//===-- include/flang/Evaluate/expression.h ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_EXPRESSION_H_
#define FORTRAN_EVALUATE_EXPRESSION_H_
// Represent Fortran expressions in a type-safe manner.
// Expressions are the sole owners of their constituents; i.e., there is no
// context-independent hash table or sharing of common subexpressions, and
// thus these are trees, not DAGs. Both deep copy and move semantics are
// supported for expression construction. Expressions may be compared
// for equality.
#include "common.h"
#include "constant.h"
#include "formatting.h"
#include "type.h"
#include "variable.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/idioms.h"
#include "flang/Common/indirection.h"
#include "flang/Common/template.h"
#include "flang/Parser/char-block.h"
#include <algorithm>
#include <list>
#include <tuple>
#include <type_traits>
#include <variant>
namespace llvm {
class raw_ostream;
}
namespace Fortran::evaluate {
using common::LogicalOperator;
using common::RelationalOperator;
// Expressions are represented by specializations of the class template Expr.
// Each of these specializations wraps a single data member "u" that
// is a std::variant<> discriminated union over all of the representational
// types for the constants, variables, operations, and other entities that
// can be valid expressions in that context:
// - Expr<Type<CATEGORY, KIND>> represents an expression whose result is of a
// specific intrinsic type category and kind, e.g. Type<TypeCategory::Real, 4>
// - Expr<SomeDerived> wraps data and procedure references that result in an
// instance of a derived type (or CLASS(*) unlimited polymorphic)
// - Expr<SomeKind<CATEGORY>> is a union of Expr<Type<CATEGORY, K>> for each
// kind type parameter value K in that intrinsic type category. It represents
// an expression with known category and any kind.
// - Expr<SomeType> is a union of Expr<SomeKind<CATEGORY>> over the five
// intrinsic type categories of Fortran. It represents any valid expression.
//
// Everything that can appear in, or as, a valid Fortran expression must be
// represented with an instance of some class containing a Result typedef that
// maps to some instantiation of Type<CATEGORY, KIND>, SomeKind<CATEGORY>,
// or SomeType. (Exception: BOZ literal constants in generic Expr<SomeType>.)
template <typename A> using ResultType = typename std::decay_t<A>::Result;
// Common Expr<> behaviors: every Expr<T> derives from ExpressionBase<T>.
template <typename RESULT> class ExpressionBase {
public:
using Result = RESULT;
private:
using Derived = Expr<Result>;
#if defined(__APPLE__) && defined(__GNUC__)
Derived &derived();
const Derived &derived() const;
#else
Derived &derived() { return *static_cast<Derived *>(this); }
const Derived &derived() const { return *static_cast<const Derived *>(this); }
#endif
public:
template <typename A> Derived &operator=(const A &x) {
Derived &d{derived()};
d.u = x;
return d;
}
template <typename A> common::IfNoLvalue<Derived &, A> operator=(A &&x) {
Derived &d{derived()};
d.u = std::move(x);
return d;
}
std::optional<DynamicType> GetType() const;
int Rank() const;
std::string AsFortran() const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dump() const;
#endif
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
static Derived Rewrite(FoldingContext &, Derived &&);
};
// Operations always have specific Fortran result types (i.e., with known
// intrinsic type category and kind parameter value). The classes that
// represent the operations all inherit from this Operation<> base class
// template. Note that Operation has as its first type parameter (DERIVED) a
// "curiously reoccurring template pattern (CRTP)" reference to the specific
// operation class being derived from Operation; e.g., Add is defined with
// struct Add : public Operation<Add, ...>. Uses of instances of Operation<>,
// including its own member functions, can access each specific class derived
// from it via its derived() member function with compile-time type safety.
template <typename DERIVED, typename RESULT, typename... OPERANDS>
class Operation {
// The extra final member is a dummy that allows a safe unused reference
// to element 1 to arise indirectly in the definition of "right()" below
// when the operation has but a single operand.
using OperandTypes = std::tuple<OPERANDS..., std::monostate>;
public:
using Derived = DERIVED;
using Result = RESULT;
static constexpr std::size_t operands{sizeof...(OPERANDS)};
// Allow specific intrinsic types and Parentheses<SomeDerived>
static_assert(IsSpecificIntrinsicType<Result> ||
(operands == 1 && std::is_same_v<Result, SomeDerived>));
template <int J> using Operand = std::tuple_element_t<J, OperandTypes>;
// Unary operations wrap a single Expr with a CopyableIndirection.
