//===-- lib/Semantics/semantics.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Semantics/semantics.h"
#include "assignment.h"
#include "canonicalize-acc.h"
#include "canonicalize-directives.h"
#include "canonicalize-do.h"
#include "canonicalize-omp.h"
#include "check-acc-structure.h"
#include "check-allocate.h"
#include "check-arithmeticif.h"
#include "check-case.h"
#include "check-coarray.h"
#include "check-cuda.h"
#include "check-data.h"
#include "check-deallocate.h"
#include "check-declarations.h"
#include "check-do-forall.h"
#include "check-if-stmt.h"
#include "check-io.h"
#include "check-namelist.h"
#include "check-nullify.h"
#include "check-omp-structure.h"
#include "check-purity.h"
#include "check-return.h"
#include "check-select-rank.h"
#include "check-select-type.h"
#include "check-stop.h"
#include "compute-offsets.h"
#include "mod-file.h"
#include "resolve-labels.h"
#include "resolve-names.h"
#include "rewrite-parse-tree.h"
#include "flang/Common/default-kinds.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/symbol.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/Triple.h"
namespace Fortran::semantics {
using NameToSymbolMap = std::multimap<parser::CharBlock, SymbolRef>;
static void DoDumpSymbols(llvm::raw_ostream &, const Scope &, int indent = 0);
static void PutIndent(llvm::raw_ostream &, int indent);
static void GetSymbolNames(const Scope &scope, NameToSymbolMap &symbols) {
// Finds all symbol names in the scope without collecting duplicates.
for (const auto &pair : scope) {
symbols.emplace(pair.second->name(), *pair.second);
}
for (const auto &pair : scope.commonBlocks()) {
symbols.emplace(pair.second->name(), *pair.second);
}
for (const auto &child : scope.children()) {
GetSymbolNames(child, symbols);
}
}
// A parse tree visitor that calls Enter/Leave functions from each checker
// class C supplied as template parameters. Enter is called before the node's
// children are visited, Leave is called after. No two checkers may have the
// same Enter or Leave function. Each checker must be constructible from
// SemanticsContext and have BaseChecker as a virtual base class.
template <typename... C>
class SemanticsVisitor : public virtual BaseChecker, public virtual C... {
public:
using BaseChecker::Enter;
using BaseChecker::Leave;
using C::Enter...;
using C::Leave...;
SemanticsVisitor(SemanticsContext &context)
: C{context}..., context_{context} {}
template <typename N> bool Pre(const N &node) {
if constexpr (common::HasMember<const N *, ConstructNode>) {
context_.PushConstruct(node);
}
Enter(node);
return true;
}
template <typename N> void Post(const N &node) {
Leave(node);
if constexpr (common::HasMember<const N *, ConstructNode>) {
context_.PopConstruct();
}
}
template <typename T> bool Pre(const parser::Statement<T> &node) {
context_.set_location(node.source);
Enter(node);
return true;
}
template <typename T> bool Pre(const parser::UnlabeledStatement<T> &node) {
context_.set_location(node.source);
Enter(node);
return true;
}
template <typename T> void Post(const parser::Statement<T> &node) {
Leave(node);
context_.set_location(std::nullopt);
}
template <typename T> void Post(const parser::UnlabeledStatement<T> &node) {
Leave(node);
context_.set_location(std::nullopt);
}
bool Walk(const parser::Program &program) {
parser::Walk(program, *this);
return !context_.AnyFatalError();
}
private:
SemanticsContext &context_;
};
class MiscChecker : public virtual BaseChecker {
public:
explicit MiscChecker(SemanticsContext &context) : context_{context} {}
void Leave(const parser::EntryStmt &) {
if (!context_.constructStack().empty()) { // C1571
context_.Say("ENTRY may not appear in an executable construct"_err_en_US);
}
}
void Leave(const parser::AssignStmt &stmt) {
CheckAssignGotoName(std::get<parser::Name>(stmt.t));
}
void Leave(const parser::AssignedGotoStmt &stmt) {
CheckAssignGotoName(std::get<parser::Name>(stmt.t));
}
private:
void CheckAssignGotoName(const parser::Name &name) {
if (context_.HasError(name.symbol)) {
return;
}
const Symbol &symbol{DEREF(name.symbol)};
auto type{evaluate::DynamicType::From(symbol)};
if (!IsVariableName(symbol) || symbol.Rank() != 0 || !type ||
type->category() != TypeCategory::Integer ||
type->kind() !=
context_.defaultKinds().GetDefaultKind(TypeCategory::Integer)) {
context_
.Say(name.source,
"'%s' must be a default integer scalar variable"_err_en_US,
name.source)
.Attach(symbol.name(), "Declaration of '%s'"_en_US, symbol.name());
}
}
SemanticsContext &context_;
};
static void WarnUndefinedFunctionResult(
SemanticsContext &context, const Scope &scope) {
auto WasDefined{[&context](const Symbol &symbol) {
return context.IsSymbolDefined(symbol) ||
IsInitialized(symbol, /*ignoreDataStatements=*/true,
/*ignoreAllocatable=*/true, /*ignorePointer=*/true);
}};
if (const Symbol * symbol{scope.symbol()}) {
if (const auto *subp{symbol->detailsIf<SubprogramDetails>()}) {
if (subp->isFunction() && !subp->isInterface() && !subp->stmtFunction()) {
bool wasDefined{WasDefined(subp->result())};
if (!wasDefined) {
// Definitions of ENTRY result variables also count.
