//===-- include/flang/Evaluate/tools.h --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_TOOLS_H_
#define FORTRAN_EVALUATE_TOOLS_H_
#include "traverse.h"
#include "flang/Common/idioms.h"
#include "flang/Common/template.h"
#include "flang/Common/unwrap.h"
#include "flang/Evaluate/constant.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/attr.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/symbol.h"
#include <array>
#include <optional>
#include <set>
#include <type_traits>
#include <utility>
namespace Fortran::evaluate {
// Some expression predicates and extractors.
// Predicate: true when an expression is a variable reference, not an
// operation. Be advised: a call to a function that returns an object
// pointer is a "variable" in Fortran (it can be the left-hand side of
// an assignment).
struct IsVariableHelper
: public AnyTraverse<IsVariableHelper, std::optional<bool>> {
using Result = std::optional<bool>; // effectively tri-state
using Base = AnyTraverse<IsVariableHelper, Result>;
IsVariableHelper() : Base{*this} {}
using Base::operator();
Result operator()(const StaticDataObject &) const { return false; }
Result operator()(const Symbol &) const;
Result operator()(const Component &) const;
Result operator()(const ArrayRef &) const;
Result operator()(const Substring &) const;
Result operator()(const CoarrayRef &) const { return true; }
Result operator()(const ComplexPart &) const { return true; }
Result operator()(const ProcedureDesignator &) const;
template <typename T> Result operator()(const Expr<T> &x) const {
if constexpr (common::HasMember<T, AllIntrinsicTypes> ||
std::is_same_v<T, SomeDerived>) {
// Expression with a specific type
if (std::holds_alternative<Designator<T>>(x.u) ||
std::holds_alternative<FunctionRef<T>>(x.u)) {
if (auto known{(*this)(x.u)}) {
return known;
}
}
return false;
} else if constexpr (std::is_same_v<T, SomeType>) {
if (std::holds_alternative<ProcedureDesignator>(x.u) ||
std::holds_alternative<ProcedureRef>(x.u)) {
return false; // procedure pointer
} else {
return (*this)(x.u);
}
} else {
return (*this)(x.u);
}
}
};
template <typename A> bool IsVariable(const A &x) {
if (auto known{IsVariableHelper{}(x)}) {
return *known;
} else {
return false;
}
}
// Predicate: true when an expression is assumed-rank
bool IsAssumedRank(const Symbol &);
bool IsAssumedRank(const ActualArgument &);
template <typename A> bool IsAssumedRank(const A &) { return false; }
template <typename A> bool IsAssumedRank(const Designator<A> &designator) {
if (const auto *symbol{std::get_if<SymbolRef>(&designator.u)}) {
return IsAssumedRank(symbol->get());
} else {
return false;
}
}
template <typename T> bool IsAssumedRank(const Expr<T> &expr) {
return common::visit([](const auto &x) { return IsAssumedRank(x); }, expr.u);
}
template <typename A> bool IsAssumedRank(const std::optional<A> &x) {
return x && IsAssumedRank(*x);
}
template <typename A> bool IsAssumedRank(const A *x) {
return x && IsAssumedRank(*x);
}
// Predicate: true when an expression is a coarray (corank > 0)
bool IsCoarray(const ActualArgument &);
bool IsCoarray(const Symbol &);
template <typename A> bool IsCoarray(const A &) { return false; }
template <typename A> bool IsCoarray(const Designator<A> &designator) {
if (const auto *symbol{std::get_if<SymbolRef>(&designator.u)}) {
return IsCoarray(**symbol);
}
return false;
}
template <typename T> bool IsCoarray(const Expr<T> &expr) {
return common::visit([](const auto &x) { return IsCoarray(x); }, expr.u);
}
template <typename A> bool IsCoarray(const std::optional<A> &x) {
return x && IsCoarray(*x);
}
// Generalizing packagers: these take operations and expressions of more
// specific types and wrap them in Expr<> containers of more abstract types.
template <typename A> common::IfNoLvalue<Expr<ResultType<A>>, A> AsExpr(A &&x) {
return Expr<ResultType<A>>{std::move(x)};
}
template <typename T> Expr<T> AsExpr(Expr<T> &&x) {
static_assert(IsSpecificIntrinsicType<T>);
return std::move(x);
}
template <TypeCategory CATEGORY>
Expr<SomeKind<CATEGORY>> AsCategoryExpr(Expr<SomeKind<CATEGORY>> &&x) {
return std::move(x);
}
template <typename A>
common::IfNoLvalue<Expr<SomeType>, A> AsGenericExpr(A &&x) {
if constexpr (common::HasMember<A, TypelessExpression>) {
return Expr<SomeType>{std::move(x)};
} else {
return Expr<SomeType>{AsCategoryExpr(std::move(x))};
}
}
inline Expr<SomeType> AsGenericExpr(Expr<SomeType> &&x) { return std::move(x); }
// These overloads wrap DataRefs and simple whole variables up into
// generic expressions if they have a known type.
std::optional<Expr<SomeType>> AsGenericExpr(DataRef &&);
std::optional<Expr<SomeType>> AsGenericExpr(const Symbol &);
// Propagate std::optional from input to output.
template <typename A>
std::optional<Expr<SomeType>> AsGenericExpr(std::optional<A> &&x) {
if (x) {
return AsGenericExpr(std::move(*x));
} else {
return std::nullopt;
}
}
template <typename A>
common::IfNoLvalue<Expr<SomeKind<ResultType<A>::category>>, A> AsCategoryExpr(
A &&x) {
return Expr<SomeKind<ResultType<A>::category>>{AsExpr(std::move(x))};
}
Expr<SomeType> Parenthesize(Expr<SomeType> &&);
template <typename A> constexpr bool IsNumericCategoryExpr() {
if constexpr (common::HasMember<A, TypelessExpression>) {
return false;
} else {
return common::HasMember<ResultType<A>, NumericCategoryTypes>;
}
}
// Specializing extractor. If an Expr wraps some type of object, perhaps
// in several layers, return a pointer to it; otherwise null. Also works
// with expressions contained in ActualArgument.
