llvm/polly/lib/External/isl/isl_test_python.py

# Copyright 2016-2017 Tobias Grosser
#
# Use of this software is governed by the MIT license
#
# Written by Tobias Grosser, Weststrasse 47, CH-8003, Zurich

import sys
import isl

# Test that isl objects can be constructed.
#
# This tests:
#  - construction from a string
#  - construction from an integer
#  - static constructor without a parameter
#  - conversion construction
#  - construction of empty union set
#
#  The tests to construct from integers and strings cover functionality that
#  is also tested in the parameter type tests, but here the presence of
#  multiple overloaded constructors and overload resolution is tested.
#
def test_constructors():
    zero1 = isl.val("0")
    assert zero1.is_zero()

    zero2 = isl.val(0)
    assert zero2.is_zero()

    zero3 = isl.val.zero()
    assert zero3.is_zero()

    bs = isl.basic_set("{ [1] }")
    result = isl.set("{ [1] }")
    s = isl.set(bs)
    assert s.is_equal(result)

    us = isl.union_set("{ A[1]; B[2, 3] }")
    empty = isl.union_set.empty()
    assert us.is_equal(us.union(empty))


# Test integer function parameters for a particular integer value.
#
def test_int(i):
    val_int = isl.val(i)
    val_str = isl.val(str(i))
    assert val_int.eq(val_str)


# Test integer function parameters.
#
# Verify that extreme values and zero work.
#
def test_parameters_int():
    test_int(sys.maxsize)
    test_int(-sys.maxsize - 1)
    test_int(0)


# Test isl objects parameters.
#
# Verify that isl objects can be passed as lvalue and rvalue parameters.
# Also verify that isl object parameters are automatically type converted if
# there is an inheritance relation. Finally, test function calls without
# any additional parameters, apart from the isl object on which
# the method is called.
#
def test_parameters_obj():
    a = isl.set("{ [0] }")
    b = isl.set("{ [1] }")
    c = isl.set("{ [2] }")
    expected = isl.set("{ [i] : 0 <= i <= 2 }")

    tmp = a.union(b)
    res_lvalue_param = tmp.union(c)
    assert res_lvalue_param.is_equal(expected)

    res_rvalue_param = a.union(b).union(c)
    assert res_rvalue_param.is_equal(expected)

    a2 = isl.basic_set("{ [0] }")
    assert a.is_equal(a2)

    two = isl.val(2)
    half = isl.val("1/2")
    res_only_this_param = two.inv()
    assert res_only_this_param.eq(half)


# Test different kinds of parameters to be passed to functions.
#
# This includes integer and isl object parameters.
#
def test_parameters():
    test_parameters_int()
    test_parameters_obj()


# Test that isl objects are returned correctly.
#
# This only tests that after combining two objects, the result is successfully
# returned.
#
def test_return_obj():
    one = isl.val("1")
    two = isl.val("2")
    three = isl.val("3")

    res = one.add(two)

    assert res.eq(three)


# Test that integer values are returned correctly.
#
def test_return_int():
    one = isl.val("1")
    neg_one = isl.val("-1")
    zero = isl.val("0")

    assert one.sgn() > 0
    assert neg_one.sgn() < 0
    assert zero.sgn() == 0


# Test that isl_bool values are returned correctly.
#
# In particular, check the conversion to bool in case of true and false.
#
def test_return_bool():
    empty = isl.set("{ : false }")
    univ = isl.set("{ : }")

    b_true = empty.is_empty()
    b_false = univ.is_empty()

    assert b_true
    assert not b_false


# Test that strings are returned correctly.
# Do so by calling overloaded isl.ast_build.from_expr methods.
#
def test_return_string():
    context = isl.set("[n] -> { : }")
    build = isl.ast_build.from_context(context)
    pw_aff = isl.pw_aff("[n] -> { [n] }")
    set = isl.set("[n] -> { : n >= 0 }")

    expr = build.expr_from(pw_aff)
    expected_string = "n"
    assert expected_string == expr.to_C_str()

    expr = build.expr_from(set)
    expected_string = "n >= 0"
    assert expected_string == expr.to_C_str()


# Test that return values are handled correctly.
#
# Test that isl objects, integers, boolean values, and strings are
# returned correctly.
#
def test_return():
    test_return_obj()
    test_return_int()
    test_return_bool()
    test_return_string()


# A class that is used to test isl.id.user.
#
class S:
    def __init__(self):
        self.value = 42


# Test isl.id.user.
#
# In particular, check that the object attached to an identifier
# can be retrieved again.
#
def test_user():
    id = isl.id("test", 5)
    id2 = isl.id("test2")
    id3 = isl.id("S", S())
    assert id.user() == 5, f"unexpected user object {id.user()}"
    assert id2.user() is None, f"unexpected user object {id2.user()}"
    s = id3.user()
    assert isinstance(s, S), f"unexpected user object {s}"
    assert s.value == 42, f"unexpected user object {s}"