for (const auto &pair : scope) {
const Symbol &local{*pair.second};
if (IsFunctionResult(local) && WasDefined(local)) {
wasDefined = true;
break;
}
}
if (!wasDefined) {
context.Say(
symbol->name(), "Function result is never defined"_warn_en_US);
}
}
}
}
}
if (!scope.IsModuleFile()) {
for (const Scope &child : scope.children()) {
WarnUndefinedFunctionResult(context, child);
}
}
}
using StatementSemanticsPass1 = ExprChecker;
using StatementSemanticsPass2 = SemanticsVisitor<AllocateChecker,
ArithmeticIfStmtChecker, AssignmentChecker, CaseChecker, CoarrayChecker,
DataChecker, DeallocateChecker, DoForallChecker, IfStmtChecker, IoChecker,
MiscChecker, NamelistChecker, NullifyChecker, PurityChecker,
ReturnStmtChecker, SelectRankConstructChecker, SelectTypeChecker,
StopChecker>;
static bool PerformStatementSemantics(
SemanticsContext &context, parser::Program &program) {
ResolveNames(context, program, context.globalScope());
RewriteParseTree(context, program);
ComputeOffsets(context, context.globalScope());
CheckDeclarations(context);
StatementSemanticsPass1{context}.Walk(program);
StatementSemanticsPass2 pass2{context};
pass2.Walk(program);
if (context.languageFeatures().IsEnabled(common::LanguageFeature::OpenACC)) {
SemanticsVisitor<AccStructureChecker>{context}.Walk(program);
}
if (context.languageFeatures().IsEnabled(common::LanguageFeature::OpenMP)) {
SemanticsVisitor<OmpStructureChecker>{context}.Walk(program);
}
if (context.languageFeatures().IsEnabled(common::LanguageFeature::CUDA)) {
SemanticsVisitor<CUDAChecker>{context}.Walk(program);
}
if (!context.messages().AnyFatalError()) {
// Do this if all messages are only warnings
if (context.ShouldWarn(common::UsageWarning::UndefinedFunctionResult)) {
WarnUndefinedFunctionResult(context, context.globalScope());
}
}
if (!context.AnyFatalError()) {
pass2.CompileDataInitializationsIntoInitializers();
}
return !context.AnyFatalError();
}
/// This class keeps track of the common block appearances with the biggest size
/// and with an initial value (if any) in a program. This allows reporting
/// conflicting initialization and warning about appearances of a same
/// named common block with different sizes. The biggest common block size and
/// initialization (if any) can later be provided so that lowering can generate
/// the correct symbol size and initial values, even when named common blocks
/// appears with different sizes and are initialized outside of block data.
class CommonBlockMap {
private:
struct CommonBlockInfo {
// Common block symbol for the appearance with the biggest size.
SymbolRef biggestSize;
// Common block symbol for the appearance with the initialized members (if
// any).
std::optional<SymbolRef> initialization;
};
public:
void MapCommonBlockAndCheckConflicts(
SemanticsContext &context, const Symbol &common) {
const Symbol *isInitialized{CommonBlockIsInitialized(common)};
// Merge common according to the name they will have in the object files.