template <typename A, typename B>
auto UnwrapExpr(B &x) -> common::Constify<A, B> * {
using Ty = std::decay_t<B>;
if constexpr (std::is_same_v<A, Ty>) {
return &x;
} else if constexpr (std::is_same_v<Ty, ActualArgument>) {
if (auto *expr{x.UnwrapExpr()}) {
return UnwrapExpr<A>(*expr);
}
} else if constexpr (std::is_same_v<Ty, Expr<SomeType>>) {
return common::visit([](auto &x) { return UnwrapExpr<A>(x); }, x.u);
} else if constexpr (!common::HasMember<A, TypelessExpression>) {
if constexpr (std::is_same_v<Ty, Expr<ResultType<A>>> ||
std::is_same_v<Ty, Expr<SomeKind<ResultType<A>::category>>>) {
return common::visit([](auto &x) { return UnwrapExpr<A>(x); }, x.u);
}
}
return nullptr;
}
template <typename A, typename B>
const A *UnwrapExpr(const std::optional<B> &x) {
if (x) {
return UnwrapExpr<A>(*x);
} else {
return nullptr;
}
}
template <typename A, typename B> A *UnwrapExpr(std::optional<B> &x) {
if (x) {
return UnwrapExpr<A>(*x);
} else {
return nullptr;
}
}
// A variant of UnwrapExpr above that also skips through (parentheses)
// and conversions of kinds within a category. Useful for extracting LEN
// type parameter inquiries, at least.
template <typename A, typename B>
auto UnwrapConvertedExpr(B &x) -> common::Constify<A, B> * {
using Ty = std::decay_t<B>;
if constexpr (std::is_same_v<A, Ty>) {
return &x;
} else if constexpr (std::is_same_v<Ty, ActualArgument>) {
if (auto *expr{x.UnwrapExpr()}) {
return UnwrapConvertedExpr<A>(*expr);
}
} else if constexpr (std::is_same_v<Ty, Expr<SomeType>>) {
return common::visit(
[](auto &x) { return UnwrapConvertedExpr<A>(x); }, x.u);
} else {
using DesiredResult = ResultType<A>;
if constexpr (std::is_same_v<Ty, Expr<DesiredResult>> ||
std::is_same_v<Ty, Expr<SomeKind<DesiredResult::category>>>) {
return common::visit(
[](auto &x) { return UnwrapConvertedExpr<A>(x); }, x.u);
} else {
using ThisResult = ResultType<B>;
if constexpr (std::is_same_v<Ty, Expr<ThisResult>>) {
return common::visit(
[](auto &x) { return UnwrapConvertedExpr<A>(x); }, x.u);
} else if constexpr (std::is_same_v<Ty, Parentheses<ThisResult>> ||
std::is_same_v<Ty, Convert<ThisResult, DesiredResult::category>>) {
return common::visit(
[](auto &x) { return UnwrapConvertedExpr<A>(x); }, x.left().u);
}
}
}
return nullptr;
}
// UnwrapProcedureRef() returns a pointer to a ProcedureRef when the whole
// expression is a reference to a procedure.
template <typename A> inline const ProcedureRef *UnwrapProcedureRef(const A &) {
return nullptr;
}
inline const ProcedureRef *UnwrapProcedureRef(const ProcedureRef &proc) {
// Reference to subroutine or to a function that returns
// an object pointer or procedure pointer
return &proc;
}
template <typename T>
inline const ProcedureRef *UnwrapProcedureRef(const FunctionRef<T> &func) {
return &func; // reference to a function returning a non-pointer
}
template <typename T>
inline const ProcedureRef *UnwrapProcedureRef(const Expr<T> &expr) {
return common::visit(
[](const auto &x) { return UnwrapProcedureRef(x); }, expr.u);
}
// When an expression is a "bare" LEN= derived type parameter inquiry,
// possibly wrapped in integer kind conversions &/or parentheses, return
// a pointer to the Symbol with TypeParamDetails.
template <typename A> const Symbol *ExtractBareLenParameter(const A &expr) {
if (const auto *typeParam{
UnwrapConvertedExpr<evaluate::TypeParamInquiry>(expr)}) {
if (!typeParam->base()) {
const Symbol &symbol{typeParam->parameter()};
if (const auto *tpd{symbol.detailsIf<semantics::TypeParamDetails>()}) {
if (tpd->attr() == common::TypeParamAttr::Len) {
return &symbol;
}
}
}
}
return nullptr;
}
// If an expression simply wraps a DataRef, extract and return it.
// The Boolean arguments control the handling of Substring and ComplexPart
// references: when true (not default), it extracts the base DataRef
// of a substring or complex part.
template <typename A>
common::IfNoLvalue<std::optional<DataRef>, A> ExtractDataRef(
const A &, bool intoSubstring, bool intoComplexPart) {
return std::nullopt; // default base case
}
template <typename T>
std::optional<DataRef> ExtractDataRef(const Designator<T> &d,
bool intoSubstring = false, bool intoComplexPart = false) {
return common::visit(
[=](const auto &x) -> std::optional<DataRef> {
if constexpr (common::HasMember<decltype(x), decltype(DataRef::u)>) {
return DataRef{x};
}
if constexpr (std::is_same_v<std::decay_t<decltype(x)>, Substring>) {
if (intoSubstring) {
return ExtractSubstringBase(x);
}
}
if constexpr (std::is_same_v<std::decay_t<decltype(x)>, ComplexPart>) {
if (intoComplexPart) {
return x.complex();
}
}
return std::nullopt; // w/o "else" to dodge bogus g++ 8.1 warning
},
d.u);
}
template <typename T>
std::optional<DataRef> ExtractDataRef(const Expr<T> &expr,
bool intoSubstring = false, bool intoComplexPart = false) {
return common::visit(
[=](const auto &x) {
return ExtractDataRef(x, intoSubstring, intoComplexPart);
},
expr.u);
}
template <typename A>
std::optional<DataRef> ExtractDataRef(const std::optional<A> &x,
bool intoSubstring = false, bool intoComplexPart = false) {
if (x) {
return ExtractDataRef(*x, intoSubstring, intoComplexPart);
} else {
return std::nullopt;
}
}
template <typename A>
std::optional<DataRef> ExtractDataRef(
A *p, bool intoSubstring = false, bool intoComplexPart = false) {
if (p) {
return ExtractDataRef(std::as_const(*p), intoSubstring, intoComplexPart);
} else {
return std::nullopt;
}
}
std::optional<DataRef> ExtractDataRef(const ActualArgument &,
bool intoSubstring = false, bool intoComplexPart = false);
std::optional<DataRef> ExtractSubstringBase(const Substring &);
// Predicate: is an expression is an array element reference?