// Binary operations wrap a tuple of CopyableIndirections to Exprs.
private:
using Container = std::conditional_t<operands == 1,
common::CopyableIndirection<Expr<Operand<0>>>,
std::tuple<common::CopyableIndirection<Expr<OPERANDS>>...>>;
public:
CLASS_BOILERPLATE(Operation)
explicit Operation(const Expr<OPERANDS> &...x) : operand_{x...} {}
explicit Operation(Expr<OPERANDS> &&...x) : operand_{std::move(x)...} {}
Derived &derived() { return *static_cast<Derived *>(this); }
const Derived &derived() const { return *static_cast<const Derived *>(this); }
// References to operand expressions from member functions of derived
// classes for specific operators can be made by index, e.g. operand<0>(),
// which must be spelled like "this->template operand<0>()" when
// inherited in a derived class template. There are convenience aliases
// left() and right() that are not templates.
template <int J> Expr<Operand<J>> &operand() {
if constexpr (operands == 1) {
static_assert(J == 0);
return operand_.value();
} else {
return std::get<J>(operand_).value();
}
}
template <int J> const Expr<Operand<J>> &operand() const {
if constexpr (operands == 1) {
static_assert(J == 0);
return operand_.value();
} else {
return std::get<J>(operand_).value();
}
}
Expr<Operand<0>> &left() { return operand<0>(); }
const Expr<Operand<0>> &left() const { return operand<0>(); }
std::conditional_t<(operands > 1), Expr<Operand<1>> &, void> right() {
if constexpr (operands > 1) {
return operand<1>();
}
}
std::conditional_t<(operands > 1), const Expr<Operand<1>> &, void>
right() const {
if constexpr (operands > 1) {
return operand<1>();
}
}
static constexpr std::conditional_t<Result::category != TypeCategory::Derived,
std::optional<DynamicType>, void>
GetType() {
return Result::GetType();
}
int Rank() const {
int rank{left().Rank()};
if constexpr (operands > 1) {
return std::max(rank, right().Rank());
} else {
return rank;
}
}
bool operator==(const Operation &that) const {
return operand_ == that.operand_;
}
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
private:
Container operand_;
};
// Unary operations
// Conversions to specific types from expressions of known category and
// dynamic kind.
template <typename TO, TypeCategory FROMCAT = TO::category>
struct Convert : public Operation<Convert<TO, FROMCAT>, TO, SomeKind<FROMCAT>> {
// Fortran doesn't have conversions between kinds of CHARACTER apart from
// assignments, and in those the data must be convertible to/from 7-bit ASCII.
static_assert(((TO::category == TypeCategory::Integer ||
TO::category == TypeCategory::Real) &&
(FROMCAT == TypeCategory::Integer ||
FROMCAT == TypeCategory::Real)) ||
TO::category == FROMCAT);
using Result = TO;
using Operand = SomeKind<FROMCAT>;
using Base = Operation<Convert, Result, Operand>;
using Base::Base;
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
};
template <typename A>
struct Parentheses : public Operation<Parentheses<A>, A, A> {
using Result = A;
using Operand = A;
using Base = Operation<Parentheses, A, A>;
using Base::Base;
};
template <>
struct Parentheses<SomeDerived>
: public Operation<Parentheses<SomeDerived>, SomeDerived, SomeDerived> {
public:
using Result = SomeDerived;
using Operand = SomeDerived;
using Base = Operation<Parentheses, SomeDerived, SomeDerived>;
using Base::Base;
DynamicType GetType() const;
};
template <typename A> struct Negate : public Operation<Negate<A>, A, A> {
using Result = A;
using Operand = A;
using Base = Operation<Negate, A, A>;
using Base::Base;
};
template <int KIND>
struct ComplexComponent
: public Operation<ComplexComponent<KIND>, Type<TypeCategory::Real, KIND>,
Type<TypeCategory::Complex, KIND>> {
using Result = Type<TypeCategory::Real, KIND>;
using Operand = Type<TypeCategory::Complex, KIND>;
using Base = Operation<ComplexComponent, Result, Operand>;
CLASS_BOILERPLATE(ComplexComponent)
ComplexComponent(bool isImaginary, const Expr<Operand> &x)
: Base{x}, isImaginaryPart{isImaginary} {}
ComplexComponent(bool isImaginary, Expr<Operand> &&x)
: Base{std::move(x)}, isImaginaryPart{isImaginary} {}
bool isImaginaryPart{true};
};
template <int KIND>
struct Not : public Operation<Not<KIND>, Type<TypeCategory::Logical, KIND>,
Type<TypeCategory::Logical, KIND>> {
using Result = Type<TypeCategory::Logical, KIND>;
using Operand = Result;
using Base = Operation<Not, Result, Operand>;
using Base::Base;
};
// Character lengths are determined by context in Fortran and do not
// have explicit syntax for changing them. Expressions represent
// changes of length (e.g., for assignments and structure constructors)
// with this operation.