// This allows merging BIND(C) and non BIND(C) common block instead of
// later crashing. This "merge" matches what ifort/gfortran/nvfortran are
// doing and what a linker would do if the definition were in distinct
// files.
std::string commonName{
GetCommonBlockObjectName(common, context.underscoring())};
auto [it, firstAppearance] = commonBlocks_.insert({commonName,
isInitialized ? CommonBlockInfo{common, common}
: CommonBlockInfo{common, std::nullopt}});
if (!firstAppearance) {
CommonBlockInfo &info{it->second};
if (isInitialized) {
if (info.initialization.has_value() &&
&**info.initialization != &common) {
// Use the location of the initialization in the error message because
// common block symbols may have no location if they are blank
// commons.
const Symbol &previousInit{
DEREF(CommonBlockIsInitialized(**info.initialization))};
context
.Say(isInitialized->name(),
"Multiple initialization of COMMON block /%s/"_err_en_US,
common.name())
.Attach(previousInit.name(),
"Previous initialization of COMMON block /%s/"_en_US,
common.name());
} else {
info.initialization = common;
}
}
if (common.size() != info.biggestSize->size() && !common.name().empty() &&
context.ShouldWarn(common::LanguageFeature::DistinctCommonSizes)) {
context
.Say(common.name(),
"A named COMMON block should have the same size everywhere it appears (%zd bytes here)"_port_en_US,
common.size())
.Attach(info.biggestSize->name(),
"Previously defined with a size of %zd bytes"_en_US,
info.biggestSize->size());
}
if (common.size() > info.biggestSize->size()) {
info.biggestSize = common;
}
}
}
CommonBlockList GetCommonBlocks() const {
CommonBlockList result;
for (const auto &[_, blockInfo] : commonBlocks_) {
result.emplace_back(
std::make_pair(blockInfo.initialization ? *blockInfo.initialization
: blockInfo.biggestSize,
blockInfo.biggestSize->size()));
}
return result;
}
private:
/// Return the symbol of an initialized member if a COMMON block
/// is initalized. Otherwise, return nullptr.
static Symbol *CommonBlockIsInitialized(const Symbol &common) {
const auto &commonDetails =
common.get<Fortran::semantics::CommonBlockDetails>();
for (const auto &member : commonDetails.objects()) {
if (IsInitialized(*member)) {
return &*member;
}
}
// Common block may be initialized via initialized variables that are in an
// equivalence with the common block members.
for (const Fortran::semantics::EquivalenceSet &set :
common.owner().equivalenceSets()) {
for (const Fortran::semantics::EquivalenceObject &obj : set) {
if (!obj.symbol.test(
Fortran::semantics::Symbol::Flag::CompilerCreated)) {
if (FindCommonBlockContaining(obj.symbol) == &common &&
IsInitialized(obj.symbol)) {
return &obj.symbol;
}
}
}
}
return nullptr;
}
std::map<std::string, CommonBlockInfo> commonBlocks_;
};
SemanticsContext::SemanticsContext(
const common::IntrinsicTypeDefaultKinds &defaultKinds,
const common::LanguageFeatureControl &languageFeatures,
parser::AllCookedSources &allCookedSources)
: defaultKinds_{defaultKinds}, languageFeatures_{languageFeatures},
allCookedSources_{allCookedSources},
intrinsics_{evaluate::IntrinsicProcTable::Configure(defaultKinds_)},
globalScope_{*this}, intrinsicModulesScope_{globalScope_.MakeScope(
Scope::Kind::IntrinsicModules, nullptr)},
foldingContext_{parser::ContextualMessages{&messages_}, defaultKinds_,
intrinsics_, targetCharacteristics_, languageFeatures_, tempNames_} {}
SemanticsContext::~SemanticsContext() {}
int SemanticsContext::GetDefaultKind(TypeCategory category) const {
return defaultKinds_.GetDefaultKind(category);
}
const DeclTypeSpec &SemanticsContext::MakeNumericType(
TypeCategory category, int kind) {
if (kind == 0) {
kind = GetDefaultKind(category);
}
