# Copyright 2016-2017 Tobias Grosser
#
# Use of this software is governed by the MIT license
#
# Written by Tobias Grosser, Weststrasse 47, CH-8003, Zurich
import sys
import isl
# Test that isl objects can be constructed.
#
# This tests:
# - construction from a string
# - construction from an integer
# - static constructor without a parameter
# - conversion construction
# - construction of empty union set
#
# The tests to construct from integers and strings cover functionality that
# is also tested in the parameter type tests, but here the presence of
# multiple overloaded constructors and overload resolution is tested.
#
def test_constructors():
zero1 = isl.val("0")
assert zero1.is_zero()
zero2 = isl.val(0)
assert zero2.is_zero()
zero3 = isl.val.zero()
assert zero3.is_zero()
bs = isl.basic_set("{ [1] }")
result = isl.set("{ [1] }")
s = isl.set(bs)
assert s.is_equal(result)
us = isl.union_set("{ A[1]; B[2, 3] }")
empty = isl.union_set.empty()
assert us.is_equal(us.union(empty))
# Test integer function parameters for a particular integer value.
#
def test_int(i):
val_int = isl.val(i)
val_str = isl.val(str(i))
assert val_int.eq(val_str)
# Test integer function parameters.
#
# Verify that extreme values and zero work.
#
def test_parameters_int():
test_int(sys.maxsize)
test_int(-sys.maxsize - 1)
test_int(0)
# Test isl objects parameters.
#
# Verify that isl objects can be passed as lvalue and rvalue parameters.
# Also verify that isl object parameters are automatically type converted if
# there is an inheritance relation. Finally, test function calls without
# any additional parameters, apart from the isl object on which
# the method is called.
#
def test_parameters_obj():
a = isl.set("{ [0] }")
b = isl.set("{ [1] }")
c = isl.set("{ [2] }")
expected = isl.set("{ [i] : 0 <= i <= 2 }")
tmp = a.union(b)
res_lvalue_param = tmp.union(c)
assert res_lvalue_param.is_equal(expected)
res_rvalue_param = a.union(b).union(c)
assert res_rvalue_param.is_equal(expected)
a2 = isl.basic_set("{ [0] }")
assert a.is_equal(a2)
two = isl.val(2)
half = isl.val("1/2")
res_only_this_param = two.inv()
assert res_only_this_param.eq(half)
# Test different kinds of parameters to be passed to functions.
#
# This includes integer and isl object parameters.
#
def test_parameters():
test_parameters_int()
test_parameters_obj()
# Test that isl objects are returned correctly.
#
# This only tests that after combining two objects, the result is successfully
# returned.
#
def test_return_obj():
one = isl.val("1")
two = isl.val("2")
three = isl.val("3")
res = one.add(two)
assert res.eq(three)
# Test that integer values are returned correctly.
#
def test_return_int():
one = isl.val("1")
neg_one = isl.val("-1")
zero = isl.val("0")
assert one.sgn() > 0
assert neg_one.sgn() < 0
assert zero.sgn() == 0
# Test that isl_bool values are returned correctly.
#
# In particular, check the conversion to bool in case of true and false.
#
def test_return_bool():
empty = isl.set("{ : false }")
univ = isl.set("{ : }")
b_true = empty.is_empty()
b_false = univ.is_empty()
assert b_true
assert not b_false
# Test that strings are returned correctly.
# Do so by calling overloaded isl.ast_build.from_expr methods.
#
def test_return_string():
context = isl.set("[n] -> { : }")
build = isl.ast_build.from_context(context)
pw_aff = isl.pw_aff("[n] -> { [n] }")
set = isl.set("[n] -> { : n >= 0 }")
expr = build.expr_from(pw_aff)
expected_string = "n"
assert expected_string == expr.to_C_str()
expr = build.expr_from(set)
expected_string = "n >= 0"
assert expected_string == expr.to_C_str()
# Test that return values are handled correctly.
#
# Test that isl objects, integers, boolean values, and strings are
# returned correctly.
#
def test_return():
test_return_obj()
test_return_int()
test_return_bool()
test_return_string()
# A class that is used to test isl.id.user.
#
class S:
def __init__(self):
