/*
* Copyright 2011,2015 Sven Verdoolaege. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY SVEN VERDOOLAEGE ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SVEN VERDOOLAEGE OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as
* representing official policies, either expressed or implied, of
* Sven Verdoolaege.
*/
#include "isl_config.h"
#include <stdarg.h>
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <vector>
#include "python.h"
#include "generator.h"
/* Argument format for Python methods with a fixed number of arguments.
*/
static const char *fixed_arg_fmt = "arg%d";
/* Argument format for Python methods with a variable number of arguments.
*/
static const char *var_arg_fmt = "args[%d]";
/* Drop the "isl_" initial part of the type name "name".
*/
static string type2python(string name)
{
return name.substr(4);
}
/* Print the arguments of a method with "n_arg" arguments, starting at "first".
*/
void python_generator::print_method_arguments(int first, int n_arg)
{
for (int i = first; i < n_arg; ++i) {
if (i > first)
printf(", ");
printf("arg%d", i);
}
}
/* Print the start of a definition for method "name"
* (without specifying the arguments).
* If "is_static" is set, then mark the python method as static.
*
* If the method is called "from", then rename it to "convert_from"
* because "from" is a python keyword.
*/
static void print_method_def(bool is_static, const string &name)
{
const char *s;
if (is_static)
printf(" @staticmethod\n");
s = name.c_str();
if (name == "from")
s = "convert_from";
printf(" def %s", s);
}
/* Print the header of the method "name" with "n_arg" arguments.
* If "is_static" is set, then mark the python method as static.
*/
void python_generator::print_method_header(bool is_static, const string &name,
int n_arg)
{
print_method_def(is_static, name);
printf("(");
print_method_arguments(0, n_arg);
printf("):\n");
}
/* Print formatted output with the given indentation.
*/
static void print_indent(int indent, const char *format, ...)
{
va_list args;
printf("%*s", indent, " ");
va_start(args, format);
vprintf(format, args);
va_end(args);
}
/* Print a check that the argument in position "pos" is of type "type"
* with the given indentation.
* If this fails and if "upcast" is set, then convert the first
* argument to "super" and call the method "name" on it, passing
* the remaining of the "n" arguments.
* If the check fails and "upcast" is not set, then simply raise
* an exception.
* If "upcast" is not set, then the "super", "name" and "n" arguments
* to this function are ignored.
* "fmt" is the format for printing Python method arguments.
*/
void python_generator::print_type_check(int indent, const string &type,
const char *fmt, int pos, bool upcast, const string &super,
const string &name, int n)
{
print_indent(indent, "try:\n");
print_indent(indent, " if not ");
printf(fmt, pos);
printf(".__class__ is %s:\n", type.c_str());
print_indent(indent, " ");
printf(fmt, pos);
printf(" = %s(", type.c_str());
printf(fmt, pos);
printf(")\n");
print_indent(indent, "except:\n");
if (upcast) {
print_indent(indent, " return %s(",
type2python(super).c_str());
printf(fmt, 0);
printf(").%s(", name.c_str());
for (int i = 1; i < n; ++i) {
if (i != 1)
printf(", ");
printf(fmt, i);
}
printf(")\n");
} else
print_indent(indent, " raise\n");
}
/* For each of the "n" initial arguments of the function "method"
* that refer to an isl structure,
* including the object on which the method is called,
* check if the corresponding actual argument is of the right type.
* If not, try and convert it to the right type.
* If that doesn't work and if "super" contains at least one element,
* try and convert self to the type of the first superclass in "super" and
* call the corresponding method.
* If "first_is_ctx" is set, then the first argument is skipped.
*/
void python_generator::print_type_checks(const string &cname,
FunctionDecl *method, bool first_is_ctx, int n,
const vector<string> &super)
{
for (int i = first_is_ctx; i < n; ++i) {
ParmVarDecl *param = method->getParamDecl(i);
string type;
if (!is_isl_type(param->getOriginalType()))
continue;
type = type2python(extract_type(param->getOriginalType()));
if (!first_is_ctx && i > 0 && super.size() > 0)
print_type_check(8, type, fixed_arg_fmt,
i - first_is_ctx, true,
super[0], cname, n);
else
print_type_check(8, type, fixed_arg_fmt,
i - first_is_ctx, false, "", cname, -1);
}
}
/* Print a call to the *_copy function corresponding to "type".
*/
void python_generator::print_copy(QualType type)
{
string type_s = extract_type(type);
printf("isl.%s_copy", type_s.c_str());
}
/* Construct a wrapper for callback argument "param" (at position "arg").
* Assign the wrapper to "cb{arg}".
