//===-- combined_test.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "memtag.h"
#include "stack_depot.h"
#include "tests/scudo_unit_test.h"
#include "allocator_config.h"
#include "chunk.h"
#include "combined.h"
#include "condition_variable.h"
#include "mem_map.h"
#include "size_class_map.h"
#include <algorithm>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <set>
#include <stdlib.h>
#include <thread>
#include <vector>
static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc;
static constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);
// Fuchsia complains that the function is not used.
UNUSED static void disableDebuggerdMaybe() {
#if SCUDO_ANDROID
// Disable the debuggerd signal handler on Android, without this we can end
// up spending a significant amount of time creating tombstones.
signal(SIGSEGV, SIG_DFL);
#endif
}
template <class AllocatorT>
bool isPrimaryAllocation(scudo::uptr Size, scudo::uptr Alignment) {
const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG;
if (Alignment < MinAlignment)
Alignment = MinAlignment;
const scudo::uptr NeededSize =
scudo::roundUp(Size, MinAlignment) +
((Alignment > MinAlignment) ? Alignment : scudo::Chunk::getHeaderSize());
return AllocatorT::PrimaryT::canAllocate(NeededSize);
}
template <class AllocatorT>
void checkMemoryTaggingMaybe(AllocatorT *Allocator, void *P, scudo::uptr Size,
scudo::uptr Alignment) {
const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG;
Size = scudo::roundUp(Size, MinAlignment);
if (Allocator->useMemoryTaggingTestOnly())
EXPECT_DEATH(
{
disableDebuggerdMaybe();
reinterpret_cast<char *>(P)[-1] = 'A';
},
"");
if (isPrimaryAllocation<AllocatorT>(Size, Alignment)
? Allocator->useMemoryTaggingTestOnly()
: Alignment == MinAlignment) {
EXPECT_DEATH(
{
disableDebuggerdMaybe();
reinterpret_cast<char *>(P)[Size] = 'A';
},
"");
}
}
template <typename Config> struct TestAllocator : scudo::Allocator<Config> {
TestAllocator() {
this->initThreadMaybe();
if (scudo::archSupportsMemoryTagging() &&
!scudo::systemDetectsMemoryTagFaultsTestOnly())
this->disableMemoryTagging();
}
~TestAllocator() { this->unmapTestOnly(); }
void *operator new(size_t size);
void operator delete(void *ptr);
};
constexpr size_t kMaxAlign = std::max({
alignof(scudo::Allocator<scudo::DefaultConfig>),
#if SCUDO_CAN_USE_PRIMARY64
alignof(scudo::Allocator<scudo::FuchsiaConfig>),
#endif
alignof(scudo::Allocator<scudo::AndroidConfig>)
});
#if SCUDO_RISCV64
// The allocator is over 4MB large. Rather than creating an instance of this on
// the heap, keep it in a global storage to reduce fragmentation from having to
// mmap this at the start of every test.
struct TestAllocatorStorage {
static constexpr size_t kMaxSize = std::max({
sizeof(scudo::Allocator<scudo::DefaultConfig>),
#if SCUDO_CAN_USE_PRIMARY64
sizeof(scudo::Allocator<scudo::FuchsiaConfig>),
#endif
sizeof(scudo::Allocator<scudo::AndroidConfig>)
});
// To alleviate some problem, let's skip the thread safety analysis here.
static void *get(size_t size) NO_THREAD_SAFETY_ANALYSIS {
CHECK(size <= kMaxSize &&
"Allocation size doesn't fit in the allocator storage");
M.lock();
return AllocatorStorage;
}
static void release(void *ptr) NO_THREAD_SAFETY_ANALYSIS {
M.assertHeld();
M.unlock();
ASSERT_EQ(ptr, AllocatorStorage);
}
static scudo::HybridMutex M;
static uint8_t AllocatorStorage[kMaxSize];
};
scudo::HybridMutex TestAllocatorStorage::M;
alignas(kMaxAlign) uint8_t TestAllocatorStorage::AllocatorStorage[kMaxSize];
#else
struct TestAllocatorStorage {
static void *get(size_t size) NO_THREAD_SAFETY_ANALYSIS {
void *p = nullptr;
EXPECT_EQ(0, posix_memalign(&p, kMaxAlign, size));
return p;
}
static void release(void *ptr) NO_THREAD_SAFETY_ANALYSIS { free(ptr); }
};
#endif
template <typename Config>
void *TestAllocator<Config>::operator new(size_t size) {
return TestAllocatorStorage::get(size);
}
template <typename Config>
void TestAllocator<Config>::operator delete(void *ptr) {
TestAllocatorStorage::release(ptr);
}
template <class TypeParam> struct ScudoCombinedTest : public Test {
ScudoCombinedTest() {
UseQuarantine = std::is_same<TypeParam, scudo::AndroidConfig>::value;
Allocator = std::make_unique<AllocatorT>();
}
~ScudoCombinedTest() {
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
UseQuarantine = true;
}
void RunTest();
void BasicTest(scudo::uptr SizeLog);
using AllocatorT = TestAllocator<TypeParam>;
std::unique_ptr<AllocatorT> Allocator;
};
template <typename T> using ScudoCombinedDeathTest = ScudoCombinedTest<T>;
namespace scudo {
struct TestConditionVariableConfig {
static const bool MaySupportMemoryTagging = true;
template <class A>
using TSDRegistryT =
scudo::TSDRegistrySharedT<A, 8U, 4U>; // Shared, max 8 TSDs.