# Test that foreach functions are modeled correctly.
#
# Verify that closures are correctly called as callback of a 'foreach'
# function and that variables captured by the closure work correctly. Also
# check that the foreach function handles exceptions thrown from
# the closure and that it propagates the exception.
#
def test_foreach():
    s = isl.set("{ [0]; [1]; [2] }")

    list = []

    def add(bs):
        list.append(bs)

    s.foreach_basic_set(add)

    assert len(list) == 3
    assert list[0].is_subset(s)
    assert list[1].is_subset(s)
    assert list[2].is_subset(s)
    assert not list[0].is_equal(list[1])
    assert not list[0].is_equal(list[2])
    assert not list[1].is_equal(list[2])

    def fail(bs):
        raise Exception("fail")

    caught = False
    try:
        s.foreach_basic_set(fail)
    except:
        caught = True
    assert caught


# Test the functionality of "foreach_scc" functions.
#
# In particular, test it on a list of elements that can be completely sorted
# but where two of the elements ("a" and "b") are incomparable.
#
def test_foreach_scc():
    list = isl.id_list(3)
    sorted = [isl.id_list(3)]
    data = {
        "a": isl.map("{ [0] -> [1] }"),
        "b": isl.map("{ [1] -> [0] }"),
        "c": isl.map("{ [i = 0:1] -> [i] }"),
    }
    for k, v in data.items():
        list = list.add(k)
    id = data["a"].space().domain().identity_multi_pw_aff_on_domain()

    def follows(a, b):
        map = data[b.name()].apply_domain(data[a.name()])
        return not map.lex_ge_at(id).is_empty()

    def add_single(scc):
        assert scc.size() == 1
        sorted[0] = sorted[0].concat(scc)

    list.foreach_scc(follows, add_single)
    assert sorted[0].size() == 3
    assert sorted[0].at(0).name() == "b"
    assert sorted[0].at(1).name() == "c"
    assert sorted[0].at(2).name() == "a"


# Test the functionality of "every" functions.
#
# In particular, test the generic functionality and
# test that exceptions are properly propagated.
#
def test_every():
    us = isl.union_set("{ A[i]; B[j] }")

    def is_empty(s):
        return s.is_empty()

    assert not us.every_set(is_empty)

    def is_non_empty(s):
        return not s.is_empty()

    assert us.every_set(is_non_empty)

    def in_A(s):
        return s.is_subset(isl.set("{ A[x] }"))

    assert not us.every_set(in_A)

    def not_in_A(s):
        return not s.is_subset(isl.set("{ A[x] }"))

    assert not us.every_set(not_in_A)

    def fail(s):
        raise Exception("fail")

    caught = False
    try:
        us.ever_set(fail)
    except:
        caught = True
    assert caught


# Check basic construction of spaces.
#
def test_space():
    unit = isl.space.unit()
    set_space = unit.add_named_tuple("A", 3)
    map_space = set_space.add_named_tuple("B", 2)

    set = isl.set.universe(set_space)
    map = isl.map.universe(map_space)
    assert set.is_equal(isl.set("{ A[*,*,*] }"))
    assert map.is_equal(isl.map("{ A[*,*,*] -> B[*,*] }"))


# Construct a simple schedule tree with an outer sequence node and
# a single-dimensional band node in each branch, with one of them
# marked coincident.
#
def construct_schedule_tree():
    A = isl.union_set("{ A[i] : 0 <= i < 10 }")
    B = isl.union_set("{ B[i] : 0 <= i < 20 }")

    node = isl.schedule_node.from_domain(A.union(B))
    node = node.child(0)

    filters = isl.union_set_list(A).add(B)
    node = node.insert_sequence(filters)

    f_A = isl.multi_union_pw_aff("[ { A[i] -> [i] } ]")
    node = node.child(0)
    node = node.child(0)
    node = node.insert_partial_schedule(f_A)
    node = node.member_set_coincident(0, True)
    node = node.ancestor(2)

    f_B = isl.multi_union_pw_aff("[ { B[i] -> [i] } ]")
    node = node.child(1)
    node = node.child(0)
    node = node.insert_partial_schedule(f_B)
    node = node.ancestor(2)

    return node.schedule()