*
* The wrapper converts the arguments of the callback to python types,
* taking a copy if the C callback does not take its arguments.
* If any exception is thrown, the wrapper keeps track of it in exc_info[0]
* and returns a value indicating an error. Otherwise the wrapper
* returns a value indicating success.
* In case the C callback is expected to return an isl_stat,
* the error value is -1 and the success value is 0.
* In case the C callback is expected to return an isl_bool,
* the error value is -1 and the success value is 1 or 0 depending
* on the result of the Python callback.
* Otherwise, None is returned to indicate an error and
* a copy of the object in case of success.
*/
void python_generator::print_callback(ParmVarDecl *param, int arg)
{
QualType type = param->getOriginalType();
const FunctionProtoType *fn = extract_prototype(type);
QualType return_type = fn->getReturnType();
unsigned n_arg = fn->getNumArgs();
printf(" exc_info = [None]\n");
printf(" fn = CFUNCTYPE(");
if (is_isl_stat(return_type) || is_isl_bool(return_type))
printf("c_int");
else
printf("c_void_p");
for (unsigned i = 0; i < n_arg - 1; ++i) {
if (!is_isl_type(fn->getArgType(i)))
die("Argument has non-isl type");
printf(", c_void_p");
}
printf(", c_void_p)\n");
printf(" def cb_func(");
for (unsigned i = 0; i < n_arg; ++i) {
if (i)
printf(", ");
printf("cb_arg%d", i);
}
printf("):\n");
for (unsigned i = 0; i < n_arg - 1; ++i) {
string arg_type;
arg_type = type2python(extract_type(fn->getArgType(i)));
printf(" cb_arg%d = %s(ctx=arg0.ctx, ptr=",
i, arg_type.c_str());
if (!callback_takes_argument(param, i))
print_copy(fn->getArgType(i));
printf("(cb_arg%d))\n", i);
}
printf(" try:\n");
if (is_isl_stat(return_type))
printf(" arg%d(", arg);
else
printf(" res = arg%d(", arg);
for (unsigned i = 0; i < n_arg - 1; ++i) {
if (i)
printf(", ");
printf("cb_arg%d", i);
}
printf(")\n");
printf(" except BaseException as e:\n");
printf(" exc_info[0] = e\n");
if (is_isl_stat(return_type) || is_isl_bool(return_type))
printf(" return -1\n");
else
printf(" return None\n");
if (is_isl_stat(return_type)) {
printf(" return 0\n");
} else if (is_isl_bool(return_type)) {
printf(" return 1 if res else 0\n");
} else {
printf(" return ");
print_copy(return_type);
printf("(res.ptr)\n");
}
printf(" cb%d = fn(cb_func)\n", arg);
}
/* Print the argument at position "arg" in call to "fd".
* "fmt" is the format for printing Python method arguments.
* "skip" is the number of initial arguments of "fd" that are
* skipped in the Python method.
*
* If the (first) argument is an isl_ctx, then print "ctx",
* assuming that the caller has made the context available
* in a "ctx" variable.
* Otherwise, if the argument is a callback, then print a reference to
* the corresponding callback wrapper.
* Otherwise, if the argument is marked as consuming a reference,
* then pass a copy of the pointer stored in the corresponding
* argument passed to the Python method.
* Otherwise, if the argument is a string, then the python string is first
* encoded as a byte sequence, using 'ascii' as encoding. This assumes
* that all strings passed to isl can be converted to 'ascii'.
* Otherwise, if the argument is a pointer, then pass this pointer itself.
* Otherwise, pass the argument directly.
*/
void python_generator::print_arg_in_call(FunctionDecl *fd, const char *fmt,
int arg, int skip)
{
ParmVarDecl *param = fd->getParamDecl(arg);
QualType type = param->getOriginalType();
if (is_isl_ctx(type)) {
printf("ctx");
} else if (is_callback(type)) {
printf("cb%d", arg - skip);
} else if (takes(param)) {
print_copy(type);
printf("(");
printf(fmt, arg - skip);
printf(".ptr)");
} else if (is_string(type)) {
printf(fmt, arg - skip);
printf(".encode('ascii')");
} else if (type->isPointerType()) {
printf(fmt, arg - skip);
printf(".ptr");
} else {
printf(fmt, arg - skip);
}
}
/* Generate code that raises the exception captured in "exc_info", if any,
* with the given indentation.
*/
static void print_rethrow(int indent, const char *exc_info)
{
print_indent(indent, "if %s is not None:\n", exc_info);
print_indent(indent, " raise %s\n", exc_info);
}
/* Print code with the given indentation that checks
* whether any of the persistent callbacks of "clazz"
* is set and if it failed with an exception. If so, the 'exc_info'
* field contains the exception and is raised again.