self.value = 42
# Test isl.id.user.
#
# In particular, check that the object attached to an identifier
# can be retrieved again.
#
def test_user():
id = isl.id("test", 5)
id2 = isl.id("test2")
id3 = isl.id("S", S())
assert id.user() == 5, f"unexpected user object {id.user()}"
assert id2.user() is None, f"unexpected user object {id2.user()}"
s = id3.user()
assert isinstance(s, S), f"unexpected user object {s}"
assert s.value == 42, f"unexpected user object {s}"
# Test that foreach functions are modeled correctly.
#
# Verify that closures are correctly called as callback of a 'foreach'
# function and that variables captured by the closure work correctly. Also
# check that the foreach function handles exceptions thrown from
# the closure and that it propagates the exception.
#
def test_foreach():
s = isl.set("{ [0]; [1]; [2] }")
list = []
def add(bs):
list.append(bs)
s.foreach_basic_set(add)
assert len(list) == 3
assert list[0].is_subset(s)
assert list[1].is_subset(s)
assert list[2].is_subset(s)
assert not list[0].is_equal(list[1])
assert not list[0].is_equal(list[2])
assert not list[1].is_equal(list[2])
def fail(bs):
raise Exception("fail")
caught = False
try:
s.foreach_basic_set(fail)
except:
caught = True
assert caught
# Test the functionality of "foreach_scc" functions.
#
# In particular, test it on a list of elements that can be completely sorted
# but where two of the elements ("a" and "b") are incomparable.
#
def test_foreach_scc():
list = isl.id_list(3)
sorted = [isl.id_list(3)]
data = {
"a": isl.map("{ [0] -> [1] }"),
"b": isl.map("{ [1] -> [0] }"),
"c": isl.map("{ [i = 0:1] -> [i] }"),
}
for k, v in data.items():
list = list.add(k)
id = data["a"].space().domain().identity_multi_pw_aff_on_domain()
def follows(a, b):
map = data[b.name()].apply_domain(data[a.name()])
return not map.lex_ge_at(id).is_empty()
def add_single(scc):
assert scc.size() == 1
sorted[0] = sorted[0].concat(scc)
list.foreach_scc(follows, add_single)
assert sorted[0].size() == 3
assert sorted[0].at(0).name() == "b"
assert sorted[0].at(1).name() == "c"
assert sorted[0].at(2).name() == "a"
# Test the functionality of "every" functions.
#
# In particular, test the generic functionality and
# test that exceptions are properly propagated.
#
def test_every():
us = isl.union_set("{ A[i]; B[j] }")
def is_empty(s):
return s.is_empty()
assert not us.every_set(is_empty)
def is_non_empty(s):
return not s.is_empty()
assert us.every_set(is_non_empty)
def in_A(s):
return s.is_subset(isl.set("{ A[x] }"))
assert not us.every_set(in_A)
def not_in_A(s):
return not s.is_subset(isl.set("{ A[x] }"))
assert not us.every_set(not_in_A)
def fail(s):
raise Exception("fail")
caught = False
try:
us.ever_set(fail)
except:
caught = True
assert caught
# Check basic construction of spaces.
#
def test_space():
unit = isl.space.unit()
set_space = unit.add_named_tuple("A", 3)
map_space = set_space.add_named_tuple("B", 2)
set = isl.set.universe(set_space)
map = isl.map.universe(map_space)
assert set.is_equal(isl.set("{ A[*,*,*] }"))
assert map.is_equal(isl.map("{ A[*,*,*] -> B[*,*] }"))
# Construct a simple schedule tree with an outer sequence node and
# a single-dimensional band node in each branch, with one of them
# marked coincident.
#
def construct_schedule_tree():
A = isl.union_set("{ A[i] : 0 <= i < 10 }")
B = isl.union_set("{ B[i] : 0 <= i < 20 }")
node = isl.schedule_node.from_domain(A.union(B))
node = node.child(0)
filters = isl.union_set_list(A).add(B)
node = node.insert_sequence(filters)
f_A = isl.multi_union_pw_aff("[ { A[i] -> [i] } ]")
node = node.child(0)
node = node.child(0)
node = node.insert_partial_schedule(f_A)
node = node.member_set_coincident(0, True)
node = node.ancestor(2)
f_B = isl.multi_union_pw_aff("[ { B[i] -> [i] } ]")
node = node.child(1)
node = node.child(0)
node = node.insert_partial_schedule(f_B)
node = node.ancestor(2)
return node.schedule()
