llvm/flang/include/flang/Common/real.h

//===-- include/flang/Common/real.h -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef FORTRAN_COMMON_REAL_H_
#define FORTRAN_COMMON_REAL_H_

// Characteristics of IEEE-754 & related binary floating-point numbers.
// The various representations are distinguished by their binary precisions
// (number of explicit significand bits and any implicit MSB in the fraction).

#include "flang/Common/api-attrs.h"
#include <cinttypes>

namespace Fortran::common {

// Total representation size in bits for each type
static constexpr int BitsForBinaryPrecision(int binaryPrecision) {
  switch (binaryPrecision) {
  case 8: // IEEE single (truncated): 1+8+7 with implicit bit
    return 16;
  case 11: // IEEE half precision: 1+5+10 with implicit bit
    return 16;
  case 24: // IEEE single precision: 1+8+23 with implicit bit
    return 32;
  case 53: // IEEE double precision: 1+11+52 with implicit bit
    return 64;
  case 64: // x87 extended precision: 1+15+64, no implicit bit
    return 80;
  case 106: // "double-double": 2*(1+11+52 with implicit bit)
    return 128;
  case 113: // IEEE quad precision: 1+15+112 with implicit bit
    return 128;
  default:
    return -1;
  }
}

// Maximum number of significant decimal digits in the fraction of an
// exact conversion in each type; computed by converting the value
// with the minimum exponent (biased to 1) and all fractional bits set.
static constexpr int MaxDecimalConversionDigits(int binaryPrecision) {
  switch (binaryPrecision) {
  case 8: // IEEE single (truncated): 1+8+7 with implicit bit
    return 96;
  case 11: // IEEE half precision: 1+5+10 with implicit bit
    return 21;
  case 24: // IEEE single precision: 1+8+23 with implicit bit
    return 112;
  case 53: // IEEE double precision: 1+11+52 with implicit bit
    return 767;
  case 64: // x87 extended precision: 1+15+64, no implicit bit
    return 11514;
  case 106: // "double-double": 2*(1+11+52 with implicit bit)
    return 2 * 767;
  case 113: // IEEE quad precision: 1+15+112 with implicit bit
    return 11563;
  default:
    return -1;
  }
}

static constexpr int MaxHexadecimalConversionDigits(int binaryPrecision) {
  return binaryPrecision >= 0 ? (binaryPrecision + 3) / 4 : binaryPrecision;
}

static constexpr int RealKindForPrecision(int binaryPrecision) {
  switch (binaryPrecision) {
  case 8: // IEEE single (truncated): 1+8+7 with implicit bit
    return 3;
  case 11: // IEEE half precision: 1+5+10 with implicit bit
    return 2;
  case 24: // IEEE single precision: 1+8+23 with implicit bit
    return 4;
  case 53: // IEEE double precision: 1+11+52 with implicit bit
    return 8;
  case 64: // x87 extended precision: 1+15+64, no implicit bit
    return 10;
  // TODO: case 106: return kind for double/double
  case 113: // IEEE quad precision: 1+15+112 with implicit bit
    return 16;
  default:
    return -1;
  }
}

static constexpr int PrecisionOfRealKind(int kind) {
  switch (kind) {
  case 2: // IEEE half precision: 1+5+10 with implicit bit
    return 11;
  case 3: // IEEE single (truncated): 1+8+7 with implicit bit
    return 8;
  case 4: // IEEE single precision: 1+8+23 with implicit bit
    return 24;
  case 8: // IEEE double precision: 1+11+52 with implicit bit
    return 53;
  case 10: // x87 extended precision: 1+15+64, no implicit bit
    return 64;
  // TODO: case kind for double/double: return 106;
  case 16: // IEEE quad precision: 1+15+112 with implicit bit
    return 113;
  default:
    return -1;
  }
}

// RealCharacteristics is constexpr, but also useful when constructed
// with a non-constant precision argument.
class RealCharacteristics {
public:
  explicit constexpr RealCharacteristics(int p) : binaryPrecision{p} {}

  int binaryPrecision;
  int bits{BitsForBinaryPrecision(binaryPrecision)};
  bool isImplicitMSB{binaryPrecision != 64 /*x87*/};
  int significandBits{binaryPrecision - isImplicitMSB};
  int exponentBits{bits - significandBits - 1 /*sign*/};
  int maxExponent{(1 << exponentBits) - 1};
  int exponentBias{maxExponent / 2};
  int decimalPrecision{LogBaseTwoToLogBaseTen(binaryPrecision - 1)};
  int decimalRange{LogBaseTwoToLogBaseTen(exponentBias - 1)};
  // Number of significant decimal digits in the fraction of the
  // exact conversion of the least nonzero subnormal.
  int maxDecimalConversionDigits{MaxDecimalConversionDigits(binaryPrecision)};
  int maxHexadecimalConversionDigits{
      MaxHexadecimalConversionDigits(binaryPrecision)};

private:
  // Converts bit widths to whole decimal digits
  static constexpr int LogBaseTwoToLogBaseTen(int logb2) {
    constexpr std::int64_t LogBaseTenOfTwoTimesTenToThe12th{301029995664};
    constexpr std::int64_t TenToThe12th{1000000000000};
    std::int64_t logb10{
        (logb2 * LogBaseTenOfTwoTimesTenToThe12th) / TenToThe12th};
    return static_cast<int>(logb10);
  }
};

} // namespace Fortran::common
#endif // FORTRAN_COMMON_REAL_H_