* The field is cleared because the callback and its data may get reused.
* "fmt" is the format for printing Python method arguments.
*/
static void print_persistent_callback_failure_check(int indent,
const isl_class &clazz, const char *fmt)
{
const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
set<FunctionDecl *>::const_iterator in;
for (in = callbacks.begin(); in != callbacks.end(); ++in) {
string callback_name = clazz.persistent_callback_name(*in);
print_indent(indent, "if hasattr(");
printf(fmt, 0);
printf(", '%s') and ", callback_name.c_str());
printf(fmt, 0);
printf(".%s['exc_info'] != None:\n", callback_name.c_str());
print_indent(indent, " exc_info = ");
printf(fmt, 0);
printf(".%s['exc_info'][0]\n", callback_name.c_str());
print_indent(indent, " ");
printf(fmt, 0);
printf(".%s['exc_info'][0] = None\n", callback_name.c_str());
print_rethrow(indent + 4, "exc_info");
}
}
/* Print the return statement of the python method corresponding
* to the C function "method" with the given indentation.
* If the object on which the method was called
* may have a persistent callback, then first check if any of those failed.
* "fmt" is the format for printing Python method arguments.
*
* If the method returns a new instance of the same object type and
* if the class has any persistent callbacks, then the data
* for these callbacks are copied from the original to the new object.
* If the method it itself setting a persistent callback,
* then keep track of the constructed C callback (such that it doesn't
* get destroyed) and the data structure that holds the captured exception
* (such that it can be raised again).
* The callback appears in position 1 and the C callback is therefore
* called "cb1".
*
* If the return type is a (const) char *, then convert the result
* to a Python string, raising an error on NULL and freeing
* the C string if needed. For python 3 compatibility, the string returned
* by isl is explicitly decoded as an 'ascii' string. This is correct
* as all strings returned by isl are expected to be 'ascii'.
*
* If the return type is isl_stat, isl_bool or isl_size, then
* raise an error on isl_stat_error, isl_bool_error or isl_size_error.
* In case of isl_bool, the result is converted to
* a Python boolean.
* In case of isl_size, the result is converted to a Python int.
*/
void python_generator::print_method_return(int indent, const isl_class &clazz,
FunctionDecl *method, const char *fmt)
{
QualType return_type = method->getReturnType();
if (!is_static(clazz, method))
print_persistent_callback_failure_check(indent, clazz, fmt);
if (is_isl_type(return_type)) {
string type;
type = type2python(extract_type(return_type));
print_indent(indent,
"obj = %s(ctx=ctx, ptr=res)\n", type.c_str());
if (is_mutator(clazz, method) &&
clazz.has_persistent_callbacks())
print_indent(indent, "obj.copy_callbacks(arg0)\n");
if (clazz.persistent_callbacks.count(method)) {
string callback_name;
callback_name = clazz.persistent_callback_name(method);
print_indent(indent, "obj.%s = { 'func': cb1, "
"'exc_info': exc_info }\n",
callback_name.c_str());
}
print_indent(indent, "return obj\n");
} else if (is_string(return_type)) {
print_indent(indent, "if res == 0:\n");
print_indent(indent, " raise Error\n");
print_indent(indent, "string = "
"cast(res, c_char_p).value.decode('ascii')\n");
if (gives(method))
print_indent(indent, "libc.free(res)\n");
print_indent(indent, "return string\n");
} else if (is_isl_neg_error(return_type)) {
print_indent(indent, "if res < 0:\n");
print_indent(indent, " raise Error\n");
if (is_isl_bool(return_type))
print_indent(indent, "return bool(res)\n");
else if (is_isl_size(return_type))
print_indent(indent, "return int(res)\n");
} else {
print_indent(indent, "return res\n");
}
}
/* Print a python "get" method corresponding to the C function "fd"
* in class "clazz" using a name that includes the "get_" prefix.
*
* This method simply calls the variant without the "get_" prefix and
* returns its result.
* Note that static methods are not considered to be "get" methods.
*/
void python_generator::print_get_method(const isl_class &clazz,
FunctionDecl *fd)
{
string get_name = clazz.base_method_name(fd);
string name = clazz.method_name(fd);
int num_params = fd->getNumParams();
print_method_header(false, get_name, num_params);
printf(" return arg0.%s(", name.c_str());
print_method_arguments(1, num_params);
printf(")\n");
}
/* Print a call to "method", along with the corresponding
* return statement, with the given indentation.