# Test basic schedule tree functionality.
#
# In particular, create a simple schedule tree and
# - check that the root node is a domain node
# - test map_descendant_bottom_up
# - test foreach_descendant_top_down
# - test every_descendant
#
def test_schedule_tree():
schedule = construct_schedule_tree()
root = schedule.root()
assert type(root) == isl.schedule_node_domain
count = [0]
def inc_count(node):
count[0] += 1
return node
root = root.map_descendant_bottom_up(inc_count)
assert count[0] == 8
def fail_map(node):
raise Exception("fail")
return node
caught = False
try:
root.map_descendant_bottom_up(fail_map)
except:
caught = True
assert caught
count = [0]
def inc_count(node):
count[0] += 1
return True
root.foreach_descendant_top_down(inc_count)
assert count[0] == 8
count = [0]
def inc_count(node):
count[0] += 1
return False
root.foreach_descendant_top_down(inc_count)
assert count[0] == 1
def is_not_domain(node):
return type(node) != isl.schedule_node_domain
assert root.child(0).every_descendant(is_not_domain)
assert not root.every_descendant(is_not_domain)
def fail(node):
raise Exception("fail")
caught = False
try:
root.every_descendant(fail)
except:
caught = True
assert caught
domain = root.domain()
filters = [isl.union_set("{}")]
def collect_filters(node):
if type(node) == isl.schedule_node_filter:
filters[0] = filters[0].union(node.filter())
return True
root.every_descendant(collect_filters)
assert domain.is_equal(filters[0])
# Test marking band members for unrolling.
# "schedule" is the schedule created by construct_schedule_tree.
# It schedules two statements, with 10 and 20 instances, respectively.
# Unrolling all band members therefore results in 30 at-domain calls
# by the AST generator.
#
def test_ast_build_unroll(schedule):
root = schedule.root()
def mark_unroll(node):
if type(node) == isl.schedule_node_band:
node = node.member_set_ast_loop_unroll(0)
return node
root = root.map_descendant_bottom_up(mark_unroll)
schedule = root.schedule()
count_ast = [0]
def inc_count_ast(node, build):
count_ast[0] += 1
return node
build = isl.ast_build()
build = build.set_at_each_domain(inc_count_ast)
ast = build.node_from(schedule)
assert count_ast[0] == 30
# Test basic AST generation from a schedule tree.
#
# In particular, create a simple schedule tree and
# - generate an AST from the schedule tree
# - test at_each_domain
# - test unrolling
#
def test_ast_build():
schedule = construct_schedule_tree()
count_ast = [0]
def inc_count_ast(node, build):
count_ast[0] += 1
return node
build = isl.ast_build()
build_copy = build.set_at_each_domain(inc_count_ast)
ast = build.node_from(schedule)
assert count_ast[0] == 0
count_ast[0] = 0
ast = build_copy.node_from(schedule)
assert count_ast[0] == 2
build = build_copy
count_ast[0] = 0
ast = build.node_from(schedule)
assert count_ast[0] == 2
do_fail = True
count_ast_fail = [0]
def fail_inc_count_ast(node, build):
count_ast_fail[0] += 1
if do_fail:
raise Exception("fail")
return node
build = isl.ast_build()
build = build.set_at_each_domain(fail_inc_count_ast)
caught = False
try:
ast = build.node_from(schedule)
except:
caught = True
assert caught
assert count_ast_fail[0] > 0
build_copy = build
build_copy = build_copy.set_at_each_domain(inc_count_ast)
count_ast[0] = 0
ast = build_copy.node_from(schedule)
assert count_ast[0] == 2
count_ast_fail[0] = 0
do_fail = False
ast = build.node_from(schedule)
assert count_ast_fail[0] == 2
test_ast_build_unroll(schedule)
# Test basic AST expression generation from an affine expression.
#
def test_ast_build_expr():
pa = isl.pw_aff("[n] -> { [n + 1] }")
build = isl.ast_build.from_context(pa.domain())
op = build.expr_from(pa)
assert type(op) == isl.ast_expr_op_add
assert op.n_arg() == 2
# Test the isl Python interface
#
# This includes:
# - Object construction
# - Different parameter types
# - Different return types
# - isl.id.user
# - Foreach functions
# - Foreach SCC function
# - Every functions
# - Spaces
# - Schedule trees
# - AST generation
# - AST expression generation
#
test_constructors()
test_parameters()
test_return()
test_user()
test_foreach()
test_foreach_scc()
test_every()
test_space()
test_schedule_tree()
test_ast_build()
test_ast_build_expr()