template <typename T>
bool IsArrayElement(const Expr<T> &expr, bool intoSubstring = true,
bool skipComponents = false) {
if (auto dataRef{ExtractDataRef(expr, intoSubstring)}) {
const DataRef *ref{&*dataRef};
if (skipComponents) {
while (const Component * component{std::get_if<Component>(&ref->u)}) {
ref = &component->base();
}
}
if (const auto *coarrayRef{std::get_if<CoarrayRef>(&ref->u)}) {
return !coarrayRef->subscript().empty();
} else {
return std::holds_alternative<ArrayRef>(ref->u);
}
} else {
return false;
}
}
template <typename A>
std::optional<NamedEntity> ExtractNamedEntity(const A &x) {
if (auto dataRef{ExtractDataRef(x)}) {
return common::visit(
common::visitors{
[](SymbolRef &&symbol) -> std::optional<NamedEntity> {
return NamedEntity{symbol};
},
[](Component &&component) -> std::optional<NamedEntity> {
return NamedEntity{std::move(component)};
},
[](CoarrayRef &&co) -> std::optional<NamedEntity> {
return co.GetBase();
},
[](auto &&) { return std::optional<NamedEntity>{}; },
},
std::move(dataRef->u));
} else {
return std::nullopt;
}
}
struct ExtractCoindexedObjectHelper {
template <typename A> std::optional<CoarrayRef> operator()(const A &) const {
return std::nullopt;
}
std::optional<CoarrayRef> operator()(const CoarrayRef &x) const { return x; }
template <typename A>
std::optional<CoarrayRef> operator()(const Expr<A> &expr) const {
return common::visit(*this, expr.u);
}
std::optional<CoarrayRef> operator()(const DataRef &dataRef) const {
return common::visit(*this, dataRef.u);
}
std::optional<CoarrayRef> operator()(const NamedEntity &named) const {
if (const Component * component{named.UnwrapComponent()}) {
return (*this)(*component);
} else {
return std::nullopt;
}
}
std::optional<CoarrayRef> operator()(const ProcedureDesignator &des) const {
if (const auto *component{
std::get_if<common::CopyableIndirection<Component>>(&des.u)}) {
return (*this)(component->value());
} else {
return std::nullopt;
}
}
std::optional<CoarrayRef> operator()(const Component &component) const {
return (*this)(component.base());
}
std::optional<CoarrayRef> operator()(const ArrayRef &arrayRef) const {
return (*this)(arrayRef.base());
}
};
template <typename A> std::optional<CoarrayRef> ExtractCoarrayRef(const A &x) {
if (auto dataRef{ExtractDataRef(x, true)}) {
return ExtractCoindexedObjectHelper{}(*dataRef);
} else {
return ExtractCoindexedObjectHelper{}(x);
}
}
struct ExtractSubstringHelper {
template <typename T> static std::optional<Substring> visit(T &&) {
return std::nullopt;
}
static std::optional<Substring> visit(const Substring &e) { return e; }
template <typename T>
static std::optional<Substring> visit(const Designator<T> &e) {
return common::visit([](auto &&s) { return visit(s); }, e.u);
}
template <typename T>
static std::optional<Substring> visit(const Expr<T> &e) {
return common::visit([](auto &&s) { return visit(s); }, e.u);
}
};
template <typename A> std::optional<Substring> ExtractSubstring(const A &x) {
return ExtractSubstringHelper::visit(x);
}
// If an expression is simply a whole symbol data designator,
// extract and return that symbol, else null.
template <typename A> const Symbol *UnwrapWholeSymbolDataRef(const A &x) {
if (auto dataRef{ExtractDataRef(x)}) {
if (const SymbolRef * p{std::get_if<SymbolRef>(&dataRef->u)}) {
return &p->get();
}
}
return nullptr;
}
// If an expression is a whole symbol or a whole component desginator,
// extract and return that symbol, else null.
template <typename A>
const Symbol *UnwrapWholeSymbolOrComponentDataRef(const A &x) {
if (auto dataRef{ExtractDataRef(x)}) {
if (const SymbolRef * p{std::get_if<SymbolRef>(&dataRef->u)}) {
return &p->get();
} else if (const Component * c{std::get_if<Component>(&dataRef->u)}) {
if (c->base().Rank() == 0) {
return &c->GetLastSymbol();
}
}
}
return nullptr;
}
// If an expression is a whole symbol or a whole component designator,
// potentially followed by an image selector, extract and return that symbol,
// else null.
template <typename A>
const Symbol *UnwrapWholeSymbolOrComponentOrCoarrayRef(const A &x) {
if (auto dataRef{ExtractDataRef(x)}) {
if (const SymbolRef * p{std::get_if<SymbolRef>(&dataRef->u)}) {
return &p->get();
} else if (const Component * c{std::get_if<Component>(&dataRef->u)}) {
if (c->base().Rank() == 0) {
return &c->GetLastSymbol();
}
} else if (const CoarrayRef * c{std::get_if<CoarrayRef>(&dataRef->u)}) {
if (c->subscript().empty()) {
return &c->GetLastSymbol();
}
}
}
return nullptr;
}
// GetFirstSymbol(A%B%C[I]%D) -> A
template <typename A> const Symbol *GetFirstSymbol(const A &x) {
if (auto dataRef{ExtractDataRef(x, true)}) {
return &dataRef->GetFirstSymbol();
} else {
return nullptr;
}
}
// GetLastPointerSymbol(A%PTR1%B%PTR2%C) -> PTR2
const Symbol *GetLastPointerSymbol(const evaluate::DataRef &);
// Creation of conversion expressions can be done to either a known
// specific intrinsic type with ConvertToType<T>(x) or by converting
// one arbitrary expression to the type of another with ConvertTo(to, from).
