//===-- Optimizer/Support/Utils.h -------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_OPTIMIZER_SUPPORT_UTILS_H
#define FORTRAN_OPTIMIZER_SUPPORT_UTILS_H
#include "flang/Common/default-kinds.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/CUF/Attributes/CUFAttr.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
namespace fir {
/// Return the integer value of a arith::ConstantOp.
inline std::int64_t toInt(mlir::arith::ConstantOp cop) {
return mlir::cast<mlir::IntegerAttr>(cop.getValue())
.getValue()
.getSExtValue();
}
// Reconstruct binding tables for dynamic dispatch.
using BindingTable = llvm::DenseMap<llvm::StringRef, unsigned>;
using BindingTables = llvm::DenseMap<llvm::StringRef, BindingTable>;
inline void buildBindingTables(BindingTables &bindingTables,
mlir::ModuleOp mod) {
// The binding tables are defined in FIR after lowering inside fir.type_info
// operations. Go through each binding tables and store the procedure name and
// binding index for later use by the fir.dispatch conversion pattern.
for (auto typeInfo : mod.getOps<fir::TypeInfoOp>()) {
unsigned bindingIdx = 0;
BindingTable bindings;
if (typeInfo.getDispatchTable().empty()) {
bindingTables[typeInfo.getSymName()] = bindings;
continue;
}
for (auto dtEntry :
typeInfo.getDispatchTable().front().getOps<fir::DTEntryOp>()) {
bindings[dtEntry.getMethod()] = bindingIdx;
++bindingIdx;
}
bindingTables[typeInfo.getSymName()] = bindings;
}
}
// Translate front-end KINDs for use in the IR and code gen.
inline std::vector<fir::KindTy>
fromDefaultKinds(const Fortran::common::IntrinsicTypeDefaultKinds &defKinds) {
return {static_cast<fir::KindTy>(defKinds.GetDefaultKind(
Fortran::common::TypeCategory::Character)),
static_cast<fir::KindTy>(
defKinds.GetDefaultKind(Fortran::common::TypeCategory::Complex)),
static_cast<fir::KindTy>(defKinds.doublePrecisionKind()),
static_cast<fir::KindTy>(
defKinds.GetDefaultKind(Fortran::common::TypeCategory::Integer)),
static_cast<fir::KindTy>(
defKinds.GetDefaultKind(Fortran::common::TypeCategory::Logical)),
static_cast<fir::KindTy>(
defKinds.GetDefaultKind(Fortran::common::TypeCategory::Real))};
}
inline std::string mlirTypeToString(mlir::Type type) {
std::string result{};
llvm::raw_string_ostream sstream(result);
sstream << type;
return result;
}
inline std::string mlirTypeToIntrinsicFortran(fir::FirOpBuilder &builder,
mlir::Type type,
mlir::Location loc,
const llvm::Twine &name) {
if (type.isF16())
return "REAL(KIND=2)";
else if (type.isBF16())
return "REAL(KIND=3)";
else if (type.isTF32())
return "REAL(KIND=unknown)";
else if (type.isF32())
return "REAL(KIND=4)";
else if (type.isF64())
return "REAL(KIND=8)";
else if (type.isF80())
return "REAL(KIND=10)";
else if (type.isF128())
return "REAL(KIND=16)";
else if (type.isInteger(8))
return "INTEGER(KIND=1)";
else if (type.isInteger(16))
return "INTEGER(KIND=2)";
else if (type.isInteger(32))
return "INTEGER(KIND=4)";
else if (type.isInteger(64))
return "INTEGER(KIND=8)";
else if (type.isInteger(128))
return "INTEGER(KIND=16)";
else if (type == fir::ComplexType::get(builder.getContext(), 2))
return "COMPLEX(KIND=2)";
else if (type == fir::ComplexType::get(builder.getContext(), 3))
return "COMPLEX(KIND=3)";
else if (type == fir::ComplexType::get(builder.getContext(), 4))
return "COMPLEX(KIND=4)";
else if (type == fir::ComplexType::get(builder.getContext(), 8))
return "COMPLEX(KIND=8)";
else if (type == fir::ComplexType::get(builder.getContext(), 10))
return "COMPLEX(KIND=10)";
else if (type == fir::ComplexType::get(builder.getContext(), 16))
return "COMPLEX(KIND=16)";
else if (type == fir::LogicalType::get(builder.getContext(), 1))