* "drop_ctx" is set if the first argument is an isl_ctx.
*
* A "ctx" variable is first initialized as it may be needed
* in the first call to print_arg_in_call and in print_method_return.
*
* If the method has any callback function, then any exception
* thrown in any callback also need to be rethrown.
*/
void python_generator::print_method_call(int indent, const isl_class &clazz,
FunctionDecl *method, const char *fmt, int drop_ctx)
{
string fullname = method->getName().str();
int num_params = method->getNumParams();
int drop_user = 0;
if (drop_ctx) {
print_indent(indent, "ctx = Context.getDefaultInstance()\n");
} else {
print_indent(indent, "ctx = ");
printf(fmt, 0);
printf(".ctx\n");
}
print_indent(indent, "res = isl.%s(", fullname.c_str());
for (int i = 0; i < num_params; ++i) {
if (i > 0)
printf(", ");
print_arg_in_call(method, fmt, i, drop_ctx + drop_user);
if (!is_callback_arg(method, i))
continue;
++drop_user;
++i;
printf(", None");
}
printf(")\n");
if (drop_user > 0)
print_rethrow(indent, "exc_info[0]");
print_method_return(indent, clazz, method, fmt);
}
/* Print a python method corresponding to the C function "method".
* "super" contains the superclasses of the class to which the method belongs,
* with the first element corresponding to the annotation that appears
* closest to the annotated type. This superclass is the least
* general extension of the annotated type in the linearization
* of the class hierarchy.
*
* If the first argument of "method" is something other than an instance
* of the class, then mark the python method as static.
* If, moreover, this first argument is an isl_ctx, then remove
* it from the arguments of the Python method.
*
* If the function has any callback arguments, then it also has corresponding
* "user" arguments. Since Python has closures, there is no need for such
* user arguments in the Python interface, so we simply drop them.
* We also create a wrapper ("cb{arg}") for each callback.
*
* If the function consumes a reference, then we pass it a copy of
* the actual argument.
*
* For methods that are identified as "get" methods, also
* print a variant of the method using a name that includes
* the "get_" prefix.
*/
void python_generator::print_method(const isl_class &clazz,
FunctionDecl *method, vector<string> super)
{
string cname = clazz.method_name(method);
int num_params = method->getNumParams();
int drop_user = 0;
int drop_ctx = first_arg_is_isl_ctx(method);
for (int i = 1; i < num_params; ++i) {
if (is_callback_arg(method, i))
drop_user += 1;
}
print_method_header(is_static(clazz, method), cname,
num_params - drop_ctx - drop_user);
print_type_checks(cname, method, drop_ctx,
num_params, super);
drop_user = 0;
for (int i = 1; i < num_params; ++i) {
ParmVarDecl *param = method->getParamDecl(i);
QualType type = param->getOriginalType();
if (!is_callback(type))
continue;
print_callback(param, i - drop_ctx - drop_user);
drop_user += 1;
}
print_method_call(8, clazz, method, fixed_arg_fmt, drop_ctx);
if (clazz.is_get_method(method))
print_get_method(clazz, method);
}
/* Print a condition that checks whether Python method argument "i"
* corresponds to the C function argument type "type".
*/
static void print_argument_check(QualType type, int i)
{
if (generator::is_isl_type(type)) {
string type_str;
type_str = generator::extract_type(type);
type_str = type2python(type_str);
printf("args[%d].__class__ is %s", i, type_str.c_str());
} else if (type->isPointerType()) {
printf("type(args[%d]) == str", i);
} else {
printf("type(args[%d]) == int", i);
}
}
/* Is any element of "vector" set?
*/
static bool any(const std::vector<bool> &vector)
{
return std::find(vector.begin(), vector.end(), true) != vector.end();
}
/* Print a test that checks whether the arguments passed
* to the Python method correspond to the arguments
* expected by "fd" and
* check if the object on which the method is called, if any,
* is of the right type.
* "drop_ctx" is set if the first argument of "fd" is an isl_ctx,
* which does not appear as an argument to the Python method.
*
* If an automatic conversion function is available for any
* of the argument types, then also allow the argument
* to be of the type as prescribed by the second input argument
* of the conversion function.
* The corresponding arguments are then converted to the expected types
* if needed.
* The object on which the method is called is also converted if needed.
* The argument tuple first needs to be converted to a list
* in order to be able to modify the entries.