struct Primary {
using SizeClassMap = scudo::AndroidSizeClassMap;
#if SCUDO_CAN_USE_PRIMARY64
static const scudo::uptr RegionSizeLog = 28U;
typedef scudo::u32 CompactPtrT;
static const scudo::uptr CompactPtrScale = SCUDO_MIN_ALIGNMENT_LOG;
static const scudo::uptr GroupSizeLog = 20U;
static const bool EnableRandomOffset = true;
static const scudo::uptr MapSizeIncrement = 1UL << 18;
#else
static const scudo::uptr RegionSizeLog = 18U;
static const scudo::uptr GroupSizeLog = 18U;
typedef scudo::uptr CompactPtrT;
#endif
static const scudo::s32 MinReleaseToOsIntervalMs = 1000;
static const scudo::s32 MaxReleaseToOsIntervalMs = 1000;
#if SCUDO_LINUX
using ConditionVariableT = scudo::ConditionVariableLinux;
#else
using ConditionVariableT = scudo::ConditionVariableDummy;
#endif
};
#if SCUDO_CAN_USE_PRIMARY64
template <typename Config>
using PrimaryT = scudo::SizeClassAllocator64<Config>;
#else
template <typename Config>
using PrimaryT = scudo::SizeClassAllocator32<Config>;
#endif
struct Secondary {
template <typename Config>
using CacheT = scudo::MapAllocatorNoCache<Config>;
};
template <typename Config> using SecondaryT = scudo::MapAllocator<Config>;
};
} // namespace scudo
#if SCUDO_FUCHSIA
#define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, FuchsiaConfig)
#else
#define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, DefaultConfig) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, AndroidConfig) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConditionVariableConfig)
#endif
#define SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TYPE) \
using FIXTURE##NAME##_##TYPE = FIXTURE##NAME<scudo::TYPE>; \
TEST_F(FIXTURE##NAME##_##TYPE, NAME) { FIXTURE##NAME<scudo::TYPE>::Run(); }
#define SCUDO_TYPED_TEST(FIXTURE, NAME) \
template <class TypeParam> \
struct FIXTURE##NAME : public FIXTURE<TypeParam> { \
using BaseT = FIXTURE<TypeParam>; \
void Run(); \
}; \
SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
template <class TypeParam> void FIXTURE##NAME<TypeParam>::Run()
// Accessing `TSD->getCache()` requires `TSD::Mutex` which isn't easy to test
// using thread-safety analysis. Alternatively, we verify the thread safety
// through a runtime check in ScopedTSD and mark the test body with
// NO_THREAD_SAFETY_ANALYSIS.
#define SCUDO_TYPED_TEST_SKIP_THREAD_SAFETY(FIXTURE, NAME) \
template <class TypeParam> \
struct FIXTURE##NAME : public FIXTURE<TypeParam> { \
using BaseT = FIXTURE<TypeParam>; \
void Run() NO_THREAD_SAFETY_ANALYSIS; \
}; \
SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
template <class TypeParam> void FIXTURE##NAME<TypeParam>::Run()
SCUDO_TYPED_TEST(ScudoCombinedTest, IsOwned) {
auto *Allocator = this->Allocator.get();
static scudo::u8 StaticBuffer[scudo::Chunk::getHeaderSize() + 1];
EXPECT_FALSE(
Allocator->isOwned(&StaticBuffer[scudo::Chunk::getHeaderSize()]));
scudo::u8 StackBuffer[scudo::Chunk::getHeaderSize() + 1];
for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++)
StackBuffer[I] = 0x42U;
EXPECT_FALSE(Allocator->isOwned(&StackBuffer[scudo::Chunk::getHeaderSize()]));
for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++)
EXPECT_EQ(StackBuffer[I], 0x42U);
}
template <class Config>
void ScudoCombinedTest<Config>::BasicTest(scudo::uptr SizeLog) {
auto *Allocator = this->Allocator.get();
// This allocates and deallocates a bunch of chunks, with a wide range of
// sizes and alignments, with a focus on sizes that could trigger weird
// behaviors (plus or minus a small delta of a power of two for example).
