//===-- include/flang/Evaluate/complex.h ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_COMPLEX_H_
#define FORTRAN_EVALUATE_COMPLEX_H_
#include "formatting.h"
#include "real.h"
#include <string>
namespace llvm {
class raw_ostream;
}
namespace Fortran::evaluate::value {
template <typename REAL_TYPE> class Complex {
public:
using Part = REAL_TYPE;
static constexpr int bits{2 * Part::bits};
constexpr Complex() {} // (+0.0, +0.0)
constexpr Complex(const Complex &) = default;
constexpr Complex(const Part &r, const Part &i) : re_{r}, im_{i} {}
explicit constexpr Complex(const Part &r) : re_{r} {}
constexpr Complex &operator=(const Complex &) = default;
constexpr Complex &operator=(Complex &&) = default;
constexpr bool operator==(const Complex &that) const {
return re_ == that.re_ && im_ == that.im_;
}
constexpr const Part &REAL() const { return re_; }
constexpr const Part &AIMAG() const { return im_; }
constexpr Complex CONJG() const { return {re_, im_.Negate()}; }
constexpr Complex Negate() const { return {re_.Negate(), im_.Negate()}; }
constexpr bool Equals(const Complex &that) const {
return re_.Compare(that.re_) == Relation::Equal &&
im_.Compare(that.im_) == Relation::Equal;
}
constexpr bool IsZero() const { return re_.IsZero() || im_.IsZero(); }
constexpr bool IsInfinite() const {
return re_.IsInfinite() || im_.IsInfinite();
}
constexpr bool IsNotANumber() const {
return re_.IsNotANumber() || im_.IsNotANumber();
}
constexpr bool IsSignalingNaN() const {
return re_.IsSignalingNaN() || im_.IsSignalingNaN();
}
template <typename INT>
static ValueWithRealFlags<Complex> FromInteger(const INT &n,
Rounding rounding = TargetCharacteristics::defaultRounding) {
ValueWithRealFlags<Complex> result;
result.value.re_ =
Part::FromInteger(n, rounding).AccumulateFlags(result.flags);
return result;
}
ValueWithRealFlags<Complex> Add(const Complex &,
Rounding rounding = TargetCharacteristics::defaultRounding) const;
ValueWithRealFlags<Complex> Subtract(const Complex &,
Rounding rounding = TargetCharacteristics::defaultRounding) const;
ValueWithRealFlags<Complex> Multiply(const Complex &,
Rounding rounding = TargetCharacteristics::defaultRounding) const;
ValueWithRealFlags<Complex> Divide(const Complex &,
Rounding rounding = TargetCharacteristics::defaultRounding) const;
// ABS/CABS = HYPOT(re_, imag_) = SQRT(re_**2 + im_**2)
ValueWithRealFlags<Part> ABS(
Rounding rounding = TargetCharacteristics::defaultRounding) const {
return re_.HYPOT(im_, rounding);
}
constexpr Complex FlushSubnormalToZero() const {
return {re_.FlushSubnormalToZero(), im_.FlushSubnormalToZero()};
}
static constexpr Complex NotANumber() {
return {Part::NotANumber(), Part::NotANumber()};
}
std::string DumpHexadecimal() const;
llvm::raw_ostream &AsFortran(llvm::raw_ostream &, int kind) const;
// TODO: unit testing
private:
Part re_, im_;
};
extern template class Complex<Real<Integer<16>, 11>>;
extern template class Complex<Real<Integer<16>, 8>>;
extern template class Complex<Real<Integer<32>, 24>>;
extern template class Complex<Real<Integer<64>, 53>>;
extern template class Complex<Real<X87IntegerContainer, 64>>;
extern template class Complex<Real<Integer<128>, 113>>;
} // namespace Fortran::evaluate::value
#endif // FORTRAN_EVALUATE_COMPLEX_H_