#include "testing.h"
#include "../../lib/Evaluate/host.h"
#include "flang/Evaluate/call.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/intrinsics-library.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/target.h"
#include "flang/Evaluate/tools.h"
#include <tuple>
using namespace Fortran::evaluate;
// helper to call functions on all types from tuple
template <typename... T> struct RunOnTypes {};
template <typename Test, typename... T>
struct RunOnTypes<Test, std::tuple<T...>> {
static void Run() { (..., Test::template Run<T>()); }
};
// test for fold.h GetScalarConstantValue function
struct TestGetScalarConstantValue {
template <typename T> static void Run() {
Expr<T> exprFullyTyped{Constant<T>{Scalar<T>{}}};
Expr<SomeKind<T::category>> exprSomeKind{exprFullyTyped};
Expr<SomeType> exprSomeType{exprSomeKind};
TEST(GetScalarConstantValue<T>(exprFullyTyped).has_value());
TEST(GetScalarConstantValue<T>(exprSomeKind).has_value());
TEST(GetScalarConstantValue<T>(exprSomeType).has_value());
}
};
template <typename T>
Scalar<T> CallHostRt(
HostRuntimeWrapper func, FoldingContext &context, Scalar<T> x) {
return GetScalarConstantValue<T>(
func(context, {AsGenericExpr(Constant<T>{x})}))
.value();
}
void TestHostRuntimeSubnormalFlushing() {
using R4 = Type<TypeCategory::Real, 4>;
if constexpr (std::is_same_v<host::HostType<R4>, float>) {
Fortran::parser::CharBlock src;
Fortran::parser::ContextualMessages messages{src, nullptr};
Fortran::common::IntrinsicTypeDefaultKinds defaults;
auto intrinsics{Fortran::evaluate::IntrinsicProcTable::Configure(defaults)};
TargetCharacteristics flushingTargetCharacteristics;
flushingTargetCharacteristics.set_areSubnormalsFlushedToZero(true);
TargetCharacteristics noFlushingTargetCharacteristics;
noFlushingTargetCharacteristics.set_areSubnormalsFlushedToZero(false);
Fortran::common::LanguageFeatureControl languageFeatures;
std::set<std::string> tempNames;
FoldingContext flushingContext{messages, defaults, intrinsics,
flushingTargetCharacteristics, languageFeatures, tempNames};
FoldingContext noFlushingContext{messages, defaults, intrinsics,
noFlushingTargetCharacteristics, languageFeatures, tempNames};
DynamicType r4{R4{}.GetType()};
// Test subnormal argument flushing
if (auto callable{GetHostRuntimeWrapper("log", r4, {r4})}) {
// Biggest IEEE 32bits subnormal power of two
const Scalar<R4> x1{Scalar<R4>::Word{0x00400000}};
Scalar<R4> y1Flushing{CallHostRt<R4>(*callable, flushingContext, x1)};
Scalar<R4> y1NoFlushing{CallHostRt<R4>(*callable, noFlushingContext, x1)};
// We would expect y1Flushing to be NaN, but some libc logf implementation
// "workaround" subnormal flushing by returning a constant negative
// results for all subnormal values (-1.03972076416015625e2_4). In case of
// flushing, the result should still be different than -88 +/- 2%.
TEST(y1Flushing.IsInfinite() ||
std::abs(host::CastFortranToHost<R4>(y1Flushing) + 88.) > 2);
TEST(!y1NoFlushing.IsInfinite() &&
std::abs(host::CastFortranToHost<R4>(y1NoFlushing) + 88.) < 2);
} else {
TEST(false);
}
} else {
TEST(false); // Cannot run this test on the host
}
}
int main() {
RunOnTypes<TestGetScalarConstantValue, AllIntrinsicTypes>::Run();
TestHostRuntimeSubnormalFlushing();
return testing::Complete();
}