*/
void python_generator::print_argument_checks(const isl_class &clazz,
FunctionDecl *fd, int drop_ctx)
{
int num_params = fd->getNumParams();
bool is_static = generator::is_static(clazz, fd);
int first = is_static ? drop_ctx : 1;
std::vector<bool> convert(num_params);
printf(" if len(args) == %d", num_params - drop_ctx);
for (int i = first; i < num_params; ++i) {
ParmVarDecl *param = fd->getParamDecl(i);
QualType type = param->getOriginalType();
const Type *ptr = type.getTypePtr();
printf(" and ");
if (conversions.count(ptr) == 0) {
print_argument_check(type, i - drop_ctx);
} else {
QualType type2 = conversions.at(ptr)->getOriginalType();
convert[i] = true;
printf("(");
print_argument_check(type, i - drop_ctx);
printf(" or ");
print_argument_check(type2, i - drop_ctx);
printf(")");
}
}
printf(":\n");
if (is_static && !any(convert))
return;
print_indent(12, "args = list(args)\n");
first = is_static ? drop_ctx : 0;
for (int i = first; i < num_params; ++i) {
bool is_self = !is_static && i == 0;
ParmVarDecl *param = fd->getParamDecl(i);
string type;
if (!is_self && !convert[i])
continue;
type = type2python(extract_type(param->getOriginalType()));
print_type_check(12, type, var_arg_fmt,
i - drop_ctx, false, "", "", -1);
}
}
/* Print part of an overloaded python method corresponding to the C function
* "method".
* "drop_ctx" is set if the first argument of "method" is an isl_ctx.
*
* In particular, print code to test whether the arguments passed to
* the python method correspond to the arguments expected by "method"
* and to call "method" if they do.
*/
void python_generator::print_method_overload(const isl_class &clazz,
FunctionDecl *method)
{
int drop_ctx = first_arg_is_isl_ctx(method);
print_argument_checks(clazz, method, drop_ctx);
print_method_call(12, clazz, method, var_arg_fmt, drop_ctx);
}
/* Print a python method with a name derived from "fullname"
* corresponding to the C functions "methods".
* "super" contains the superclasses of the class to which the method belongs.
*
* If "methods" consists of a single element that is not marked overloaded,
* the use print_method to print the method.
* Otherwise, print an overloaded method with pieces corresponding
* to each function in "methods".
*/
void python_generator::print_method(const isl_class &clazz,
const string &fullname, const function_set &methods,
vector<string> super)
{
string cname;
function_set::const_iterator it;
FunctionDecl *any_method;
any_method = *methods.begin();
if (methods.size() == 1 && !is_overload(any_method)) {
print_method(clazz, any_method, super);
return;
}
cname = clazz.method_name(any_method);
print_method_def(is_static(clazz, any_method), cname);
printf("(*args):\n");
for (it = methods.begin(); it != methods.end(); ++it)
print_method_overload(clazz, *it);
printf(" raise Error\n");
}
/* Print a python method "name" corresponding to "fd" setting
* the enum value "value".
* "super" contains the superclasses of the class to which the method belongs,
* with the first element corresponding to the annotation that appears
* closest to the annotated type.
*
* The last argument of the C function does not appear in the method call,
* but is fixed to "value" instead.
* Other than that, the method printed here is similar to one
* printed by python_generator::print_method, except that
* some of the special cases do not occur.
*/
void python_generator::print_set_enum(const isl_class &clazz,
FunctionDecl *fd, int value, const string &name,
const vector<string> &super)
{
string fullname = fd->getName().str();
int num_params = fd->getNumParams();
print_method_header(is_static(clazz, fd), name, num_params - 1);
print_type_checks(name, fd, false, num_params - 1, super);
printf(" ctx = arg0.ctx\n");
printf(" res = isl.%s(", fullname.c_str());
for (int i = 0; i < num_params - 1; ++i) {
if (i)
printf(", ");
print_arg_in_call(fd, fixed_arg_fmt, i, 0);
}
printf(", %d", value);
printf(")\n");
print_method_return(8, clazz, fd, fixed_arg_fmt);
}
/* Print python methods corresponding to "fd", which sets an enum.
* "super" contains the superclasses of the class to which the method belongs,
* with the first element corresponding to the annotation that appears
* closest to the annotated type.
*
* A method is generated for each value in the enum, setting
* the enum to that value.
*/
void python_generator::print_set_enum(const isl_class &clazz,
FunctionDecl *fd, const vector<string> &super)
{
vector<set_enum>::const_iterator it;
const vector<set_enum> &set_enums = clazz.set_enums.at(fd);
for (it = set_enums.begin(); it != set_enums.end(); ++it)
print_set_enum(clazz, fd, it->value, it->method_name, super);
}
/* Print part of the constructor for this isl_class.
*
* In particular, check if the actual arguments correspond to the
* formal arguments of "cons" and if so call "cons" and put the
* result in self.ptr and a reference to the default context in self.ctx.