template <typename TO, TypeCategory FROMCAT>
Expr<TO> ConvertToType(Expr<SomeKind<FROMCAT>> &&x) {
static_assert(IsSpecificIntrinsicType<TO>);
if constexpr (FROMCAT == TO::category) {
if (auto *already{std::get_if<Expr<TO>>(&x.u)}) {
return std::move(*already);
} else {
return Expr<TO>{Convert<TO, FROMCAT>{std::move(x)}};
}
} else if constexpr (TO::category == TypeCategory::Complex) {
using Part = typename TO::Part;
Scalar<Part> zero;
return Expr<TO>{ComplexConstructor<TO::kind>{
ConvertToType<Part>(std::move(x)), Expr<Part>{Constant<Part>{zero}}}};
} else if constexpr (FROMCAT == TypeCategory::Complex) {
// Extract and convert the real component of a complex value
return common::visit(
[&](auto &&z) {
using ZType = ResultType<decltype(z)>;
using Part = typename ZType::Part;
return ConvertToType<TO, TypeCategory::Real>(Expr<SomeReal>{
Expr<Part>{ComplexComponent<Part::kind>{false, std::move(z)}}});
},
std::move(x.u));
} else {
return Expr<TO>{Convert<TO, FROMCAT>{std::move(x)}};
}
}
template <typename TO, TypeCategory FROMCAT, int FROMKIND>
Expr<TO> ConvertToType(Expr<Type<FROMCAT, FROMKIND>> &&x) {
return ConvertToType<TO, FROMCAT>(Expr<SomeKind<FROMCAT>>{std::move(x)});
}
template <typename TO> Expr<TO> ConvertToType(BOZLiteralConstant &&x) {
static_assert(IsSpecificIntrinsicType<TO>);
if constexpr (TO::category == TypeCategory::Integer) {
return Expr<TO>{
Constant<TO>{Scalar<TO>::ConvertUnsigned(std::move(x)).value}};
} else {
static_assert(TO::category == TypeCategory::Real);
using Word = typename Scalar<TO>::Word;
return Expr<TO>{
Constant<TO>{Scalar<TO>{Word::ConvertUnsigned(std::move(x)).value}}};
}
}
template <typename T> bool IsBOZLiteral(const Expr<T> &expr) {
return std::holds_alternative<BOZLiteralConstant>(expr.u);
}
// Conversions to dynamic types
std::optional<Expr<SomeType>> ConvertToType(
const DynamicType &, Expr<SomeType> &&);
std::optional<Expr<SomeType>> ConvertToType(
const DynamicType &, std::optional<Expr<SomeType>> &&);
std::optional<Expr<SomeType>> ConvertToType(const Symbol &, Expr<SomeType> &&);
std::optional<Expr<SomeType>> ConvertToType(
const Symbol &, std::optional<Expr<SomeType>> &&);
// Conversions to the type of another expression
template <TypeCategory TC, int TK, typename FROM>
common::IfNoLvalue<Expr<Type<TC, TK>>, FROM> ConvertTo(
const Expr<Type<TC, TK>> &, FROM &&x) {
return ConvertToType<Type<TC, TK>>(std::move(x));
}
template <TypeCategory TC, typename FROM>
common::IfNoLvalue<Expr<SomeKind<TC>>, FROM> ConvertTo(
const Expr<SomeKind<TC>> &to, FROM &&from) {
return common::visit(
[&](const auto &toKindExpr) {
using KindExpr = std::decay_t<decltype(toKindExpr)>;
return AsCategoryExpr(
ConvertToType<ResultType<KindExpr>>(std::move(from)));
},
to.u);
}
template <typename FROM>
common::IfNoLvalue<Expr<SomeType>, FROM> ConvertTo(
const Expr<SomeType> &to, FROM &&from) {
return common::visit(
[&](const auto &toCatExpr) {
return AsGenericExpr(ConvertTo(toCatExpr, std::move(from)));
},
to.u);
}
// Convert an expression of some known category to a dynamically chosen
// kind of some category (usually but not necessarily distinct).
template <TypeCategory TOCAT, typename VALUE> struct ConvertToKindHelper {
using Result = std::optional<Expr<SomeKind<TOCAT>>>;
using Types = CategoryTypes<TOCAT>;
ConvertToKindHelper(int k, VALUE &&x) : kind{k}, value{std::move(x)} {}
template <typename T> Result Test() {
if (kind == T::kind) {
return std::make_optional(
AsCategoryExpr(ConvertToType<T>(std::move(value))));
}
return std::nullopt;
}
int kind;
VALUE value;
};
template <TypeCategory TOCAT, typename VALUE>
common::IfNoLvalue<Expr<SomeKind<TOCAT>>, VALUE> ConvertToKind(
int kind, VALUE &&x) {
auto result{common::SearchTypes(
ConvertToKindHelper<TOCAT, VALUE>{kind, std::move(x)})};
CHECK(result.has_value());
return *result;
}
// Given a type category CAT, SameKindExprs<CAT, N> is a variant that
// holds an arrays of expressions of the same supported kind in that
// category.
template <typename A, int N = 2> using SameExprs = std::array<Expr<A>, N>;
template <int N = 2> struct SameKindExprsHelper {
template <typename A> using SameExprs = std::array<Expr<A>, N>;
};
template <TypeCategory CAT, int N = 2>
using SameKindExprs =
common::MapTemplate<SameKindExprsHelper<N>::template SameExprs,
CategoryTypes<CAT>>;
// Given references to two expressions of arbitrary kind in the same type
// category, convert one to the kind of the other when it has the smaller kind,
// then return them in a type-safe package.
template <TypeCategory CAT>
SameKindExprs<CAT, 2> AsSameKindExprs(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return common::visit(
[&](auto &&kx, auto &&ky) -> SameKindExprs<CAT, 2> {
using XTy = ResultType<decltype(kx)>;
using YTy = ResultType<decltype(ky)>;
if constexpr (std::is_same_v<XTy, YTy>) {
return {SameExprs<XTy>{std::move(kx), std::move(ky)}};
} else if constexpr (XTy::kind < YTy::kind) {
return {SameExprs<YTy>{ConvertTo(ky, std::move(kx)), std::move(ky)}};
} else {
return {SameExprs<XTy>{std::move(kx), ConvertTo(kx, std::move(ky))}};
}
#if !__clang__ && 100 * __GNUC__ + __GNUC_MINOR__ == 801
// Silence a bogus warning about a missing return with G++ 8.1.0.
// Doesn't execute, but must be correctly typed.
CHECK(!"can't happen");
return {SameExprs<XTy>{std::move(kx), std::move(kx)}};
#endif
},
std::move(x.u), std::move(y.u));
}
// Ensure that both operands of an intrinsic REAL operation (or CMPLX()
// constructor) are INTEGER or REAL, then convert them as necessary to the
// same kind of REAL.
using ConvertRealOperandsResult =
std::optional<SameKindExprs<TypeCategory::Real, 2>>;
ConvertRealOperandsResult ConvertRealOperands(parser::ContextualMessages &,
Expr<SomeType> &&, Expr<SomeType> &&, int defaultRealKind);
// Per F'2018 R718, if both components are INTEGER, they are both converted
// to default REAL and the result is default COMPLEX. Otherwise, the
// kind of the result is the kind of most precise REAL component, and the other
// component is converted if necessary to its type.
std::optional<Expr<SomeComplex>> ConstructComplex(parser::ContextualMessages &,
Expr<SomeType> &&, Expr<SomeType> &&, int defaultRealKind);
std::optional<Expr<SomeComplex>> ConstructComplex(parser::ContextualMessages &,
std::optional<Expr<SomeType>> &&, std::optional<Expr<SomeType>> &&,
int defaultRealKind);
template <typename A> Expr<TypeOf<A>> ScalarConstantToExpr(const A &x) {
using Ty = TypeOf<A>;
static_assert(
std::is_same_v<Scalar<Ty>, std::decay_t<A>>, "TypeOf<> is broken");
return Expr<TypeOf<A>>{Constant<Ty>{x}};
}
// Combine two expressions of the same specific numeric type with an operation
// to produce a new expression.