return globalScope_.MakeNumericType(category, KindExpr{kind});
}
const DeclTypeSpec &SemanticsContext::MakeLogicalType(int kind) {
if (kind == 0) {
kind = GetDefaultKind(TypeCategory::Logical);
}
return globalScope_.MakeLogicalType(KindExpr{kind});
}
bool SemanticsContext::AnyFatalError() const {
return !messages_.empty() &&
(warningsAreErrors_ || messages_.AnyFatalError());
}
bool SemanticsContext::HasError(const Symbol &symbol) {
return errorSymbols_.count(symbol) > 0;
}
bool SemanticsContext::HasError(const Symbol *symbol) {
return !symbol || HasError(*symbol);
}
bool SemanticsContext::HasError(const parser::Name &name) {
return HasError(name.symbol);
}
void SemanticsContext::SetError(const Symbol &symbol, bool value) {
if (value) {
CheckError(symbol);
errorSymbols_.emplace(symbol);
}
}
void SemanticsContext::CheckError(const Symbol &symbol) {
if (!AnyFatalError()) {
std::string buf;
llvm::raw_string_ostream ss{buf};
ss << symbol;
common::die(
"No error was reported but setting error on: %s", ss.str().c_str());
}
}
bool SemanticsContext::ScopeIndexComparator::operator()(
parser::CharBlock x, parser::CharBlock y) const {
return x.begin() < y.begin() ||
(x.begin() == y.begin() && x.size() > y.size());
}
auto SemanticsContext::SearchScopeIndex(parser::CharBlock source)
-> ScopeIndex::iterator {
if (!scopeIndex_.empty()) {
auto iter{scopeIndex_.upper_bound(source)};
auto begin{scopeIndex_.begin()};
do {
--iter;
if (iter->first.Contains(source)) {
return iter;
}
} while (iter != begin);
}
return scopeIndex_.end();
}
const Scope &SemanticsContext::FindScope(parser::CharBlock source) const {
return const_cast<SemanticsContext *>(this)->FindScope(source);
}
Scope &SemanticsContext::FindScope(parser::CharBlock source) {
if (auto iter{SearchScopeIndex(source)}; iter != scopeIndex_.end()) {
return iter->second;
} else {
common::die(
"SemanticsContext::FindScope(): invalid source location for '%s'",
source.ToString().c_str());
}
}
void SemanticsContext::UpdateScopeIndex(
Scope &scope, parser::CharBlock newSource) {
if (scope.sourceRange().empty()) {
scopeIndex_.emplace(newSource, scope);
} else if (!scope.sourceRange().Contains(newSource)) {
auto iter{SearchScopeIndex(scope.sourceRange())};
CHECK(iter != scopeIndex_.end());
while (&iter->second != &scope) {
CHECK(iter != scopeIndex_.begin());
--iter;
}
scopeIndex_.erase(iter);
scopeIndex_.emplace(newSource, scope);
}
}
bool SemanticsContext::IsInModuleFile(parser::CharBlock source) const {
for (const Scope *scope{&FindScope(source)}; !scope->IsGlobal();
scope = &scope->parent()) {
if (scope->IsModuleFile()) {
return true;
}
}
return false;
}
void SemanticsContext::PopConstruct() {
CHECK(!constructStack_.empty());
constructStack_.pop_back();
}
void SemanticsContext::CheckIndexVarRedefine(const parser::CharBlock &location,
const Symbol &variable, parser::MessageFixedText &&message) {
const Symbol &symbol{ResolveAssociations(variable)};
auto it{activeIndexVars_.find(symbol)};
if (it != activeIndexVars_.end()) {
std::string kind{EnumToString(it->second.kind)};
Say(location, std::move(message), kind, symbol.name())
.Attach(it->second.location, "Enclosing %s construct"_en_US, kind);
}
}
void SemanticsContext::WarnIndexVarRedefine(
const parser::CharBlock &location, const Symbol &variable) {
if (ShouldWarn(common::UsageWarning::IndexVarRedefinition)) {
CheckIndexVarRedefine(location, variable,
"Possible redefinition of %s variable '%s'"_warn_en_US);
}
}
void SemanticsContext::CheckIndexVarRedefine(
const parser::CharBlock &location, const Symbol &variable) {
CheckIndexVarRedefine(
location, variable, "Cannot redefine %s variable '%s'"_err_en_US);
}
void SemanticsContext::CheckIndexVarRedefine(const parser::Variable &variable) {