template <int KIND>
struct SetLength
: public Operation<SetLength<KIND>, Type<TypeCategory::Character, KIND>,
Type<TypeCategory::Character, KIND>, SubscriptInteger> {
using Result = Type<TypeCategory::Character, KIND>;
using CharacterOperand = Result;
using LengthOperand = SubscriptInteger;
using Base = Operation<SetLength, Result, CharacterOperand, LengthOperand>;
using Base::Base;
};
// Binary operations
template <typename A> struct Add : public Operation<Add<A>, A, A, A> {
using Result = A;
using Operand = A;
using Base = Operation<Add, A, A, A>;
using Base::Base;
};
template <typename A> struct Subtract : public Operation<Subtract<A>, A, A, A> {
using Result = A;
using Operand = A;
using Base = Operation<Subtract, A, A, A>;
using Base::Base;
};
template <typename A> struct Multiply : public Operation<Multiply<A>, A, A, A> {
using Result = A;
using Operand = A;
using Base = Operation<Multiply, A, A, A>;
using Base::Base;
};
template <typename A> struct Divide : public Operation<Divide<A>, A, A, A> {
using Result = A;
using Operand = A;
using Base = Operation<Divide, A, A, A>;
using Base::Base;
};
template <typename A> struct Power : public Operation<Power<A>, A, A, A> {
using Result = A;
using Operand = A;
using Base = Operation<Power, A, A, A>;
using Base::Base;
};
template <typename A>
struct RealToIntPower : public Operation<RealToIntPower<A>, A, A, SomeInteger> {
using Base = Operation<RealToIntPower, A, A, SomeInteger>;
using Result = A;
using BaseOperand = A;
using ExponentOperand = SomeInteger;
using Base::Base;
};
template <typename A> struct Extremum : public Operation<Extremum<A>, A, A, A> {
using Result = A;
using Operand = A;
using Base = Operation<Extremum, A, A, A>;
CLASS_BOILERPLATE(Extremum)
Extremum(Ordering ord, const Expr<Operand> &x, const Expr<Operand> &y)
: Base{x, y}, ordering{ord} {}
Extremum(Ordering ord, Expr<Operand> &&x, Expr<Operand> &&y)
: Base{std::move(x), std::move(y)}, ordering{ord} {}
Ordering ordering{Ordering::Greater};
};
template <int KIND>
struct ComplexConstructor
: public Operation<ComplexConstructor<KIND>,
Type<TypeCategory::Complex, KIND>, Type<TypeCategory::Real, KIND>,
Type<TypeCategory::Real, KIND>> {
using Result = Type<TypeCategory::Complex, KIND>;
using Operand = Type<TypeCategory::Real, KIND>;
using Base = Operation<ComplexConstructor, Result, Operand, Operand>;
using Base::Base;
};
template <int KIND>
struct Concat
: public Operation<Concat<KIND>, Type<TypeCategory::Character, KIND>,
Type<TypeCategory::Character, KIND>,
Type<TypeCategory::Character, KIND>> {
using Result = Type<TypeCategory::Character, KIND>;
using Operand = Result;
using Base = Operation<Concat, Result, Operand, Operand>;
using Base::Base;
};
template <int KIND>
struct LogicalOperation
: public Operation<LogicalOperation<KIND>,
Type<TypeCategory::Logical, KIND>, Type<TypeCategory::Logical, KIND>,
Type<TypeCategory::Logical, KIND>> {
using Result = Type<TypeCategory::Logical, KIND>;
using Operand = Result;
using Base = Operation<LogicalOperation, Result, Operand, Operand>;