*/
void python_generator::print_constructor(const isl_class &clazz,
FunctionDecl *cons)
{
string fullname = cons->getName().str();
string cname = clazz.method_name(cons);
int num_params = cons->getNumParams();
int drop_ctx = first_arg_is_isl_ctx(cons);
print_argument_checks(clazz, cons, drop_ctx);
printf(" self.ctx = Context.getDefaultInstance()\n");
printf(" self.ptr = isl.%s(", fullname.c_str());
if (drop_ctx)
printf("self.ctx");
for (int i = drop_ctx; i < num_params; ++i) {
if (i)
printf(", ");
print_arg_in_call(cons, var_arg_fmt, i, drop_ctx);
}
printf(")\n");
printf(" return\n");
}
/* The definition of the part of constructor for the "id" class
* that construct an object from a name and a user object,
* without the initial newline.
*
* Just like the parts generated by python_generator::print_constructor,
* the result of the isl_id_alloc call is stored in self.ptr and
* a reference to the default context is stored in self.ctx.
* Also, just like any other constructor or method with a string argument,
* the python string is first encoded as a byte sequence,
* using 'ascii' as encoding.
*
* Since the isl_id keeps a reference to the Python user object,
* the reference count of the Python object needs to be incremented,
* but only if the construction of the isl_id is successful.
* The reference count of the Python object is decremented again
* by Context.free_user when the reference count of the isl_id
* drops to zero.
*/
static const char *const id_constructor_user = &R"(
if len(args) == 2 and type(args[0]) == str:
self.ctx = Context.getDefaultInstance()
name = args[0].encode('ascii')
self.ptr = isl.isl_id_alloc(self.ctx, name, args[1])
self.ptr = isl.isl_id_set_free_user(self.ptr, Context.free_user)
if self.ptr is not None:
pythonapi.Py_IncRef(py_object(args[1]))
return
)"[1];
/* Print any special constructor parts of this class that are not
* automatically derived from the C interface.
*
* In particular, print a special constructor part for the "id" class.
*/
void python_generator::print_special_constructors(const isl_class &clazz)
{
if (clazz.name != "isl_id")
return;
printf("%s", id_constructor_user);
}
/* The definition of an "id" method
* for retrieving the user object associated to the identifier,
* without the initial newline.
*
* The isl_id needs to have been created by the constructor
* in id_constructor_user. That is, it needs to have a user pointer and
* it needs to have its free_user callback set to Context.free_user.
* The functions need to be cast to c_void_p to be able to compare
* the addresses.
*
* Return None if any of the checks fail.
* Note that isl_id_get_user returning NULL automatically results in None.
*/
static const char *const id_user = &R"(
def user(self):
free_user = cast(Context.free_user, c_void_p)
id_free_user = cast(isl.isl_id_get_free_user(self.ptr), c_void_p)
if id_free_user.value != free_user.value:
return None
return isl.isl_id_get_user(self.ptr)
)"[1];
/* Print any special methods of this class that are not
* automatically derived from the C interface.
*
* In particular, print a special method for the "id" class.
*/
void python_generator::print_special_methods(const isl_class &clazz)
{
if (clazz.name != "isl_id")
return;
printf("%s", id_user);
}
/* If "clazz" has a type function describing subclasses,
* then add constructors that allow each of these subclasses
* to be treated as an object to the superclass.
*/
void python_generator::print_upcast_constructors(const isl_class &clazz)
{
map<int, string>::const_iterator i;
if (!clazz.fn_type)
return;
for (i = clazz.type_subclasses.begin();
i != clazz.type_subclasses.end(); ++i) {
printf(" if len(args) == 1 and "
"isinstance(args[0], %s):\n",
type2python(i->second).c_str());
printf(" self.ctx = args[0].ctx\n");
printf(" self.ptr = isl.%s_copy(args[0].ptr)\n",
clazz.name.c_str());
printf(" return\n");
}
}
/* Print the header of the class "name" with superclasses "super".
* The order of the superclasses is the opposite of the order
* in which the corresponding annotations appear in the source code.
* If "clazz" is a subclass derived from a type function,
* then the immediate superclass is recorded in "clazz" itself.
*/
void python_generator::print_class_header(const isl_class &clazz,
const string &name, const vector<string> &super)
{
printf("class %s", name.c_str());
if (super.size() > 0) {
printf("(");
for (unsigned i = 0; i < super.size(); ++i) {
if (i > 0)
printf(", ");
printf("%s", type2python(super[i]).c_str());
}
printf(")");
} else if (clazz.is_type_subclass()) {
printf("(%s)", type2python(clazz.superclass_name).c_str());
} else {
printf("(object)");
}
printf(":\n");
}
/* Tell ctypes about the return type of "fd".
