldb::ThreadSP thread_sp,
const std::optional<LinuxPerfZeroTscConversion> &tsc_conversion);
/// Get the total number of instruction, errors and events from the decoded
/// trace.
uint64_t GetItemsCount() const;
/// \return
/// The error associated with a given trace item.
llvm::StringRef GetErrorByIndex(uint64_t item_index) const;
/// \return
/// The trace item kind given an item index.
lldb::TraceItemKind GetItemKindByIndex(uint64_t item_index) const;
/// \return
/// The underlying event type for the given trace item index.
lldb::TraceEvent GetEventByIndex(int item_index) const;
/// Get the most recent CPU id before or at the given trace item index.
///
/// \param[in] item_index
/// The trace item index to compare with.
///
/// \return
/// The requested cpu id, or \a LLDB_INVALID_CPU_ID if not available.
lldb::cpu_id_t GetCPUByIndex(uint64_t item_index) const;
/// \return
/// The PSB offset associated with the given item index.
lldb::addr_t GetSyncPointOffsetByIndex(uint64_t item_index) const;
/// Get a maximal range of trace items that include the given \p item_index
/// that have the same TSC value.
///
/// \param[in] item_index
/// The trace item index to compare with.
///
/// \return
/// The requested TSC range, or \a std::nullopt if not available.
std::optional<DecodedThread::TSCRange>
GetTSCRangeByIndex(uint64_t item_index) const;
/// Get a maximal range of trace items that include the given \p item_index
/// that have the same nanoseconds timestamp without interpolation.
///
/// \param[in] item_index
/// The trace item index to compare with.
///
/// \return
/// The requested nanoseconds range, or \a std::nullopt if not available.
std::optional<DecodedThread::NanosecondsRange>
GetNanosecondsRangeByIndex(uint64_t item_index);
/// \return
/// The load address of the instruction at the given index.
lldb::addr_t GetInstructionLoadAddress(uint64_t item_index) const;
/// \return
/// The number of instructions in this trace (not trace items).
uint64_t GetTotalInstructionCount() const;
/// Return an object with statistics of the trace events that happened.
///
/// \return
/// The stats object of all the events.
const EventsStats &GetEventsStats() const;
/// Return an object with statistics of the trace errors that happened.
///
/// \return
/// The stats object of all the events.
const ErrorStats &GetErrorStats() const;
/// The approximate size in bytes used by this instance,
/// including all the already decoded instructions.
size_t CalculateApproximateMemoryUsage() const;
lldb::ThreadSP GetThread();
/// Notify this object that a new tsc has been seen.
/// If this a new TSC, an event will be created.
void NotifyTsc(TSC tsc);
/// Notify this object that a CPU has been seen.
/// If this a new CPU, an event will be created.
void NotifyCPU(lldb::cpu_id_t cpu_id);
/// Notify this object that a new PSB has been seen.
void NotifySyncPoint(lldb::addr_t psb_offset);
/// Append a decoding error.
void AppendError(const IntelPTError &error);
/// Append a custom decoding.
///
/// \param[in] error
/// The error message.
///
/// \param[in] fatal
/// If \b true, then the whole decoded thread should be discarded because a
/// fatal anomaly has been found.
void AppendCustomError(llvm::StringRef error, bool fatal = false);
/// Append an event.
void AppendEvent(lldb::TraceEvent);
/// Append an instruction.
void AppendInstruction(const pt_insn &insn);
private:
/// When adding new members to this class, make sure
/// to update \a CalculateApproximateMemoryUsage() accordingly.
lldb::ThreadSP m_thread_sp;
using TraceItemStorage =
std::variant<std::string, lldb::TraceEvent, lldb::addr_t>;
/// Create a new trace item.
///
/// \return
/// The index of the new item.
template <typename Data>
DecodedThread::TraceItemStorage &CreateNewTraceItem(lldb::TraceItemKind kind,
Data &&data);
/// Most of the trace data is stored here.
std::deque<TraceItemStorage> m_item_data;
/// This map contains the TSCs of the decoded trace items. It maps
/// `item index -> TSC`, where `item index` is the first index
/// at which the mapped TSC first appears. We use this representation because
/// TSCs are sporadic and we can think of them as ranges.
std::map<uint64_t, TSCRange> m_tscs;
/// This is the chronologically last TSC that has been added.
std::optional<std::map<uint64_t, TSCRange>::iterator> m_last_tsc =
std::nullopt;
/// This map contains the non-interpolated nanoseconds timestamps of the
/// decoded trace items. It maps `item index -> nanoseconds`, where `item
/// index` is the first index at which the mapped nanoseconds first appears.
/// We use this representation because timestamps are sporadic and we think of
/// them as ranges.
std::map<uint64_t, NanosecondsRange> m_nanoseconds;
std::optional<std::map<uint64_t, NanosecondsRange>::iterator>
m_last_nanoseconds = std::nullopt;
// The cpu information is stored as a map. It maps `item index -> CPU`.
// A CPU is associated with the next instructions that follow until the next
// cpu is seen.
std::map<uint64_t, lldb::cpu_id_t> m_cpus;
/// This is the chronologically last CPU ID.
std::optional<uint64_t> m_last_cpu;
// The PSB offsets are stored as a map. It maps `item index -> psb offset`.
llvm::DenseMap<uint64_t, lldb::addr_t> m_psb_offsets;
/// TSC -> nanos conversion utility.
std::optional<LinuxPerfZeroTscConversion> m_tsc_conversion;
/// Statistics of all tracing errors.
ErrorStats m_error_stats;
/// Statistics of all tracing events.
EventsStats m_events_stats;
/// Total amount of time spent decoding.
std::chrono::milliseconds m_total_decoding_time{0};
/// Total number of instructions in the trace.
uint64_t m_insn_count = 0;
};
using DecodedThreadSP = std::shared_ptr<DecodedThread>;
} // namespace trace_intel_pt
} // namespace lldb_private
#endif // LLDB_SOURCE_PLUGINS_TRACE_INTEL_PT_DECODEDTHREAD_H