CLASS_BOILERPLATE(LogicalOperation)
LogicalOperation(
LogicalOperator opr, const Expr<Operand> &x, const Expr<Operand> &y)
: Base{x, y}, logicalOperator{opr} {}
LogicalOperation(LogicalOperator opr, Expr<Operand> &&x, Expr<Operand> &&y)
: Base{std::move(x), std::move(y)}, logicalOperator{opr} {}
LogicalOperator logicalOperator;
};
// Array constructors
template <typename RESULT> class ArrayConstructorValues;
struct ImpliedDoIndex {
using Result = SubscriptInteger;
bool operator==(const ImpliedDoIndex &) const;
static constexpr int Rank() { return 0; }
parser::CharBlock name; // nested implied DOs must use distinct names
};
template <typename RESULT> class ImpliedDo {
public:
using Result = RESULT;
using Index = ResultType<ImpliedDoIndex>;
ImpliedDo(parser::CharBlock name, Expr<Index> &&lower, Expr<Index> &&upper,
Expr<Index> &&stride, ArrayConstructorValues<Result> &&values)
: name_{name}, lower_{std::move(lower)}, upper_{std::move(upper)},
stride_{std::move(stride)}, values_{std::move(values)} {}
DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(ImpliedDo)
bool operator==(const ImpliedDo &) const;
parser::CharBlock name() const { return name_; }
Expr<Index> &lower() { return lower_.value(); }
const Expr<Index> &lower() const { return lower_.value(); }
Expr<Index> &upper() { return upper_.value(); }
const Expr<Index> &upper() const { return upper_.value(); }
Expr<Index> &stride() { return stride_.value(); }
const Expr<Index> &stride() const { return stride_.value(); }
ArrayConstructorValues<Result> &values() { return values_.value(); }
const ArrayConstructorValues<Result> &values() const {
return values_.value();
}
private:
parser::CharBlock name_;
common::CopyableIndirection<Expr<Index>> lower_, upper_, stride_;
common::CopyableIndirection<ArrayConstructorValues<Result>> values_;
};
template <typename RESULT> struct ArrayConstructorValue {
using Result = RESULT;
EVALUATE_UNION_CLASS_BOILERPLATE(ArrayConstructorValue)
std::variant<Expr<Result>, ImpliedDo<Result>> u;
};
template <typename RESULT> class ArrayConstructorValues {
public:
using Result = RESULT;
using Values = std::vector<ArrayConstructorValue<Result>>;
DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(ArrayConstructorValues)
ArrayConstructorValues() {}
bool operator==(const ArrayConstructorValues &) const;
static constexpr int Rank() { return 1; }
template <typename A> common::NoLvalue<A> Push(A &&x) {
values_.emplace_back(std::move(x));
}
typename Values::iterator begin() { return values_.begin(); }
typename Values::const_iterator begin() const { return values_.begin(); }
typename Values::iterator end() { return values_.end(); }
typename Values::const_iterator end() const { return values_.end(); }
protected:
Values values_;
};
// Note that there are specializations of ArrayConstructor for character
// and derived types, since they must carry additional type information,
// but that an empty ArrayConstructor can be constructed for any type
// given an expression from which such type information may be gleaned.