for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) {
const scudo::uptr Align = 1U << AlignLog;
for (scudo::sptr Delta = -32; Delta <= 32; Delta++) {
if ((1LL << SizeLog) + Delta < 0)
continue;
const scudo::uptr Size =
static_cast<scudo::uptr>((1LL << SizeLog) + Delta);
void *P = Allocator->allocate(Size, Origin, Align);
EXPECT_NE(P, nullptr);
EXPECT_TRUE(Allocator->isOwned(P));
EXPECT_TRUE(scudo::isAligned(reinterpret_cast<scudo::uptr>(P), Align));
EXPECT_LE(Size, Allocator->getUsableSize(P));
memset(P, 0xaa, Size);
checkMemoryTaggingMaybe(Allocator, P, Size, Align);
Allocator->deallocate(P, Origin, Size);
}
}
Allocator->printStats();
Allocator->printFragmentationInfo();
}
#define SCUDO_MAKE_BASIC_TEST(SizeLog) \
SCUDO_TYPED_TEST(ScudoCombinedDeathTest, BasicCombined##SizeLog) { \
this->BasicTest(SizeLog); \
}
SCUDO_MAKE_BASIC_TEST(0)
SCUDO_MAKE_BASIC_TEST(1)
SCUDO_MAKE_BASIC_TEST(2)
SCUDO_MAKE_BASIC_TEST(3)
SCUDO_MAKE_BASIC_TEST(4)
SCUDO_MAKE_BASIC_TEST(5)
SCUDO_MAKE_BASIC_TEST(6)
SCUDO_MAKE_BASIC_TEST(7)
SCUDO_MAKE_BASIC_TEST(8)
SCUDO_MAKE_BASIC_TEST(9)
SCUDO_MAKE_BASIC_TEST(10)
SCUDO_MAKE_BASIC_TEST(11)
SCUDO_MAKE_BASIC_TEST(12)
SCUDO_MAKE_BASIC_TEST(13)
SCUDO_MAKE_BASIC_TEST(14)
SCUDO_MAKE_BASIC_TEST(15)
SCUDO_MAKE_BASIC_TEST(16)
SCUDO_MAKE_BASIC_TEST(17)
SCUDO_MAKE_BASIC_TEST(18)
SCUDO_MAKE_BASIC_TEST(19)
SCUDO_MAKE_BASIC_TEST(20)
SCUDO_TYPED_TEST(ScudoCombinedTest, ZeroContents) {
auto *Allocator = this->Allocator.get();
// Ensure that specifying ZeroContents returns a zero'd out block.
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
EXPECT_NE(P, nullptr);
for (scudo::uptr I = 0; I < Size; I++)
ASSERT_EQ((reinterpret_cast<char *>(P))[I], '\0');
memset(P, 0xaa, Size);
Allocator->deallocate(P, Origin, Size);
}
}
}
SCUDO_TYPED_TEST(ScudoCombinedTest, ZeroFill) {
auto *Allocator = this->Allocator.get();
// Ensure that specifying ZeroFill returns a zero'd out block.
Allocator->setFillContents(scudo::ZeroFill);
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false);
EXPECT_NE(P, nullptr);
for (scudo::uptr I = 0; I < Size; I++)
ASSERT_EQ((reinterpret_cast<char *>(P))[I], '\0');
memset(P, 0xaa, Size);
Allocator->deallocate(P, Origin, Size);
}
}
}
SCUDO_TYPED_TEST(ScudoCombinedTest, PatternOrZeroFill) {
auto *Allocator = this->Allocator.get();
// Ensure that specifying PatternOrZeroFill returns a pattern or zero filled
// block. The primary allocator only produces pattern filled blocks if MTE
// is disabled, so we only require pattern filled blocks in that case.