if (const Symbol * entity{GetLastName(variable).symbol}) {
CheckIndexVarRedefine(variable.GetSource(), *entity);
}
}
void SemanticsContext::CheckIndexVarRedefine(const parser::Name &name) {
if (const Symbol * entity{name.symbol}) {
CheckIndexVarRedefine(name.source, *entity);
}
}
void SemanticsContext::ActivateIndexVar(
const parser::Name &name, IndexVarKind kind) {
CheckIndexVarRedefine(name);
if (const Symbol * indexVar{name.symbol}) {
activeIndexVars_.emplace(
ResolveAssociations(*indexVar), IndexVarInfo{name.source, kind});
}
}
void SemanticsContext::DeactivateIndexVar(const parser::Name &name) {
if (Symbol * indexVar{name.symbol}) {
auto it{activeIndexVars_.find(ResolveAssociations(*indexVar))};
if (it != activeIndexVars_.end() && it->second.location == name.source) {
activeIndexVars_.erase(it);
}
}
}
SymbolVector SemanticsContext::GetIndexVars(IndexVarKind kind) {
SymbolVector result;
for (const auto &[symbol, info] : activeIndexVars_) {
if (info.kind == kind) {
result.push_back(symbol);
}
}
return result;
}
SourceName SemanticsContext::SaveTempName(std::string &&name) {
return {*tempNames_.emplace(std::move(name)).first};
}
SourceName SemanticsContext::GetTempName(const Scope &scope) {
for (const auto &str : tempNames_) {
if (IsTempName(str)) {
SourceName name{str};
if (scope.find(name) == scope.end()) {
return name;
}
}
}
return SaveTempName(".F18."s + std::to_string(tempNames_.size()));
}
bool SemanticsContext::IsTempName(const std::string &name) {
return name.size() > 5 && name.substr(0, 5) == ".F18.";
}
Scope *SemanticsContext::GetBuiltinModule(const char *name) {
return ModFileReader{*this}.Read(SourceName{name, std::strlen(name)},
true /*intrinsic*/, nullptr, /*silent=*/true);
}
void SemanticsContext::UseFortranBuiltinsModule() {
if (builtinsScope_ == nullptr) {
builtinsScope_ = GetBuiltinModule("__fortran_builtins");
if (builtinsScope_) {
intrinsics_.SupplyBuiltins(*builtinsScope_);
}
}
}
void SemanticsContext::UsePPCBuiltinTypesModule() {
if (ppcBuiltinTypesScope_ == nullptr) {
ppcBuiltinTypesScope_ = GetBuiltinModule("__ppc_types");
}
}
const Scope &SemanticsContext::GetCUDABuiltinsScope() {
if (!cudaBuiltinsScope_) {
cudaBuiltinsScope_ = GetBuiltinModule("__cuda_builtins");
CHECK(cudaBuiltinsScope_.value() != nullptr);
}
return **cudaBuiltinsScope_;
}
const Scope &SemanticsContext::GetCUDADeviceScope() {
if (!cudaDeviceScope_) {
cudaDeviceScope_ = GetBuiltinModule("cudadevice");
CHECK(cudaDeviceScope_.value() != nullptr);
}
return **cudaDeviceScope_;
}
void SemanticsContext::UsePPCBuiltinsModule() {
if (ppcBuiltinsScope_ == nullptr) {
ppcBuiltinsScope_ = GetBuiltinModule("__ppc_intrinsics");
}
}
parser::Program &SemanticsContext::SaveParseTree(parser::Program &&tree) {
return modFileParseTrees_.emplace_back(std::move(tree));
}
bool Semantics::Perform() {
// Implicitly USE the __Fortran_builtins module so that special types
// (e.g., __builtin_team_type) are available to semantics, esp. for
// intrinsic checking.
if (!program_.v.empty()) {
const auto *frontModule{std::get_if<common::Indirection<parser::Module>>(
&program_.v.front().u)};
if (frontModule &&
(std::get<parser::Statement<parser::ModuleStmt>>(frontModule->value().t)
.statement.v.source == "__fortran_builtins" ||
std::get<parser::Statement<parser::ModuleStmt>>(
frontModule->value().t)
.statement.v.source == "__ppc_types")) {
// Don't try to read the builtins module when we're actually building it.
} else if (frontModule &&
(std::get<parser::Statement<parser::ModuleStmt>>(frontModule->value().t)
.statement.v.source == "__ppc_intrinsics" ||
std::get<parser::Statement<parser::ModuleStmt>>(
frontModule->value().t)
.statement.v.source == "mma")) {
// The derived type definition for the vectors is needed.