template <template <typename> class OPR, typename SPECIFIC>
Expr<SPECIFIC> Combine(Expr<SPECIFIC> &&x, Expr<SPECIFIC> &&y) {
static_assert(IsSpecificIntrinsicType<SPECIFIC>);
return AsExpr(OPR<SPECIFIC>{std::move(x), std::move(y)});
}
// Given two expressions of arbitrary kind in the same intrinsic type
// category, convert one of them if necessary to the larger kind of the
// other, then combine the resulting homogenized operands with a given
// operation, returning a new expression in the same type category.
template <template <typename> class OPR, TypeCategory CAT>
Expr<SomeKind<CAT>> PromoteAndCombine(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return common::visit(
[](auto &&xy) {
using Ty = ResultType<decltype(xy[0])>;
return AsCategoryExpr(
Combine<OPR, Ty>(std::move(xy[0]), std::move(xy[1])));
},
AsSameKindExprs(std::move(x), std::move(y)));
}
// Given two expressions of arbitrary type, try to combine them with a
// binary numeric operation (e.g., Add), possibly with data type conversion of
// one of the operands to the type of the other. Handles special cases with
// typeless literal operands and with REAL/COMPLEX exponentiation to INTEGER
// powers.
template <template <typename> class OPR>
std::optional<Expr<SomeType>> NumericOperation(parser::ContextualMessages &,
Expr<SomeType> &&, Expr<SomeType> &&, int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Power>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Multiply>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Divide>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Add>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
extern template std::optional<Expr<SomeType>> NumericOperation<Subtract>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
std::optional<Expr<SomeType>> Negation(
parser::ContextualMessages &, Expr<SomeType> &&);
// Given two expressions of arbitrary type, try to combine them with a
// relational operator (e.g., .LT.), possibly with data type conversion.
std::optional<Expr<LogicalResult>> Relate(parser::ContextualMessages &,
RelationalOperator, Expr<SomeType> &&, Expr<SomeType> &&);
// Create a relational operation between two identically-typed operands
// and wrap it up in an Expr<LogicalResult>.
template <typename T>
Expr<LogicalResult> PackageRelation(
RelationalOperator opr, Expr<T> &&x, Expr<T> &&y) {
static_assert(IsSpecificIntrinsicType<T>);
return Expr<LogicalResult>{
Relational<SomeType>{Relational<T>{opr, std::move(x), std::move(y)}}};
}
template <int K>
Expr<Type<TypeCategory::Logical, K>> LogicalNegation(
Expr<Type<TypeCategory::Logical, K>> &&x) {
return AsExpr(Not<K>{std::move(x)});
}
Expr<SomeLogical> LogicalNegation(Expr<SomeLogical> &&);
template <int K>
Expr<Type<TypeCategory::Logical, K>> BinaryLogicalOperation(LogicalOperator opr,
Expr<Type<TypeCategory::Logical, K>> &&x,
Expr<Type<TypeCategory::Logical, K>> &&y) {
return AsExpr(LogicalOperation<K>{opr, std::move(x), std::move(y)});
}
Expr<SomeLogical> BinaryLogicalOperation(
LogicalOperator, Expr<SomeLogical> &&, Expr<SomeLogical> &&);
// Convenience functions and operator overloadings for expression construction.
// These interfaces are defined only for those situations that can never
// emit any message. Use the more general templates (above) in other
// situations.
template <TypeCategory C, int K>
Expr<Type<C, K>> operator-(Expr<Type<C, K>> &&x) {
return AsExpr(Negate<Type<C, K>>{std::move(x)});
}
template <TypeCategory C, int K>
Expr<Type<C, K>> operator+(Expr<Type<C, K>> &&x, Expr<Type<C, K>> &&y) {
return AsExpr(Combine<Add, Type<C, K>>(std::move(x), std::move(y)));
}
template <TypeCategory C, int K>
Expr<Type<C, K>> operator-(Expr<Type<C, K>> &&x, Expr<Type<C, K>> &&y) {
return AsExpr(Combine<Subtract, Type<C, K>>(std::move(x), std::move(y)));
}
template <TypeCategory C, int K>
Expr<Type<C, K>> operator*(Expr<Type<C, K>> &&x, Expr<Type<C, K>> &&y) {
return AsExpr(Combine<Multiply, Type<C, K>>(std::move(x), std::move(y)));
}
template <TypeCategory C, int K>
Expr<Type<C, K>> operator/(Expr<Type<C, K>> &&x, Expr<Type<C, K>> &&y) {
return AsExpr(Combine<Divide, Type<C, K>>(std::move(x), std::move(y)));
}
template <TypeCategory C> Expr<SomeKind<C>> operator-(Expr<SomeKind<C>> &&x) {
return common::visit(
[](auto &xk) { return Expr<SomeKind<C>>{-std::move(xk)}; }, x.u);
}
template <TypeCategory CAT>
Expr<SomeKind<CAT>> operator+(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return PromoteAndCombine<Add, CAT>(std::move(x), std::move(y));
}
template <TypeCategory CAT>
Expr<SomeKind<CAT>> operator-(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return PromoteAndCombine<Subtract, CAT>(std::move(x), std::move(y));
}
template <TypeCategory CAT>
Expr<SomeKind<CAT>> operator*(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return PromoteAndCombine<Multiply, CAT>(std::move(x), std::move(y));
}
template <TypeCategory CAT>
Expr<SomeKind<CAT>> operator/(
Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return PromoteAndCombine<Divide, CAT>(std::move(x), std::move(y));
}
// A utility for use with common::SearchTypes to create generic expressions
// when an intrinsic type category for (say) a variable is known
// but the kind parameter value is not.
template <TypeCategory CAT, template <typename> class TEMPLATE, typename VALUE>
struct TypeKindVisitor {
using Result = std::optional<Expr<SomeType>>;
using Types = CategoryTypes<CAT>;
TypeKindVisitor(int k, VALUE &&x) : kind{k}, value{std::move(x)} {}
TypeKindVisitor(int k, const VALUE &x) : kind{k}, value{x} {}
template <typename T> Result Test() {
if (kind == T::kind) {
return AsGenericExpr(TEMPLATE<T>{std::move(value)});
}
return std::nullopt;
}
int kind;
VALUE value;
};
// TypedWrapper() wraps a object in an explicitly typed representation
// (e.g., Designator<> or FunctionRef<>) that has been instantiated on
// a dynamically chosen Fortran type.