Allocator->setFillContents(scudo::PatternOrZeroFill);
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false);
EXPECT_NE(P, nullptr);
for (scudo::uptr I = 0; I < Size; I++) {
unsigned char V = (reinterpret_cast<unsigned char *>(P))[I];
if (isPrimaryAllocation<TestAllocator<TypeParam>>(Size,
1U << MinAlignLog) &&
!Allocator->useMemoryTaggingTestOnly())
ASSERT_EQ(V, scudo::PatternFillByte);
else
ASSERT_TRUE(V == scudo::PatternFillByte || V == 0);
}
memset(P, 0xaa, Size);
Allocator->deallocate(P, Origin, Size);
}
}
}
SCUDO_TYPED_TEST(ScudoCombinedTest, BlockReuse) {
auto *Allocator = this->Allocator.get();
// Verify that a chunk will end up being reused, at some point.
const scudo::uptr NeedleSize = 1024U;
void *NeedleP = Allocator->allocate(NeedleSize, Origin);
Allocator->deallocate(NeedleP, Origin);
bool Found = false;
for (scudo::uptr I = 0; I < 1024U && !Found; I++) {
void *P = Allocator->allocate(NeedleSize, Origin);
if (Allocator->getHeaderTaggedPointer(P) ==
Allocator->getHeaderTaggedPointer(NeedleP))
Found = true;
Allocator->deallocate(P, Origin);
}
EXPECT_TRUE(Found);
}
SCUDO_TYPED_TEST(ScudoCombinedTest, ReallocateLargeIncreasing) {
auto *Allocator = this->Allocator.get();
// Reallocate a chunk all the way up to a secondary allocation, verifying that
// we preserve the data in the process.
scudo::uptr Size = 16;
void *P = Allocator->allocate(Size, Origin);
const char Marker = 'A';
memset(P, Marker, Size);
while (Size < TypeParam::Primary::SizeClassMap::MaxSize * 4) {
void *NewP = Allocator->reallocate(P, Size * 2);
EXPECT_NE(NewP, nullptr);
for (scudo::uptr J = 0; J < Size; J++)
EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
memset(reinterpret_cast<char *>(NewP) + Size, Marker, Size);
Size *= 2U;
P = NewP;
}
Allocator->deallocate(P, Origin);
}
SCUDO_TYPED_TEST(ScudoCombinedTest, ReallocateLargeDecreasing) {
auto *Allocator = this->Allocator.get();
// Reallocate a large chunk all the way down to a byte, verifying that we
// preserve the data in the process.
scudo::uptr Size = TypeParam::Primary::SizeClassMap::MaxSize * 2;
const scudo::uptr DataSize = 2048U;
void *P = Allocator->allocate(Size, Origin);
const char Marker = 'A';
memset(P, Marker, scudo::Min(Size, DataSize));
while (Size > 1U) {
Size /= 2U;
void *NewP = Allocator->reallocate(P, Size);
EXPECT_NE(NewP, nullptr);
for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++)
EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
P = NewP;
}
Allocator->deallocate(P, Origin);
}
SCUDO_TYPED_TEST(ScudoCombinedDeathTest, ReallocateSame) {
auto *Allocator = this->Allocator.get();
// Check that reallocating a chunk to a slightly smaller or larger size
// returns the same chunk. This requires that all the sizes we iterate on use
// the same block size, but that should be the case for MaxSize - 64 with our
// default class size maps.
constexpr scudo::uptr InitialSize =
TypeParam::Primary::SizeClassMap::MaxSize - 64;
const char Marker = 'A';
Allocator->setFillContents(scudo::PatternOrZeroFill);
void *P = Allocator->allocate(InitialSize, Origin);
scudo::uptr CurrentSize = InitialSize;
for (scudo::sptr Delta = -32; Delta < 32; Delta += 8) {
memset(P, Marker, CurrentSize);
const scudo::uptr NewSize =
static_cast<scudo::uptr>(static_cast<scudo::sptr>(InitialSize) + Delta);
void *NewP = Allocator->reallocate(P, NewSize);
EXPECT_EQ(NewP, P);
// Verify that existing contents have been preserved.
for (scudo::uptr I = 0; I < scudo::Min(CurrentSize, NewSize); I++)
EXPECT_EQ((reinterpret_cast<char *>(NewP))[I], Marker);
// Verify that new bytes are set according to FillContentsMode.