# Test basic schedule tree functionality.
#
# In particular, create a simple schedule tree and
# - check that the root node is a domain node
# - test map_descendant_bottom_up
# - test foreach_descendant_top_down
# - test every_descendant
#
def test_schedule_tree():
    schedule = construct_schedule_tree()
    root = schedule.root()

    assert type(root) == isl.schedule_node_domain

    count = [0]

    def inc_count(node):
        count[0] += 1
        return node

    root = root.map_descendant_bottom_up(inc_count)
    assert count[0] == 8

    def fail_map(node):
        raise Exception("fail")
        return node

    caught = False
    try:
        root.map_descendant_bottom_up(fail_map)
    except:
        caught = True
    assert caught

    count = [0]

    def inc_count(node):
        count[0] += 1
        return True

    root.foreach_descendant_top_down(inc_count)
    assert count[0] == 8

    count = [0]

    def inc_count(node):
        count[0] += 1
        return False

    root.foreach_descendant_top_down(inc_count)
    assert count[0] == 1

    def is_not_domain(node):
        return type(node) != isl.schedule_node_domain

    assert root.child(0).every_descendant(is_not_domain)
    assert not root.every_descendant(is_not_domain)

    def fail(node):
        raise Exception("fail")

    caught = False
    try:
        root.every_descendant(fail)
    except:
        caught = True
    assert caught

    domain = root.domain()
    filters = [isl.union_set("{}")]

    def collect_filters(node):
        if type(node) == isl.schedule_node_filter:
            filters[0] = filters[0].union(node.filter())
        return True

    root.every_descendant(collect_filters)
    assert domain.is_equal(filters[0])


# Test marking band members for unrolling.
# "schedule" is the schedule created by construct_schedule_tree.
# It schedules two statements, with 10 and 20 instances, respectively.
# Unrolling all band members therefore results in 30 at-domain calls
# by the AST generator.
#
def test_ast_build_unroll(schedule):
    root = schedule.root()

    def mark_unroll(node):
        if type(node) == isl.schedule_node_band:
            node = node.member_set_ast_loop_unroll(0)
        return node

    root = root.map_descendant_bottom_up(mark_unroll)
    schedule = root.schedule()

    count_ast = [0]

    def inc_count_ast(node, build):
        count_ast[0] += 1
        return node

    build = isl.ast_build()
    build = build.set_at_each_domain(inc_count_ast)
    ast = build.node_from(schedule)
    assert count_ast[0] == 30


# Test basic AST generation from a schedule tree.
#
# In particular, create a simple schedule tree and
# - generate an AST from the schedule tree
# - test at_each_domain
# - test unrolling
#
def test_ast_build():
    schedule = construct_schedule_tree()

    count_ast = [0]

    def inc_count_ast(node, build):
        count_ast[0] += 1
        return node

    build = isl.ast_build()
    build_copy = build.set_at_each_domain(inc_count_ast)
    ast = build.node_from(schedule)
    assert count_ast[0] == 0
    count_ast[0] = 0
    ast = build_copy.node_from(schedule)
    assert count_ast[0] == 2
    build = build_copy
    count_ast[0] = 0
    ast = build.node_from(schedule)
    assert count_ast[0] == 2

    do_fail = True
    count_ast_fail = [0]

    def fail_inc_count_ast(node, build):
        count_ast_fail[0] += 1
        if do_fail:
            raise Exception("fail")
        return node

    build = isl.ast_build()
    build = build.set_at_each_domain(fail_inc_count_ast)
    caught = False
    try:
        ast = build.node_from(schedule)
    except:
        caught = True
    assert caught
    assert count_ast_fail[0] > 0
    build_copy = build
    build_copy = build_copy.set_at_each_domain(inc_count_ast)
    count_ast[0] = 0
    ast = build_copy.node_from(schedule)
    assert count_ast[0] == 2
    count_ast_fail[0] = 0
    do_fail = False
    ast = build.node_from(schedule)
    assert count_ast_fail[0] == 2

    test_ast_build_unroll(schedule)


# Test basic AST expression generation from an affine expression.
#
def test_ast_build_expr():
    pa = isl.pw_aff("[n] -> { [n + 1] }")
    build = isl.ast_build.from_context(pa.domain())

    op = build.expr_from(pa)
    assert type(op) == isl.ast_expr_op_add
    assert op.n_arg() == 2


# Test the isl Python interface
#
# This includes:
#  - Object construction
#  - Different parameter types
#  - Different return types
#  - isl.id.user
#  - Foreach functions
#  - Foreach SCC function
#  - Every functions
#  - Spaces
#  - Schedule trees
#  - AST generation
#  - AST expression generation
#
test_constructors()
test_parameters()
test_return()
test_user()
test_foreach()
test_foreach_scc()
test_every()
test_space()
test_schedule_tree()
test_ast_build()
test_ast_build_expr()