* In particular, if "fd" returns a pointer to an isl object,
* then tell ctypes it returns a "c_void_p".
* If "fd" returns a char *, then simply tell ctypes.
*
* Nothing needs to be done for functions returning
* isl_bool, isl_stat or isl_size since they are represented by an int and
* ctypes assumes that a function returns int by default.
*/
void python_generator::print_restype(FunctionDecl *fd)
{
string fullname = fd->getName().str();
QualType type = fd->getReturnType();
if (is_isl_type(type))
printf("isl.%s.restype = c_void_p\n", fullname.c_str());
else if (is_string(type))
printf("isl.%s.restype = POINTER(c_char)\n", fullname.c_str());
}
/* Tell ctypes about the types of the arguments of the function "fd".
*
* Any callback argument is followed by a user pointer argument.
* Each such pair or arguments is handled together.
*/
void python_generator::print_argtypes(FunctionDecl *fd)
{
string fullname = fd->getName().str();
int n = fd->getNumParams();
printf("isl.%s.argtypes = [", fullname.c_str());
for (int i = 0; i < n; ++i) {
ParmVarDecl *param = fd->getParamDecl(i);
QualType type = param->getOriginalType();
if (i)
printf(", ");
if (is_isl_ctx(type))
printf("Context");
else if (is_isl_type(type))
printf("c_void_p");
else if (is_callback(type))
printf("c_void_p, c_void_p");
else if (is_string(type))
printf("c_char_p");
else if (is_long(type))
printf("c_long");
else
printf("c_int");
if (is_callback(type))
++i;
}
printf("]\n");
}
/* Print type definitions for the method 'fd'.
*/
void python_generator::print_method_type(FunctionDecl *fd)
{
print_restype(fd);
print_argtypes(fd);
}
/* If "clazz" has a type function describing subclasses or
* if it is one of those type subclasses, then print a __new__ method.
*
* In the superclass, the __new__ method constructs an object
* of the subclass type specified by the type function,
* raising an error on an error type.
* In the subclass, the __new__ method reverts to the original behavior.
*/
void python_generator::print_new(const isl_class &clazz,
const string &python_name)
{
if (!clazz.fn_type && !clazz.is_type_subclass())
return;
printf(" def __new__(cls, *args, **keywords):\n");
if (clazz.fn_type) {
map<int, string>::const_iterator i;
printf(" if \"ptr\" in keywords:\n");
printf(" type = isl.%s(keywords[\"ptr\"])\n",
clazz.fn_type->getNameAsString().c_str());
for (i = clazz.type_subclasses.begin();
i != clazz.type_subclasses.end(); ++i) {
printf(" if type == %d:\n", i->first);
printf(" return %s(**keywords)\n",
type2python(i->second).c_str());
}
printf(" raise Error\n");
}
printf(" return super(%s, cls).__new__(cls)\n",
python_name.c_str());
}
/* Print declarations for methods printing the class representation,
* provided there is a corresponding *_to_str function.
*
* In particular, provide an implementation of __str__ and __repr__ methods to
* override the default representation used by python. Python uses __str__ to
* pretty print the class (e.g., when calling print(obj)) and uses __repr__
* when printing a precise representation of an object (e.g., when dumping it
* in the REPL console).
*
* Check the type of the argument before calling the *_to_str function
* on it in case the method was called on an object from a subclass.
*
* The return value of the *_to_str function is decoded to a python string
* assuming an 'ascii' encoding. This is necessary for python 3 compatibility.
*/
void python_generator::print_representation(const isl_class &clazz,
const string &python_name)
{
if (!clazz.fn_to_str)
return;
printf(" def __str__(arg0):\n");
print_type_check(8, python_name, fixed_arg_fmt, 0, false, "", "", -1);
printf(" ptr = isl.%s(arg0.ptr)\n",
string(clazz.fn_to_str->getName()).c_str());
printf(" res = cast(ptr, c_char_p).value.decode('ascii')\n");
printf(" libc.free(ptr)\n");
printf(" return res\n");
printf(" def __repr__(self):\n");
printf(" s = str(self)\n");
printf(" if '\"' in s:\n");
printf(" return 'isl.%s(\"\"\"%%s\"\"\")' %% s\n",
python_name.c_str());
printf(" else:\n");
printf(" return 'isl.%s(\"%%s\")' %% s\n",
python_name.c_str());
}
/* If "clazz" has any persistent callbacks, then print the definition
* of a "copy_callbacks" function that copies the persistent callbacks
* from one object to another.