for (scudo::uptr I = CurrentSize; I < NewSize; I++) {
unsigned char V = (reinterpret_cast<unsigned char *>(NewP))[I];
EXPECT_TRUE(V == scudo::PatternFillByte || V == 0);
}
checkMemoryTaggingMaybe(Allocator, NewP, NewSize, 0);
CurrentSize = NewSize;
}
Allocator->deallocate(P, Origin);
}
SCUDO_TYPED_TEST(ScudoCombinedTest, IterateOverChunks) {
auto *Allocator = this->Allocator.get();
// Allocates a bunch of chunks, then iterate over all the chunks, ensuring
// they are the ones we allocated. This requires the allocator to not have any
// other allocated chunk at this point (eg: won't work with the Quarantine).
// FIXME: Make it work with UseQuarantine and tagging enabled. Internals of
// iterateOverChunks reads header by tagged and non-tagger pointers so one of
// them will fail.
if (!UseQuarantine) {
std::vector<void *> V;
for (scudo::uptr I = 0; I < 64U; I++)
V.push_back(Allocator->allocate(
static_cast<scudo::uptr>(std::rand()) %
(TypeParam::Primary::SizeClassMap::MaxSize / 2U),
Origin));
Allocator->disable();
Allocator->iterateOverChunks(
0U, static_cast<scudo::uptr>(SCUDO_MMAP_RANGE_SIZE - 1),
[](uintptr_t Base, UNUSED size_t Size, void *Arg) {
std::vector<void *> *V = reinterpret_cast<std::vector<void *> *>(Arg);
void *P = reinterpret_cast<void *>(Base);
EXPECT_NE(std::find(V->begin(), V->end(), P), V->end());
},
reinterpret_cast<void *>(&V));
Allocator->enable();
for (auto P : V)
Allocator->deallocate(P, Origin);
}
}
SCUDO_TYPED_TEST(ScudoCombinedDeathTest, UseAfterFree) {
auto *Allocator = this->Allocator.get();
// Check that use-after-free is detected.
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
const scudo::uptr Size = 1U << SizeLog;
if (!Allocator->useMemoryTaggingTestOnly())
continue;
EXPECT_DEATH(
{
disableDebuggerdMaybe();
void *P = Allocator->allocate(Size, Origin);
Allocator->deallocate(P, Origin);
reinterpret_cast<char *>(P)[0] = 'A';
},
"");
EXPECT_DEATH(
{
disableDebuggerdMaybe();
void *P = Allocator->allocate(Size, Origin);
Allocator->deallocate(P, Origin);
reinterpret_cast<char *>(P)[Size - 1] = 'A';
},
"");
}
}
SCUDO_TYPED_TEST(ScudoCombinedDeathTest, DisableMemoryTagging) {
auto *Allocator = this->Allocator.get();
if (Allocator->useMemoryTaggingTestOnly()) {
// Check that disabling memory tagging works correctly.
void *P = Allocator->allocate(2048, Origin);
EXPECT_DEATH(reinterpret_cast<char *>(P)[2048] = 'A', "");
scudo::ScopedDisableMemoryTagChecks NoTagChecks;
Allocator->disableMemoryTagging();
reinterpret_cast<char *>(P)[2048] = 'A';
Allocator->deallocate(P, Origin);
P = Allocator->allocate(2048, Origin);
EXPECT_EQ(scudo::untagPointer(P), P);
reinterpret_cast<char *>(P)[2048] = 'A';
Allocator->deallocate(P, Origin);
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
}
}
SCUDO_TYPED_TEST(ScudoCombinedTest, Stats) {
auto *Allocator = this->Allocator.get();
scudo::uptr BufferSize = 8192;
std::vector<char> Buffer(BufferSize);
scudo::uptr ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
while (ActualSize > BufferSize) {
BufferSize = ActualSize + 1024;
Buffer.resize(BufferSize);
ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
}
std::string Stats(Buffer.begin(), Buffer.end());
// Basic checks on the contents of the statistics output, which also allows us
// to verify that we got it all.