template <TypeCategory CATEGORY, template <typename> typename WRAPPER,
typename WRAPPED>
common::IfNoLvalue<std::optional<Expr<SomeType>>, WRAPPED> WrapperHelper(
int kind, WRAPPED &&x) {
return common::SearchTypes(
TypeKindVisitor<CATEGORY, WRAPPER, WRAPPED>{kind, std::move(x)});
}
template <template <typename> typename WRAPPER, typename WRAPPED>
common::IfNoLvalue<std::optional<Expr<SomeType>>, WRAPPED> TypedWrapper(
const DynamicType &dyType, WRAPPED &&x) {
switch (dyType.category()) {
SWITCH_COVERS_ALL_CASES
case TypeCategory::Integer:
return WrapperHelper<TypeCategory::Integer, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Real:
return WrapperHelper<TypeCategory::Real, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Complex:
return WrapperHelper<TypeCategory::Complex, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Character:
return WrapperHelper<TypeCategory::Character, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Logical:
return WrapperHelper<TypeCategory::Logical, WRAPPER, WRAPPED>(
dyType.kind(), std::move(x));
case TypeCategory::Derived:
return AsGenericExpr(Expr<SomeDerived>{WRAPPER<SomeDerived>{std::move(x)}});
}
}
// GetLastSymbol() returns the rightmost symbol in an object or procedure
// designator (which has perhaps been wrapped in an Expr<>), or a null pointer
// when none is found. It will return an ASSOCIATE construct entity's symbol
// rather than descending into its expression.
struct GetLastSymbolHelper
: public AnyTraverse<GetLastSymbolHelper, std::optional<const Symbol *>> {
using Result = std::optional<const Symbol *>;
using Base = AnyTraverse<GetLastSymbolHelper, Result>;
GetLastSymbolHelper() : Base{*this} {}
using Base::operator();
Result operator()(const Symbol &x) const { return &x; }
Result operator()(const Component &x) const { return &x.GetLastSymbol(); }
Result operator()(const NamedEntity &x) const { return &x.GetLastSymbol(); }
Result operator()(const ProcedureDesignator &x) const {
return x.GetSymbol();
}
template <typename T> Result operator()(const Expr<T> &x) const {
if constexpr (common::HasMember<T, AllIntrinsicTypes> ||
std::is_same_v<T, SomeDerived>) {
if (const auto *designator{std::get_if<Designator<T>>(&x.u)}) {
if (auto known{(*this)(*designator)}) {
return known;
}
}
return nullptr;
} else {
return (*this)(x.u);
}
}
};
template <typename A> const Symbol *GetLastSymbol(const A &x) {
if (auto known{GetLastSymbolHelper{}(x)}) {
return *known;
} else {
return nullptr;
}
}
// For everyday variables: if GetLastSymbol() succeeds on the argument, return
// its set of attributes, otherwise the empty set. Also works on variables that
// are pointer results of functions.
template <typename A> semantics::Attrs GetAttrs(const A &x) {
if (const Symbol * symbol{GetLastSymbol(x)}) {
return symbol->attrs();
} else {
return {};
}
}
template <>
inline semantics::Attrs GetAttrs<Expr<SomeType>>(const Expr<SomeType> &x) {
if (IsVariable(x)) {
if (const auto *procRef{UnwrapProcedureRef(x)}) {
if (const Symbol * interface{procRef->proc().GetInterfaceSymbol()}) {
if (const auto *details{
interface->detailsIf<semantics::SubprogramDetails>()}) {
if (details->isFunction() &&
details->result().attrs().test(semantics::Attr::POINTER)) {
// N.B.: POINTER becomes TARGET in SetAttrsFromAssociation()
return details->result().attrs();
}
}
}
}
}
if (const Symbol * symbol{GetLastSymbol(x)}) {
return symbol->attrs();
} else {
return {};
}
}
template <typename A> semantics::Attrs GetAttrs(const std::optional<A> &x) {
if (x) {
return GetAttrs(*x);
} else {
return {};
}
}
// GetBaseObject()
template <typename A> std::optional<BaseObject> GetBaseObject(const A &) {
return std::nullopt;
}
template <typename T>
std::optional<BaseObject> GetBaseObject(const Designator<T> &x) {
return x.GetBaseObject();
}
template <typename T>
std::optional<BaseObject> GetBaseObject(const Expr<T> &x) {
return common::visit([](const auto &y) { return GetBaseObject(y); }, x.u);
}
template <typename A>
std::optional<BaseObject> GetBaseObject(const std::optional<A> &x) {
if (x) {
return GetBaseObject(*x);
} else {
return std::nullopt;
}
}
// Like IsAllocatableOrPointer, but accepts pointer function results as being
// pointers too.
bool IsAllocatableOrPointerObject(const Expr<SomeType> &);
bool IsAllocatableDesignator(const Expr<SomeType> &);
// Procedure and pointer detection predicates
bool IsProcedureDesignator(const Expr<SomeType> &);
bool IsFunctionDesignator(const Expr<SomeType> &);
bool IsPointer(const Expr<SomeType> &);
bool IsProcedurePointer(const Expr<SomeType> &);
bool IsProcedure(const Expr<SomeType> &);
bool IsProcedurePointerTarget(const Expr<SomeType> &);
bool IsBareNullPointer(const Expr<SomeType> *); // NULL() w/o MOLD= or type
bool IsNullObjectPointer(const Expr<SomeType> &);
bool IsNullProcedurePointer(const Expr<SomeType> &);
bool IsNullPointer(const Expr<SomeType> &);
bool IsObjectPointer(const Expr<SomeType> &);
// Can Expr be passed as absent to an optional dummy argument.
// See 15.5.2.12 point 1 for more details.
bool MayBePassedAsAbsentOptional(const Expr<SomeType> &);
// Extracts the chain of symbols from a designator, which has perhaps been
// wrapped in an Expr<>, removing all of the (co)subscripts. The
// base object will be the first symbol in the result vector.
struct GetSymbolVectorHelper
: public Traverse<GetSymbolVectorHelper, SymbolVector> {
using Result = SymbolVector;
using Base = Traverse<GetSymbolVectorHelper, Result>;
using Base::operator();
GetSymbolVectorHelper() : Base{*this} {}
Result Default() { return {}; }
Result Combine(Result &&a, Result &&b) {
a.insert(a.end(), b.begin(), b.end());
return std::move(a);
}
Result operator()(const Symbol &) const;
Result operator()(const Component &) const;
Result operator()(const ArrayRef &) const;
Result operator()(const CoarrayRef &) const;
};
template <typename A> SymbolVector GetSymbolVector(const A &x) {
return GetSymbolVectorHelper{}(x);
}
// GetLastTarget() returns the rightmost symbol in an object designator's
// SymbolVector that has the POINTER or TARGET attribute, or a null pointer
// when none is found.
const Symbol *GetLastTarget(const SymbolVector &);
// Collects all of the Symbols in an expression
template <typename A> semantics::UnorderedSymbolSet CollectSymbols(const A &);
extern template semantics::UnorderedSymbolSet CollectSymbols(
const Expr<SomeType> &);
extern template semantics::UnorderedSymbolSet CollectSymbols(
const Expr<SomeInteger> &);
extern template semantics::UnorderedSymbolSet CollectSymbols(
const Expr<SubscriptInteger> &);
// Collects Symbols of interest for the CUDA data transfer in an expression
template <typename A>
semantics::UnorderedSymbolSet CollectCudaSymbols(const A &);
extern template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SomeType> &);
extern template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SomeInteger> &);
extern template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SubscriptInteger> &);
// Predicate: does a variable contain a vector-valued subscript (not a triplet)?