*/
void python_generator::print_copy_callbacks(const isl_class &clazz)
{
const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
set<FunctionDecl *>::const_iterator in;
if (!clazz.has_persistent_callbacks())
return;
printf(" def copy_callbacks(self, obj):\n");
for (in = callbacks.begin(); in != callbacks.end(); ++in) {
string callback_name = clazz.persistent_callback_name(*in);
printf(" if hasattr(obj, '%s'):\n",
callback_name.c_str());
printf(" self.%s = obj.%s\n",
callback_name.c_str(), callback_name.c_str());
}
}
/* Print code to set method type signatures.
*
* To be able to call C functions it is necessary to explicitly set their
* argument and result types. Do this for all exported constructors and
* methods (including those that set a persistent callback and
* those that set an enum value),
* as well as for the *_to_str and the type function, if they exist.
* Assuming each exported class has a *_copy and a *_free method,
* also unconditionally set the type of such methods.
*/
void python_generator::print_method_types(const isl_class &clazz)
{
function_set::const_iterator in;
map<string, function_set>::const_iterator it;
map<FunctionDecl *, vector<set_enum> >::const_iterator ie;
const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
for (in = clazz.constructors.begin(); in != clazz.constructors.end();
++in)
print_method_type(*in);
for (in = callbacks.begin(); in != callbacks.end(); ++in)
print_method_type(*in);
for (it = clazz.methods.begin(); it != clazz.methods.end(); ++it)
for (in = it->second.begin(); in != it->second.end(); ++in)
print_method_type(*in);
for (ie = clazz.set_enums.begin(); ie != clazz.set_enums.end(); ++ie)
print_method_type(ie->first);
print_method_type(clazz.fn_copy);
print_method_type(clazz.fn_free);
if (clazz.fn_to_str)
print_method_type(clazz.fn_to_str);
if (clazz.fn_type)
print_method_type(clazz.fn_type);
}
/* Print out the definition of this isl_class.
*
* We first check if this isl_class is a subclass of one or more other classes.
* If it is, we make sure those superclasses are printed out first.
*
* Then we print a constructor with several cases, one for constructing
* a Python object from a return value, one for each function that
* was marked as a constructor, a class specific constructor, if any, and
* one for each type based subclass.
*
* Next, we print out some common methods, class specific methods and
* the methods corresponding
* to functions that are not marked as constructors, including those
* that set a persistent callback and those that set an enum value.
*
* Finally, we tell ctypes about the types of the arguments of the
* constructor functions and the return types of those function returning
* an isl object.
*/
void python_generator::print(const isl_class &clazz)
{
string p_name = type2python(clazz.subclass_name);
vector<string> super = find_superclasses(clazz.type);
const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
for (unsigned i = 0; i < super.size(); ++i)
if (done.find(super[i]) == done.end())
print(classes[super[i]]);
if (clazz.is_type_subclass() && done.find(clazz.name) == done.end())
print(classes[clazz.name]);
done.insert(clazz.subclass_name);
printf("\n");
print_class_header(clazz, p_name, super);
printf(" def __init__(self, *args, **keywords):\n");
printf(" if \"ptr\" in keywords:\n");
printf(" self.ctx = keywords[\"ctx\"]\n");
printf(" self.ptr = keywords[\"ptr\"]\n");
printf(" return\n");
for (const auto &cons : clazz.constructors)
print_constructor(clazz, cons);
print_special_constructors(clazz);
print_upcast_constructors(clazz);
printf(" raise Error\n");
printf(" def __del__(self):\n");
printf(" if hasattr(self, 'ptr'):\n");
printf(" isl.%s_free(self.ptr)\n", clazz.name.c_str());
print_new(clazz, p_name);
print_representation(clazz, p_name);
print_copy_callbacks(clazz);
print_special_methods(clazz);
for (const auto &callback : callbacks)
print_method(clazz, callback, super);
for (const auto &kvp : clazz.methods)
print_method(clazz, kvp.first, kvp.second, super);
for (const auto &kvp : clazz.set_enums)
print_set_enum(clazz, kvp.first, super);
printf("\n");
print_method_types(clazz);
}
/* Generate a python interface based on the extracted types and
* functions.
*
* Print out each class in turn. If one of these is a subclass of some
* other class, make sure the superclass is printed out first.
* functions.
*/
void python_generator::generate()
{
map<string, isl_class>::iterator ci;
for (ci = classes.begin(); ci != classes.end(); ++ci) {
if (done.find(ci->first) == done.end())
print(ci->second);
}
}