//===-- include/flang/Common/real.h -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_COMMON_REAL_H_
#define FORTRAN_COMMON_REAL_H_
// Characteristics of IEEE-754 & related binary floating-point numbers.
// The various representations are distinguished by their binary precisions
// (number of explicit significand bits and any implicit MSB in the fraction).
#include "flang/Common/api-attrs.h"
#include <cinttypes>
namespace Fortran::common {
// Total representation size in bits for each type
static constexpr int BitsForBinaryPrecision(int binaryPrecision) {
switch (binaryPrecision) {
case 8: // IEEE single (truncated): 1+8+7 with implicit bit
return 16;
case 11: // IEEE half precision: 1+5+10 with implicit bit
return 16;
case 24: // IEEE single precision: 1+8+23 with implicit bit
return 32;
case 53: // IEEE double precision: 1+11+52 with implicit bit
return 64;
case 64: // x87 extended precision: 1+15+64, no implicit bit
return 80;
case 106: // "double-double": 2*(1+11+52 with implicit bit)
return 128;
case 113: // IEEE quad precision: 1+15+112 with implicit bit
return 128;
default:
return -1;
}
}
// Maximum number of significant decimal digits in the fraction of an
// exact conversion in each type; computed by converting the value
// with the minimum exponent (biased to 1) and all fractional bits set.
static constexpr int MaxDecimalConversionDigits(int binaryPrecision) {
switch (binaryPrecision) {
case 8: // IEEE single (truncated): 1+8+7 with implicit bit
return 96;
case 11: // IEEE half precision: 1+5+10 with implicit bit
return 21;
case 24: // IEEE single precision: 1+8+23 with implicit bit
return 112;
case 53: // IEEE double precision: 1+11+52 with implicit bit
return 767;
case 64: // x87 extended precision: 1+15+64, no implicit bit
return 11514;
case 106: // "double-double": 2*(1+11+52 with implicit bit)
return 2 * 767;
case 113: // IEEE quad precision: 1+15+112 with implicit bit
return 11563;
default:
return -1;
}
}
static constexpr int MaxHexadecimalConversionDigits(int binaryPrecision) {
return binaryPrecision >= 0 ? (binaryPrecision + 3) / 4 : binaryPrecision;
}
static constexpr int RealKindForPrecision(int binaryPrecision) {
switch (binaryPrecision) {
case 8: // IEEE single (truncated): 1+8+7 with implicit bit
return 3;
case 11: // IEEE half precision: 1+5+10 with implicit bit
return 2;
case 24: // IEEE single precision: 1+8+23 with implicit bit
return 4;
case 53: // IEEE double precision: 1+11+52 with implicit bit
return 8;
case 64: // x87 extended precision: 1+15+64, no implicit bit
return 10;
// TODO: case 106: return kind for double/double
case 113: // IEEE quad precision: 1+15+112 with implicit bit
return 16;
default:
return -1;
}
}
static constexpr int PrecisionOfRealKind(int kind) {
switch (kind) {
case 2: // IEEE half precision: 1+5+10 with implicit bit
return 11;
case 3: // IEEE single (truncated): 1+8+7 with implicit bit
return 8;
case 4: // IEEE single precision: 1+8+23 with implicit bit
return 24;
case 8: // IEEE double precision: 1+11+52 with implicit bit
return 53;
case 10: // x87 extended precision: 1+15+64, no implicit bit
return 64;
// TODO: case kind for double/double: return 106;
case 16: // IEEE quad precision: 1+15+112 with implicit bit
return 113;
default:
return -1;
}
}
// RealCharacteristics is constexpr, but also useful when constructed
// with a non-constant precision argument.
class RealCharacteristics {
public:
explicit constexpr RealCharacteristics(int p) : binaryPrecision{p} {}
int binaryPrecision;
int bits{BitsForBinaryPrecision(binaryPrecision)};
bool isImplicitMSB{binaryPrecision != 64 /*x87*/};
int significandBits{binaryPrecision - isImplicitMSB};
int exponentBits{bits - significandBits - 1 /*sign*/};
int maxExponent{(1 << exponentBits) - 1};
int exponentBias{maxExponent / 2};
int decimalPrecision{LogBaseTwoToLogBaseTen(binaryPrecision - 1)};
int decimalRange{LogBaseTwoToLogBaseTen(exponentBias - 1)};
// Number of significant decimal digits in the fraction of the
// exact conversion of the least nonzero subnormal.
int maxDecimalConversionDigits{MaxDecimalConversionDigits(binaryPrecision)};
int maxHexadecimalConversionDigits{
MaxHexadecimalConversionDigits(binaryPrecision)};
private:
// Converts bit widths to whole decimal digits
static constexpr int LogBaseTwoToLogBaseTen(int logb2) {
constexpr std::int64_t LogBaseTenOfTwoTimesTenToThe12th{301029995664};
constexpr std::int64_t TenToThe12th{1000000000000};
std::int64_t logb10{
(logb2 * LogBaseTenOfTwoTimesTenToThe12th) / TenToThe12th};
return static_cast<int>(logb10);
}
};
} // namespace Fortran::common
#endif // FORTRAN_COMMON_REAL_H_