template <typename RESULT>
class ArrayConstructor : public ArrayConstructorValues<RESULT> {
public:
using Result = RESULT;
using Base = ArrayConstructorValues<Result>;
DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(ArrayConstructor)
explicit ArrayConstructor(Base &&values) : Base{std::move(values)} {}
template <typename T> explicit ArrayConstructor(const Expr<T> &) {}
static constexpr Result result() { return Result{}; }
static constexpr DynamicType GetType() { return Result::GetType(); }
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
};
template <int KIND>
class ArrayConstructor<Type<TypeCategory::Character, KIND>>
: public ArrayConstructorValues<Type<TypeCategory::Character, KIND>> {
public:
using Result = Type<TypeCategory::Character, KIND>;
using Base = ArrayConstructorValues<Result>;
DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(ArrayConstructor)
explicit ArrayConstructor(Base &&values) : Base{std::move(values)} {}
template <typename T> explicit ArrayConstructor(const Expr<T> &) {}
ArrayConstructor &set_LEN(Expr<SubscriptInteger> &&);
bool operator==(const ArrayConstructor &) const;
static constexpr Result result() { return Result{}; }
static constexpr DynamicType GetType() { return Result::GetType(); }
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
const Expr<SubscriptInteger> *LEN() const {
return length_ ? &length_->value() : nullptr;
}
private:
std::optional<common::CopyableIndirection<Expr<SubscriptInteger>>> length_;
};
template <>
class ArrayConstructor<SomeDerived>
: public ArrayConstructorValues<SomeDerived> {
public:
using Result = SomeDerived;
using Base = ArrayConstructorValues<Result>;
CLASS_BOILERPLATE(ArrayConstructor)
ArrayConstructor(const semantics::DerivedTypeSpec &spec, Base &&v)
: Base{std::move(v)}, result_{spec} {}
template <typename A>
explicit ArrayConstructor(const A &prototype)
: result_{prototype.GetType().value().GetDerivedTypeSpec()} {}
bool operator==(const ArrayConstructor &) const;
constexpr Result result() const { return result_; }
constexpr DynamicType GetType() const { return result_.GetType(); }
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
private:
Result result_;
};
// Expression representations for each type category.
template <int KIND>
class Expr<Type<TypeCategory::Integer, KIND>>
: public ExpressionBase<Type<TypeCategory::Integer, KIND>> {
public:
using Result = Type<TypeCategory::Integer, KIND>;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
private:
using Conversions = std::tuple<Convert<Result, TypeCategory::Integer>,
Convert<Result, TypeCategory::Real>>;
using Operations = std::tuple<Parentheses<Result>, Negate<Result>,
Add<Result>, Subtract<Result>, Multiply<Result>, Divide<Result>,
Power<Result>, Extremum<Result>>;
using Indices = std::conditional_t<KIND == ImpliedDoIndex::Result::kind,
std::tuple<ImpliedDoIndex>, std::tuple<>>;
using TypeParamInquiries =
std::conditional_t<KIND == TypeParamInquiry::Result::kind,
std::tuple<TypeParamInquiry>, std::tuple<>>;
using DescriptorInquiries =
std::conditional_t<KIND == DescriptorInquiry::Result::kind,
std::tuple<DescriptorInquiry>, std::tuple<>>;
using Others = std::tuple<Constant<Result>, ArrayConstructor<Result>,
Designator<Result>, FunctionRef<Result>>;
public:
common::TupleToVariant<common::CombineTuples<Operations, Conversions, Indices,
TypeParamInquiries, DescriptorInquiries, Others>>
u;
};
template <int KIND>
class Expr<Type<TypeCategory::Real, KIND>>
: public ExpressionBase<Type<TypeCategory::Real, KIND>> {
public:
using Result = Type<TypeCategory::Real, KIND>;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
explicit Expr(const Scalar<Result> &x) : u{Constant<Result>{x}} {}
private:
// N.B. Real->Complex and Complex->Real conversions are done with CMPLX
// and part access operations (resp.).