context_.UsePPCBuiltinTypesModule();
} else {
context_.UseFortranBuiltinsModule();
llvm::Triple targetTriple{llvm::Triple(
llvm::Triple::normalize(llvm::sys::getDefaultTargetTriple()))};
// Only use __ppc_intrinsics module when targetting PowerPC arch
if (context_.targetCharacteristics().isPPC()) {
context_.UsePPCBuiltinTypesModule();
context_.UsePPCBuiltinsModule();
}
}
}
return ValidateLabels(context_, program_) &&
parser::CanonicalizeDo(program_) && // force line break
CanonicalizeAcc(context_.messages(), program_) &&
CanonicalizeOmp(context_.messages(), program_) &&
CanonicalizeCUDA(program_) &&
CanonicalizeDirectives(context_.messages(), program_) &&
PerformStatementSemantics(context_, program_) &&
ModFileWriter{context_}
.set_hermeticModuleFileOutput(hermeticModuleFileOutput_)
.WriteAll();
}
void Semantics::EmitMessages(llvm::raw_ostream &os) {
// Resolve the CharBlock locations of the Messages to ProvenanceRanges
// so messages from parsing and semantics are intermixed in source order.
context_.messages().ResolveProvenances(context_.allCookedSources());
context_.messages().Emit(os, context_.allCookedSources());
}
void Semantics::DumpSymbols(llvm::raw_ostream &os) {
DoDumpSymbols(os, context_.globalScope());
}
void Semantics::DumpSymbolsSources(llvm::raw_ostream &os) const {
NameToSymbolMap symbols;
GetSymbolNames(context_.globalScope(), symbols);
const parser::AllCookedSources &allCooked{context_.allCookedSources()};
for (const auto &pair : symbols) {
const Symbol &symbol{pair.second};
if (auto sourceInfo{allCooked.GetSourcePositionRange(symbol.name())}) {
os << symbol.name().ToString() << ": " << sourceInfo->first.path << ", "
<< sourceInfo->first.line << ", " << sourceInfo->first.column << "-"
<< sourceInfo->second.column << "\n";
} else if (symbol.has<semantics::UseDetails>()) {
os << symbol.name().ToString() << ": "
<< symbol.GetUltimate().owner().symbol()->name().ToString() << "\n";
}
}
}
void DoDumpSymbols(llvm::raw_ostream &os, const Scope &scope, int indent) {
PutIndent(os, indent);
os << Scope::EnumToString(scope.kind()) << " scope:";
if (const auto *symbol{scope.symbol()}) {
os << ' ' << symbol->name();
}
if (scope.alignment().has_value()) {
os << " size=" << scope.size() << " alignment=" << *scope.alignment();
}
if (scope.derivedTypeSpec()) {
os << " instantiation of " << *scope.derivedTypeSpec();
}
os << " sourceRange=" << scope.sourceRange().size() << " bytes\n";
++indent;
for (const auto &pair : scope) {
const auto &symbol{*pair.second};
PutIndent(os, indent);
os << symbol << '\n';
if (const auto *details{symbol.detailsIf<GenericDetails>()}) {
if (const auto &type{details->derivedType()}) {
PutIndent(os, indent);
os << *type << '\n';
}
}
}
if (!scope.equivalenceSets().empty()) {
PutIndent(os, indent);
os << "Equivalence Sets:";
for (const auto &set : scope.equivalenceSets()) {
os << ' ';
char sep = '(';
for (const auto &object : set) {
os << sep << object.AsFortran();
sep = ',';
}
os << ')';
}
os << '\n';
}
if (!scope.crayPointers().empty()) {
PutIndent(os, indent);
os << "Cray Pointers:";
for (const auto &[pointee, pointer] : scope.crayPointers()) {
os << " (" << pointer->name() << ',' << pointee << ')';
}
}
for (const auto &pair : scope.commonBlocks()) {
const auto &symbol{*pair.second};
PutIndent(os, indent);
os << symbol << '\n';
}
for (const auto &child : scope.children()) {
DoDumpSymbols(os, child, indent);
}
--indent;
}
static void PutIndent(llvm::raw_ostream &os, int indent) {
for (int i = 0; i < indent; ++i) {
os << " ";
}
}
void SemanticsContext::MapCommonBlockAndCheckConflicts(const Symbol &common) {
if (!commonBlockMap_) {
commonBlockMap_ = std::make_unique<CommonBlockMap>();
}
commonBlockMap_->MapCommonBlockAndCheckConflicts(*this, common);
}
CommonBlockList SemanticsContext::GetCommonBlocks() const {
if (commonBlockMap_) {
return commonBlockMap_->GetCommonBlocks();
}
return {};
}
void SemanticsContext::NoteDefinedSymbol(const Symbol &symbol) {
isDefined_.insert(symbol);
}
bool SemanticsContext::IsSymbolDefined(const Symbol &symbol) const {
return isDefined_.find(symbol) != isDefined_.end();
}
} // namespace Fortran::semantics