EXPECT_NE(Stats.find("Stats: SizeClassAllocator"), std::string::npos);
EXPECT_NE(Stats.find("Stats: MapAllocator"), std::string::npos);
EXPECT_NE(Stats.find("Stats: Quarantine"), std::string::npos);
}
SCUDO_TYPED_TEST_SKIP_THREAD_SAFETY(ScudoCombinedTest, CacheDrain) {
using AllocatorT = typename BaseT::AllocatorT;
auto *Allocator = this->Allocator.get();
std::vector<void *> V;
for (scudo::uptr I = 0; I < 64U; I++)
V.push_back(Allocator->allocate(
static_cast<scudo::uptr>(std::rand()) %
(TypeParam::Primary::SizeClassMap::MaxSize / 2U),
Origin));
for (auto P : V)
Allocator->deallocate(P, Origin);
typename AllocatorT::TSDRegistryT::ScopedTSD TSD(
*Allocator->getTSDRegistry());
EXPECT_TRUE(!TSD->getCache().isEmpty());
TSD->getCache().drain();
EXPECT_TRUE(TSD->getCache().isEmpty());
}
SCUDO_TYPED_TEST_SKIP_THREAD_SAFETY(ScudoCombinedTest, ForceCacheDrain) {
using AllocatorT = typename BaseT::AllocatorT;
auto *Allocator = this->Allocator.get();
std::vector<void *> V;
for (scudo::uptr I = 0; I < 64U; I++)
V.push_back(Allocator->allocate(
static_cast<scudo::uptr>(std::rand()) %
(TypeParam::Primary::SizeClassMap::MaxSize / 2U),
Origin));
for (auto P : V)
Allocator->deallocate(P, Origin);
// `ForceAll` will also drain the caches.
Allocator->releaseToOS(scudo::ReleaseToOS::ForceAll);
typename AllocatorT::TSDRegistryT::ScopedTSD TSD(
*Allocator->getTSDRegistry());
EXPECT_TRUE(TSD->getCache().isEmpty());
EXPECT_EQ(TSD->getQuarantineCache().getSize(), 0U);
EXPECT_TRUE(Allocator->getQuarantine()->isEmpty());
}
SCUDO_TYPED_TEST(ScudoCombinedTest, ThreadedCombined) {
std::mutex Mutex;
std::condition_variable Cv;
bool Ready = false;
auto *Allocator = this->Allocator.get();
std::thread Threads[32];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] = std::thread([&]() {
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
std::vector<std::pair<void *, scudo::uptr>> V;
for (scudo::uptr I = 0; I < 256U; I++) {
const scudo::uptr Size = static_cast<scudo::uptr>(std::rand()) % 4096U;
void *P = Allocator->allocate(Size, Origin);
// A region could have ran out of memory, resulting in a null P.
if (P)
V.push_back(std::make_pair(P, Size));
}
// Try to interleave pushBlocks(), popBatch() and releaseToOS().
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
while (!V.empty()) {
auto Pair = V.back();
Allocator->deallocate(Pair.first, Origin, Pair.second);
V.pop_back();
}
});
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
}
// Test that multiple instantiations of the allocator have not messed up the
// process's signal handlers (GWP-ASan used to do this).
TEST(ScudoCombinedDeathTest, SKIP_ON_FUCHSIA(testSEGV)) {
const scudo::uptr Size = 4 * scudo::getPageSizeCached();
scudo::ReservedMemoryT ReservedMemory;
ASSERT_TRUE(ReservedMemory.create(/*Addr=*/0U, Size, "testSEGV"));
void *P = reinterpret_cast<void *>(ReservedMemory.getBase());
ASSERT_NE(P, nullptr);
EXPECT_DEATH(memset(P, 0xaa, Size), "");
ReservedMemory.release();
}
struct DeathSizeClassConfig {
static const scudo::uptr NumBits = 1;
static const scudo::uptr MinSizeLog = 10;
static const scudo::uptr MidSizeLog = 10;
static const scudo::uptr MaxSizeLog = 13;
static const scudo::u16 MaxNumCachedHint = 8;
static const scudo::uptr MaxBytesCachedLog = 12;
static const scudo::uptr SizeDelta = 0;
};
static const scudo::uptr DeathRegionSizeLog = 21U;
struct DeathConfig {
static const bool MaySupportMemoryTagging = false;
template <class A> using TSDRegistryT = scudo::TSDRegistrySharedT<A, 1U, 1U>;
struct Primary {
// Tiny allocator, its Primary only serves chunks of four sizes.