bool HasVectorSubscript(const Expr<SomeType> &);
// Utilities for attaching the location of the declaration of a symbol
// of interest to a message, if both pointers are non-null. Handles
// the case of USE association gracefully.
parser::Message *AttachDeclaration(parser::Message &, const Symbol &);
parser::Message *AttachDeclaration(parser::Message *, const Symbol &);
template <typename MESSAGES, typename... A>
parser::Message *SayWithDeclaration(
MESSAGES &messages, const Symbol &symbol, A &&...x) {
return AttachDeclaration(messages.Say(std::forward<A>(x)...), symbol);
}
// Check for references to impure procedures; returns the name
// of one to complain about, if any exist.
std::optional<std::string> FindImpureCall(
FoldingContext &, const Expr<SomeType> &);
std::optional<std::string> FindImpureCall(
FoldingContext &, const ProcedureRef &);
// Predicate: is a scalar expression suitable for naive scalar expansion
// in the flattening of an array expression?
// TODO: capture such scalar expansions in temporaries, flatten everything
class UnexpandabilityFindingVisitor
: public AnyTraverse<UnexpandabilityFindingVisitor> {
public:
using Base = AnyTraverse<UnexpandabilityFindingVisitor>;
using Base::operator();
explicit UnexpandabilityFindingVisitor(bool admitPureCall)
: Base{*this}, admitPureCall_{admitPureCall} {}
template <typename T> bool operator()(const FunctionRef<T> &procRef) {
return !admitPureCall_ || !procRef.proc().IsPure();
}
bool operator()(const CoarrayRef &) { return true; }
private:
bool admitPureCall_{false};
};
template <typename T>
bool IsExpandableScalar(const Expr<T> &expr, FoldingContext &context,
const Shape &shape, bool admitPureCall = false) {
if (UnexpandabilityFindingVisitor{admitPureCall}(expr)) {
auto extents{AsConstantExtents(context, shape)};
return extents && GetSize(*extents) == 1;
} else {
return true;
}
}
// Common handling for procedure pointer compatibility of left- and right-hand
// sides. Returns nullopt if they're compatible. Otherwise, it returns a
// message that needs to be augmented by the names of the left and right sides.
std::optional<parser::MessageFixedText> CheckProcCompatibility(bool isCall,
const std::optional<characteristics::Procedure> &lhsProcedure,
const characteristics::Procedure *rhsProcedure,
const SpecificIntrinsic *specificIntrinsic, std::string &whyNotCompatible,
std::optional<std::string> &warning, bool ignoreImplicitVsExplicit);
// Scalar constant expansion
class ScalarConstantExpander {
public:
explicit ScalarConstantExpander(ConstantSubscripts &&extents)
: extents_{std::move(extents)} {}
ScalarConstantExpander(
ConstantSubscripts &&extents, std::optional<ConstantSubscripts> &&lbounds)
: extents_{std::move(extents)}, lbounds_{std::move(lbounds)} {}
ScalarConstantExpander(
ConstantSubscripts &&extents, ConstantSubscripts &&lbounds)
: extents_{std::move(extents)}, lbounds_{std::move(lbounds)} {}
template <typename A> A Expand(A &&x) const {
return std::move(x); // default case
}
template <typename T> Constant<T> Expand(Constant<T> &&x) {
auto expanded{x.Reshape(std::move(extents_))};
if (lbounds_) {
expanded.set_lbounds(std::move(*lbounds_));
}
return expanded;
}
template <typename T> Expr<T> Expand(Parentheses<T> &&x) {
return Expand(std::move(x.left())); // Constant<> can be parenthesized
}
template <typename T> Expr<T> Expand(Expr<T> &&x) {
return common::visit(
[&](auto &&x) { return Expr<T>{Expand(std::move(x))}; },
std::move(x.u));
}
private:
ConstantSubscripts extents_;
std::optional<ConstantSubscripts> lbounds_;
};
// Given a collection of element values, package them as a Constant.
// If the type is Character or a derived type, take the length or type
// (resp.) from a another Constant.
template <typename T>
Constant<T> PackageConstant(std::vector<Scalar<T>> &&elements,
const Constant<T> &reference, const ConstantSubscripts &shape) {
if constexpr (T::category == TypeCategory::Character) {
return Constant<T>{
reference.LEN(), std::move(elements), ConstantSubscripts{shape}};
} else if constexpr (T::category == TypeCategory::Derived) {
return Constant<T>{reference.GetType().GetDerivedTypeSpec(),
std::move(elements), ConstantSubscripts{shape}};
} else {
return Constant<T>{std::move(elements), ConstantSubscripts{shape}};
}
}
// Nonstandard conversions of constants (integer->logical, logical->integer)
// that can appear in DATA statements as an extension.
std::optional<Expr<SomeType>> DataConstantConversionExtension(
FoldingContext &, const DynamicType &, const Expr<SomeType> &);
// Convert Hollerith or short character to a another type as if the
// Hollerith data had been BOZ.
std::optional<Expr<SomeType>> HollerithToBOZ(
FoldingContext &, const Expr<SomeType> &, const DynamicType &);
// Set explicit lower bounds on a constant array.
class ArrayConstantBoundChanger {
public:
explicit ArrayConstantBoundChanger(ConstantSubscripts &&lbounds)
: lbounds_{std::move(lbounds)} {}
template <typename A> A ChangeLbounds(A &&x) const {
return std::move(x); // default case
}
template <typename T> Constant<T> ChangeLbounds(Constant<T> &&x) {
x.set_lbounds(std::move(lbounds_));
return std::move(x);
}
template <typename T> Expr<T> ChangeLbounds(Parentheses<T> &&x) {
return ChangeLbounds(
std::move(x.left())); // Constant<> can be parenthesized
}
template <typename T> Expr<T> ChangeLbounds(Expr<T> &&x) {
return common::visit(
[&](auto &&x) { return Expr<T>{ChangeLbounds(std::move(x))}; },
std::move(x.u)); // recurse until we hit a constant
}
private:
ConstantSubscripts &&lbounds_;
};
// Predicate: should two expressions be considered identical for the purposes
// of determining whether two procedure interfaces are compatible, modulo
// naming of corresponding dummy arguments?