using Conversions = std::variant<Convert<Result, TypeCategory::Integer>,
Convert<Result, TypeCategory::Real>>;
using Operations = std::variant<ComplexComponent<KIND>, Parentheses<Result>,
Negate<Result>, Add<Result>, Subtract<Result>, Multiply<Result>,
Divide<Result>, Power<Result>, RealToIntPower<Result>, Extremum<Result>>;
using Others = std::variant<Constant<Result>, ArrayConstructor<Result>,
Designator<Result>, FunctionRef<Result>>;
public:
common::CombineVariants<Operations, Conversions, Others> u;
};
template <int KIND>
class Expr<Type<TypeCategory::Complex, KIND>>
: public ExpressionBase<Type<TypeCategory::Complex, KIND>> {
public:
using Result = Type<TypeCategory::Complex, KIND>;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
explicit Expr(const Scalar<Result> &x) : u{Constant<Result>{x}} {}
using Operations = std::variant<Parentheses<Result>, Negate<Result>,
Convert<Result, TypeCategory::Complex>, Add<Result>, Subtract<Result>,
Multiply<Result>, Divide<Result>, Power<Result>, RealToIntPower<Result>,
ComplexConstructor<KIND>>;
using Others = std::variant<Constant<Result>, ArrayConstructor<Result>,
Designator<Result>, FunctionRef<Result>>;
public:
common::CombineVariants<Operations, Others> u;
};
FOR_EACH_INTEGER_KIND(extern template class Expr, )
FOR_EACH_REAL_KIND(extern template class Expr, )
FOR_EACH_COMPLEX_KIND(extern template class Expr, )
template <int KIND>
class Expr<Type<TypeCategory::Character, KIND>>
: public ExpressionBase<Type<TypeCategory::Character, KIND>> {
public:
using Result = Type<TypeCategory::Character, KIND>;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
explicit Expr(const Scalar<Result> &x) : u{Constant<Result>{x}} {}
explicit Expr(Scalar<Result> &&x) : u{Constant<Result>{std::move(x)}} {}
std::optional<Expr<SubscriptInteger>> LEN() const;
std::variant<Constant<Result>, ArrayConstructor<Result>, Designator<Result>,
FunctionRef<Result>, Parentheses<Result>, Convert<Result>, Concat<KIND>,
Extremum<Result>, SetLength<KIND>>
u;
};
FOR_EACH_CHARACTER_KIND(extern template class Expr, )
// The Relational class template is a helper for constructing logical
// expressions with polymorphism over the cross product of the possible
// categories and kinds of comparable operands.
// Fortran defines a numeric relation with distinct types or kinds as
// first undergoing the same operand conversions that occur with the intrinsic
// addition operator. Character relations must have the same kind.
// There are no relations between LOGICAL values.
template <typename T>
class Relational : public Operation<Relational<T>, LogicalResult, T, T> {
public:
using Result = LogicalResult;
using Base = Operation<Relational, LogicalResult, T, T>;
using Operand = typename Base::template Operand<0>;
static_assert(Operand::category == TypeCategory::Integer ||
Operand::category == TypeCategory::Real ||
Operand::category == TypeCategory::Complex ||
Operand::category == TypeCategory::Character);
CLASS_BOILERPLATE(Relational)
Relational(
RelationalOperator r, const Expr<Operand> &a, const Expr<Operand> &b)
: Base{a, b}, opr{r} {}
Relational(RelationalOperator r, Expr<Operand> &&a, Expr<Operand> &&b)
: Base{std::move(a), std::move(b)}, opr{r} {}
RelationalOperator opr;
};
template <> class Relational<SomeType> {
using DirectlyComparableTypes = common::CombineTuples<IntegerTypes, RealTypes,
ComplexTypes, CharacterTypes>;
public:
using Result = LogicalResult;
EVALUATE_UNION_CLASS_BOILERPLATE(Relational)
static constexpr DynamicType GetType() { return Result::GetType(); }
int Rank() const {
return common::visit([](const auto &x) { return x.Rank(); }, u);
}
llvm::raw_ostream &AsFortran(llvm::raw_ostream &o) const;
common::MapTemplate<Relational, DirectlyComparableTypes> u;
};
FOR_EACH_INTEGER_KIND(extern template class Relational, )
FOR_EACH_REAL_KIND(extern template class Relational, )
FOR_EACH_CHARACTER_KIND(extern template class Relational, )
extern template class Relational<SomeType>;
// Logical expressions of a kind bigger than LogicalResult
// do not include Relational<> operations as possibilities,
// since the results of Relationals are always LogicalResult
// (kind=4).
template <int KIND>
class Expr<Type<TypeCategory::Logical, KIND>>
: public ExpressionBase<Type<TypeCategory::Logical, KIND>> {
public:
using Result = Type<TypeCategory::Logical, KIND>;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
explicit Expr(const Scalar<Result> &x) : u{Constant<Result>{x}} {}
explicit Expr(bool x) : u{Constant<Result>{x}} {}
private:
using Operations = std::tuple<Convert<Result>, Parentheses<Result>, Not<KIND>,
LogicalOperation<KIND>>;
using Relations = std::conditional_t<KIND == LogicalResult::kind,
std::tuple<Relational<SomeType>>, std::tuple<>>;
using Others = std::tuple<Constant<Result>, ArrayConstructor<Result>,
Designator<Result>, FunctionRef<Result>>;
public:
common::TupleToVariant<common::CombineTuples<Operations, Relations, Others>>
u;
};
FOR_EACH_LOGICAL_KIND(extern template class Expr, )
// StructureConstructor pairs a StructureConstructorValues instance
// (a map associating symbols with expressions) with a derived type
// specification. There are two other similar classes:
// - ArrayConstructor<SomeDerived> comprises a derived type spec &
// zero or more instances of Expr<SomeDerived>; it has rank 1
// but not (in the most general case) a known shape.