using SizeClassMap = scudo::FixedSizeClassMap<DeathSizeClassConfig>;
static const scudo::uptr RegionSizeLog = DeathRegionSizeLog;
static const scudo::s32 MinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 MaxReleaseToOsIntervalMs = INT32_MAX;
typedef scudo::uptr CompactPtrT;
static const scudo::uptr CompactPtrScale = 0;
static const bool EnableRandomOffset = true;
static const scudo::uptr MapSizeIncrement = 1UL << 18;
static const scudo::uptr GroupSizeLog = 18;
};
template <typename Config>
using PrimaryT = scudo::SizeClassAllocator64<Config>;
struct Secondary {
template <typename Config>
using CacheT = scudo::MapAllocatorNoCache<Config>;
};
template <typename Config> using SecondaryT = scudo::MapAllocator<Config>;
};
TEST(ScudoCombinedDeathTest, DeathCombined) {
using AllocatorT = TestAllocator<DeathConfig>;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
const scudo::uptr Size = 1000U;
void *P = Allocator->allocate(Size, Origin);
EXPECT_NE(P, nullptr);
// Invalid sized deallocation.
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), "");
// Misaligned pointer. Potentially unused if EXPECT_DEATH isn't available.
UNUSED void *MisalignedP =
reinterpret_cast<void *>(reinterpret_cast<scudo::uptr>(P) | 1U);
EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), "");
EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), "");
// Header corruption.
scudo::u64 *H =
reinterpret_cast<scudo::u64 *>(scudo::Chunk::getAtomicHeader(P));
*H ^= 0x42U;
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
*H ^= 0x420042U;
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
*H ^= 0x420000U;
// Invalid chunk state.
Allocator->deallocate(P, Origin, Size);
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), "");
EXPECT_DEATH(Allocator->getUsableSize(P), "");
}
// Verify that when a region gets full, the allocator will still manage to
// fulfill the allocation through a larger size class.
TEST(ScudoCombinedTest, FullRegion) {
using AllocatorT = TestAllocator<DeathConfig>;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
std::vector<void *> V;
scudo::uptr FailedAllocationsCount = 0;
for (scudo::uptr ClassId = 1U;
ClassId <= DeathConfig::Primary::SizeClassMap::LargestClassId;
ClassId++) {
const scudo::uptr Size =
DeathConfig::Primary::SizeClassMap::getSizeByClassId(ClassId);
// Allocate enough to fill all of the regions above this one.
const scudo::uptr MaxNumberOfChunks =
((1U << DeathRegionSizeLog) / Size) *
(DeathConfig::Primary::SizeClassMap::LargestClassId - ClassId + 1);
void *P;
for (scudo::uptr I = 0; I <= MaxNumberOfChunks; I++) {
P = Allocator->allocate(Size - 64U, Origin);
if (!P)
FailedAllocationsCount++;
else
V.push_back(P);
}
while (!V.empty()) {
Allocator->deallocate(V.back(), Origin);
V.pop_back();
}
}
EXPECT_EQ(FailedAllocationsCount, 0U);
}
// Ensure that releaseToOS can be called prior to any other allocator
// operation without issue.
SCUDO_TYPED_TEST(ScudoCombinedTest, ReleaseToOS) {
auto *Allocator = this->Allocator.get();
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
}
SCUDO_TYPED_TEST(ScudoCombinedTest, OddEven) {
auto *Allocator = this->Allocator.get();
Allocator->setOption(scudo::Option::MemtagTuning, M_MEMTAG_TUNING_BUFFER_OVERFLOW);
if (!Allocator->useMemoryTaggingTestOnly())
return;
auto CheckOddEven = [](scudo::uptr P1, scudo::uptr P2) {
scudo::uptr Tag1 = scudo::extractTag(scudo::loadTag(P1));
scudo::uptr Tag2 = scudo::extractTag(scudo::loadTag(P2));
EXPECT_NE(Tag1 % 2, Tag2 % 2);
};
using SizeClassMap = typename TypeParam::Primary::SizeClassMap;
for (scudo::uptr ClassId = 1U; ClassId <= SizeClassMap::LargestClassId;
ClassId++) {
const scudo::uptr Size = SizeClassMap::getSizeByClassId(ClassId);
std::set<scudo::uptr> Ptrs;
bool Found = false;
for (unsigned I = 0; I != 65536; ++I) {
scudo::uptr P = scudo::untagPointer(reinterpret_cast<scudo::uptr>(
Allocator->allocate(Size - scudo::Chunk::getHeaderSize(), Origin)));
if (Ptrs.count(P - Size)) {
Found = true;
CheckOddEven(P, P - Size);
break;
}
if (Ptrs.count(P + Size)) {
Found = true;
CheckOddEven(P, P + Size);
break;
}
Ptrs.insert(P);
}
EXPECT_TRUE(Found);
}
}
SCUDO_TYPED_TEST(ScudoCombinedTest, DisableMemInit) {
auto *Allocator = this->Allocator.get();
std::vector<void *> Ptrs(65536);
Allocator->setOption(scudo::Option::ThreadDisableMemInit, 1);
constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);
// Test that if mem-init is disabled on a thread, calloc should still work as
// expected. This is tricky to ensure when MTE is enabled, so this test tries
// to exercise the relevant code on our MTE path.