std::optional<bool> AreEquivalentInInterface(
const Expr<SubscriptInteger> &, const Expr<SubscriptInteger> &);
bool CheckForCoindexedObject(parser::ContextualMessages &,
const std::optional<ActualArgument> &, const std::string &procName,
const std::string &argName);
inline bool CanCUDASymbolHasSave(const Symbol &sym) {
if (const auto *details =
sym.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()) {
if (details->cudaDataAttr() &&
*details->cudaDataAttr() != common::CUDADataAttr::Unified) {
return false;
}
}
return true;
}
inline bool IsCUDADeviceSymbol(const Symbol &sym) {
if (const auto *details =
sym.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()) {
if (details->cudaDataAttr() &&
*details->cudaDataAttr() != common::CUDADataAttr::Pinned) {
return true;
}
}
return false;
}
// Get the number of distinct symbols with CUDA device
// attribute in the expression.
template <typename A> inline int GetNbOfCUDADeviceSymbols(const A &expr) {
semantics::UnorderedSymbolSet symbols;
for (const Symbol &sym : CollectCudaSymbols(expr)) {
if (IsCUDADeviceSymbol(sym)) {
symbols.insert(sym);
}
}
return symbols.size();
}
// Check if any of the symbols part of the expression has a CUDA device
// attribute.
template <typename A> inline bool HasCUDADeviceAttrs(const A &expr) {
return GetNbOfCUDADeviceSymbols(expr) > 0;
}
/// Check if the expression is a mix of host and device variables that require
/// implicit data transfer.
inline bool HasCUDAImplicitTransfer(const Expr<SomeType> &expr) {
unsigned hostSymbols{0};
unsigned deviceSymbols{0};
for (const Symbol &sym : CollectCudaSymbols(expr)) {
if (IsCUDADeviceSymbol(sym)) {
++deviceSymbols;
} else {
if (sym.owner().IsDerivedType()) {
if (IsCUDADeviceSymbol(sym.owner().GetSymbol()->GetUltimate())) {
++deviceSymbols;
}
}
++hostSymbols;
}
}
return hostSymbols > 0 && deviceSymbols > 0;
}
} // namespace Fortran::evaluate
namespace Fortran::semantics {
class Scope;
// If a symbol represents an ENTRY, return the symbol of the main entry
// point to its subprogram.
const Symbol *GetMainEntry(const Symbol *);
// These functions are used in Evaluate so they are defined here rather than in
// Semantics to avoid a link-time dependency on Semantics.
// All of these apply GetUltimate() or ResolveAssociations() to their arguments.
bool IsVariableName(const Symbol &);
bool IsPureProcedure(const Symbol &);
bool IsPureProcedure(const Scope &);
bool IsExplicitlyImpureProcedure(const Symbol &);
bool IsElementalProcedure(const Symbol &);
bool IsFunction(const Symbol &);
bool IsFunction(const Scope &);
bool IsProcedure(const Symbol &);
bool IsProcedure(const Scope &);
bool IsProcedurePointer(const Symbol *);
bool IsProcedurePointer(const Symbol &);
bool IsObjectPointer(const Symbol *);
bool IsAllocatableOrObjectPointer(const Symbol *);
bool IsAutomatic(const Symbol &);
bool IsSaved(const Symbol &); // saved implicitly or explicitly
bool IsDummy(const Symbol &);
bool IsAssumedShape(const Symbol &);
bool IsDeferredShape(const Symbol &);
bool IsFunctionResult(const Symbol &);
bool IsKindTypeParameter(const Symbol &);
bool IsLenTypeParameter(const Symbol &);
bool IsExtensibleType(const DerivedTypeSpec *);
bool IsSequenceOrBindCType(const DerivedTypeSpec *);
bool IsBuiltinDerivedType(const DerivedTypeSpec *derived, const char *name);
bool IsBuiltinCPtr(const Symbol &);
bool IsEventType(const DerivedTypeSpec *);
bool IsLockType(const DerivedTypeSpec *);
bool IsNotifyType(const DerivedTypeSpec *);
// Is this derived type IEEE_FLAG_TYPE from module ISO_IEEE_EXCEPTIONS?
bool IsIeeeFlagType(const DerivedTypeSpec *);
// Is this derived type IEEE_ROUND_TYPE from module ISO_IEEE_ARITHMETIC?
bool IsIeeeRoundType(const DerivedTypeSpec *);
// Is this derived type TEAM_TYPE from module ISO_FORTRAN_ENV?
bool IsTeamType(const DerivedTypeSpec *);
// Is this derived type TEAM_TYPE, C_PTR, or C_FUNPTR?
bool IsBadCoarrayType(const DerivedTypeSpec *);
// Is this derived type either C_PTR or C_FUNPTR from module ISO_C_BINDING
bool IsIsoCType(const DerivedTypeSpec *);
bool IsEventTypeOrLockType(const DerivedTypeSpec *);
inline bool IsAssumedSizeArray(const Symbol &symbol) {
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
return (object->isDummy() || symbol.test(Symbol::Flag::CrayPointee)) &&
object->shape().CanBeAssumedSize();
} else if (const auto *assoc{symbol.detailsIf<AssocEntityDetails>()}) {
return assoc->IsAssumedSize();
} else {
return false;
}
}
// ResolveAssociations() traverses use associations and host associations
// like GetUltimate(), but also resolves through whole variable associations
// with ASSOCIATE(x => y) and related constructs. GetAssociationRoot()
// applies ResolveAssociations() and then, in the case of resolution to
// a construct association with part of a variable that does not involve a
// vector subscript, returns the first symbol of that variable instead
// of the construct entity.
// (E.g., for ASSOCIATE(x => y%z), ResolveAssociations(x) returns x,
// while GetAssociationRoot(x) returns y.)
// In a SELECT RANK construct, ResolveAssociations() stops at a
// RANK(n) or RANK(*) case symbol, but traverses the selector for
// RANK DEFAULT.
const Symbol &ResolveAssociations(const Symbol &);
const Symbol &GetAssociationRoot(const Symbol &);
const Symbol *FindCommonBlockContaining(const Symbol &);
int CountLenParameters(const DerivedTypeSpec &);
int CountNonConstantLenParameters(const DerivedTypeSpec &);
const Symbol &GetUsedModule(const UseDetails &);
const Symbol *FindFunctionResult(const Symbol &);
// Type compatibility predicate: are x and y effectively the same type?
// Uses DynamicType::IsTkCompatible(), which handles the case of distinct
// but identical derived types.
bool AreTkCompatibleTypes(const DeclTypeSpec *x, const DeclTypeSpec *y);
common::IgnoreTKRSet GetIgnoreTKR(const Symbol &);
std::optional<int> GetDummyArgumentNumber(const Symbol *);
} // namespace Fortran::semantics
#endif // FORTRAN_EVALUATE_TOOLS_H_