return "LOGICAL(KIND=1)";
else if (type == fir::LogicalType::get(builder.getContext(), 2))
return "LOGICAL(KIND=2)";
else if (type == fir::LogicalType::get(builder.getContext(), 4))
return "LOGICAL(KIND=4)";
else if (type == fir::LogicalType::get(builder.getContext(), 8))
return "LOGICAL(KIND=8)";
else
fir::emitFatalError(loc, "unsupported type in " + name + ": " +
fir::mlirTypeToString(type));
}
inline void intrinsicTypeTODO(fir::FirOpBuilder &builder, mlir::Type type,
mlir::Location loc,
const llvm::Twine &intrinsicName) {
TODO(loc,
"intrinsic: " +
fir::mlirTypeToIntrinsicFortran(builder, type, loc, intrinsicName) +
" in " + intrinsicName);
}
inline void intrinsicTypeTODO2(fir::FirOpBuilder &builder, mlir::Type type1,
mlir::Type type2, mlir::Location loc,
const llvm::Twine &intrinsicName) {
TODO(loc,
"intrinsic: {" +
fir::mlirTypeToIntrinsicFortran(builder, type2, loc, intrinsicName) +
", " +
fir::mlirTypeToIntrinsicFortran(builder, type2, loc, intrinsicName) +
"} in " + intrinsicName);
}
inline std::pair<Fortran::common::TypeCategory, KindMapping::KindTy>
mlirTypeToCategoryKind(mlir::Location loc, mlir::Type type) {
if (type.isF16())
return {Fortran::common::TypeCategory::Real, 2};
else if (type.isBF16())
return {Fortran::common::TypeCategory::Real, 3};
else if (type.isF32())
return {Fortran::common::TypeCategory::Real, 4};
else if (type.isF64())
return {Fortran::common::TypeCategory::Real, 8};
else if (type.isF80())
return {Fortran::common::TypeCategory::Real, 10};
else if (type.isF128())
return {Fortran::common::TypeCategory::Real, 16};
else if (type.isInteger(8))
return {Fortran::common::TypeCategory::Integer, 1};
else if (type.isInteger(16))
return {Fortran::common::TypeCategory::Integer, 2};
else if (type.isInteger(32))
return {Fortran::common::TypeCategory::Integer, 4};
else if (type.isInteger(64))
return {Fortran::common::TypeCategory::Integer, 8};
else if (type.isInteger(128))
return {Fortran::common::TypeCategory::Integer, 16};
else if (auto complexType = mlir::dyn_cast<fir::ComplexType>(type))
return {Fortran::common::TypeCategory::Complex, complexType.getFKind()};
else if (auto logicalType = mlir::dyn_cast<fir::LogicalType>(type))
return {Fortran::common::TypeCategory::Logical, logicalType.getFKind()};
else
fir::emitFatalError(loc,
"unsupported type: " + fir::mlirTypeToString(type));
}
/// Find the fir.type_info that was created for this \p recordType in \p module,
/// if any. \p symbolTable can be provided to speed-up the lookup. This tool
/// will match record type even if they have been "altered" in type conversion
/// passes.
fir::TypeInfoOp
lookupTypeInfoOp(fir::RecordType recordType, mlir::ModuleOp module,
const mlir::SymbolTable *symbolTable = nullptr);
/// Find the fir.type_info named \p name in \p module, if any. \p symbolTable
/// can be provided to speed-up the lookup. Prefer using the equivalent with a
/// RecordType argument unless it is certain \p name has not been altered by a
/// pass rewriting fir.type (see NameUniquer::dropTypeConversionMarkers).
fir::TypeInfoOp
lookupTypeInfoOp(llvm::StringRef name, mlir::ModuleOp module,
const mlir::SymbolTable *symbolTable = nullptr);
/// Returns all lower bounds of \p component if it is an array component of \p
/// recordType with non default lower bounds. Returns nullopt if this is not an
/// array componnet of \p recordType or if its lower bounds are all ones.
std::optional<llvm::ArrayRef<int64_t>> getComponentLowerBoundsIfNonDefault(
fir::RecordType recordType, llvm::StringRef component,
mlir::ModuleOp module, const mlir::SymbolTable *symbolTable = nullptr);
} // namespace fir
#endif // FORTRAN_OPTIMIZER_SUPPORT_UTILS_H