// - Constant<SomeDerived> comprises a derived type spec, zero or more
// homogeneous instances of StructureConstructorValues whose type
// parameters and component expressions are all constant, and a
// known shape (possibly scalar).
// StructureConstructor represents a scalar value of derived type that
// is not necessarily a constant. It is used only as an Expr<SomeDerived>
// alternative and as the type Scalar<SomeDerived> (with an assumption
// of constant component value expressions).
class StructureConstructor {
public:
using Result = SomeDerived;
explicit StructureConstructor(const semantics::DerivedTypeSpec &spec)
: result_{spec} {}
StructureConstructor(
const semantics::DerivedTypeSpec &, const StructureConstructorValues &);
StructureConstructor(
const semantics::DerivedTypeSpec &, StructureConstructorValues &&);
CLASS_BOILERPLATE(StructureConstructor)
constexpr Result result() const { return result_; }
const semantics::DerivedTypeSpec &derivedTypeSpec() const {
return result_.derivedTypeSpec();
}
StructureConstructorValues &values() { return values_; }
const StructureConstructorValues &values() const { return values_; }
bool operator==(const StructureConstructor &) const;
StructureConstructorValues::iterator begin() { return values_.begin(); }
StructureConstructorValues::const_iterator begin() const {
return values_.begin();
}
StructureConstructorValues::iterator end() { return values_.end(); }
StructureConstructorValues::const_iterator end() const {
return values_.end();
}
// can return nullopt
std::optional<Expr<SomeType>> Find(const Symbol &) const;
StructureConstructor &Add(const semantics::Symbol &, Expr<SomeType> &&);
int Rank() const { return 0; }
DynamicType GetType() const;
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
private:
std::optional<Expr<SomeType>> CreateParentComponent(const Symbol &) const;
Result result_;
StructureConstructorValues values_;
};
// An expression whose result has a derived type.
template <> class Expr<SomeDerived> : public ExpressionBase<SomeDerived> {
public:
using Result = SomeDerived;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
std::variant<Constant<Result>, ArrayConstructor<Result>, StructureConstructor,
Designator<Result>, FunctionRef<Result>, Parentheses<Result>>
u;
};
// A polymorphic expression of known intrinsic type category, but dynamic
// kind, represented as a discriminated union over Expr<Type<CAT, K>>
// for each supported kind K in the category.
template <TypeCategory CAT>
class Expr<SomeKind<CAT>> : public ExpressionBase<SomeKind<CAT>> {
public:
using Result = SomeKind<CAT>;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
int GetKind() const;
common::MapTemplate<evaluate::Expr, CategoryTypes<CAT>> u;
};
template <> class Expr<SomeCharacter> : public ExpressionBase<SomeCharacter> {
public:
using Result = SomeCharacter;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
int GetKind() const;
std::optional<Expr<SubscriptInteger>> LEN() const;
common::MapTemplate<Expr, CategoryTypes<TypeCategory::Character>> u;
};
// A variant comprising the Expr<> instantiations over SomeDerived and
// SomeKind<CATEGORY>.
using CategoryExpression = common::MapTemplate<Expr, SomeCategory>;
// BOZ literal "typeless" constants must be wide enough to hold a numeric
// value of any supported kind of INTEGER or REAL. They must also be
// distinguishable from other integer constants, since they are permitted
// to be used in only a few situations.
using BOZLiteralConstant = typename LargestReal::Scalar::Word;
// Null pointers without MOLD= arguments are typed by context.
struct NullPointer {
constexpr bool operator==(const NullPointer &) const { return true; }
constexpr int Rank() const { return 0; }
};
// Procedure pointer targets are treated as if they were typeless.
// They are either procedure designators or values returned from
// references to functions that return procedure (not object) pointers.
using TypelessExpression = std::variant<BOZLiteralConstant, NullPointer,
ProcedureDesignator, ProcedureRef>;
// A completely generic expression, polymorphic across all of the intrinsic type
// categories and each of their kinds.
template <> class Expr<SomeType> : public ExpressionBase<SomeType> {
public:
using Result = SomeType;
EVALUATE_UNION_CLASS_BOILERPLATE(Expr)
// Owning references to these generic expressions can appear in other
// compiler data structures (viz., the parse tree and symbol table), so
// its destructor is externalized to reduce redundant default instances.
~Expr();
template <TypeCategory CAT, int KIND>
explicit Expr(const Expr<Type<CAT, KIND>> &x) : u{Expr<SomeKind<CAT>>{x}} {}
template <TypeCategory CAT, int KIND>
explicit Expr(Expr<Type<CAT, KIND>> &&x)
: u{Expr<SomeKind<CAT>>{std::move(x)}} {}
template <TypeCategory CAT, int KIND>
Expr &operator=(const Expr<Type<CAT, KIND>> &x) {
u = Expr<SomeKind<CAT>>{x};
return *this;
}
template <TypeCategory CAT, int KIND>
Expr &operator=(Expr<Type<CAT, KIND>> &&x) {
u = Expr<SomeKind<CAT>>{std::move(x)};
return *this;
}
public:
common::CombineVariants<TypelessExpression, CategoryExpression> u;
};
// An assignment is either intrinsic, user-defined (with a ProcedureRef to
// specify the procedure to call), or pointer assignment (with possibly empty
// BoundsSpec or non-empty BoundsRemapping). In all cases there are Exprs
// representing the LHS and RHS of the assignment.
class Assignment {
public:
Assignment(Expr<SomeType> &&lhs, Expr<SomeType> &&rhs)
: lhs(std::move(lhs)), rhs(std::move(rhs)) {}
struct Intrinsic {};
using BoundsSpec = std::vector<Expr<SubscriptInteger>>;
using BoundsRemapping =
std::vector<std::pair<Expr<SubscriptInteger>, Expr<SubscriptInteger>>>;
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
Expr<SomeType> lhs;
Expr<SomeType> rhs;
std::variant<Intrinsic, ProcedureRef, BoundsSpec, BoundsRemapping> u;
};
// This wrapper class is used, by means of a forward reference with
// an owning pointer, to cache analyzed expressions in parse tree nodes.
struct GenericExprWrapper {
GenericExprWrapper() {}
explicit GenericExprWrapper(std::optional<Expr<SomeType>> &&x)
: v{std::move(x)} {}
~GenericExprWrapper();
static void Deleter(GenericExprWrapper *);
std::optional<Expr<SomeType>> v; // vacant if error
};
// Like GenericExprWrapper but for analyzed assignments
struct GenericAssignmentWrapper {
GenericAssignmentWrapper() {}
explicit GenericAssignmentWrapper(Assignment &&x) : v{std::move(x)} {}
explicit GenericAssignmentWrapper(std::optional<Assignment> &&x)
: v{std::move(x)} {}
~GenericAssignmentWrapper();
static void Deleter(GenericAssignmentWrapper *);
std::optional<Assignment> v; // vacant if error
};
FOR_EACH_CATEGORY_TYPE(extern template class Expr, )
FOR_EACH_TYPE_AND_KIND(extern template class ExpressionBase, )
FOR_EACH_INTRINSIC_KIND(extern template class ArrayConstructorValues, )
FOR_EACH_INTRINSIC_KIND(extern template class ArrayConstructor, )
// Template instantiations to resolve these "extern template" declarations.
#define INSTANTIATE_EXPRESSION_TEMPLATES \
FOR_EACH_INTRINSIC_KIND(template class Expr, ) \
FOR_EACH_CATEGORY_TYPE(template class Expr, ) \
FOR_EACH_INTEGER_KIND(template class Relational, ) \
FOR_EACH_REAL_KIND(template class Relational, ) \
FOR_EACH_CHARACTER_KIND(template class Relational, ) \
template class Relational<SomeType>; \
FOR_EACH_TYPE_AND_KIND(template class ExpressionBase, ) \
FOR_EACH_INTRINSIC_KIND(template class ArrayConstructorValues, ) \
FOR_EACH_INTRINSIC_KIND(template class ArrayConstructor, )
} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_EXPRESSION_H_