for (scudo::uptr ClassId = 1U; ClassId <= 8; ClassId++) {
using SizeClassMap = typename TypeParam::Primary::SizeClassMap;
const scudo::uptr Size =
SizeClassMap::getSizeByClassId(ClassId) - scudo::Chunk::getHeaderSize();
if (Size < 8)
continue;
for (unsigned I = 0; I != Ptrs.size(); ++I) {
Ptrs[I] = Allocator->allocate(Size, Origin);
memset(Ptrs[I], 0xaa, Size);
}
for (unsigned I = 0; I != Ptrs.size(); ++I)
Allocator->deallocate(Ptrs[I], Origin, Size);
for (unsigned I = 0; I != Ptrs.size(); ++I) {
Ptrs[I] = Allocator->allocate(Size - 8, Origin);
memset(Ptrs[I], 0xbb, Size - 8);
}
for (unsigned I = 0; I != Ptrs.size(); ++I)
Allocator->deallocate(Ptrs[I], Origin, Size - 8);
for (unsigned I = 0; I != Ptrs.size(); ++I) {
Ptrs[I] = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
for (scudo::uptr J = 0; J < Size; ++J)
ASSERT_EQ((reinterpret_cast<char *>(Ptrs[I]))[J], '\0');
}
}
Allocator->setOption(scudo::Option::ThreadDisableMemInit, 0);
}
SCUDO_TYPED_TEST(ScudoCombinedTest, ReallocateInPlaceStress) {
auto *Allocator = this->Allocator.get();
// Regression test: make realloc-in-place happen at the very right end of a
// mapped region.
constexpr size_t nPtrs = 10000;
for (scudo::uptr i = 1; i < 32; ++i) {
scudo::uptr Size = 16 * i - 1;
std::vector<void *> Ptrs;
for (size_t i = 0; i < nPtrs; ++i) {
void *P = Allocator->allocate(Size, Origin);
P = Allocator->reallocate(P, Size + 1);
Ptrs.push_back(P);
}
for (size_t i = 0; i < nPtrs; ++i)
Allocator->deallocate(Ptrs[i], Origin);
}
}
SCUDO_TYPED_TEST(ScudoCombinedTest, RingBufferDefaultDisabled) {
// The RingBuffer is not initialized until tracking is enabled for the
// first time.
auto *Allocator = this->Allocator.get();
EXPECT_EQ(0u, Allocator->getRingBufferSize());
EXPECT_EQ(nullptr, Allocator->getRingBufferAddress());
}
SCUDO_TYPED_TEST(ScudoCombinedTest, RingBufferInitOnce) {
auto *Allocator = this->Allocator.get();
Allocator->setTrackAllocationStacks(true);
auto RingBufferSize = Allocator->getRingBufferSize();
ASSERT_GT(RingBufferSize, 0u);
auto *RingBufferAddress = Allocator->getRingBufferAddress();
EXPECT_NE(nullptr, RingBufferAddress);
// Enable tracking again to verify that the initialization only happens once.
Allocator->setTrackAllocationStacks(true);
ASSERT_EQ(RingBufferSize, Allocator->getRingBufferSize());
EXPECT_EQ(RingBufferAddress, Allocator->getRingBufferAddress());
}
SCUDO_TYPED_TEST(ScudoCombinedTest, RingBufferSize) {
auto *Allocator = this->Allocator.get();
Allocator->setTrackAllocationStacks(true);
auto RingBufferSize = Allocator->getRingBufferSize();
ASSERT_GT(RingBufferSize, 0u);
EXPECT_EQ(Allocator->getRingBufferAddress()[RingBufferSize - 1], '\0');
}
SCUDO_TYPED_TEST(ScudoCombinedTest, RingBufferAddress) {
auto *Allocator = this->Allocator.get();
Allocator->setTrackAllocationStacks(true);
auto *RingBufferAddress = Allocator->getRingBufferAddress();
EXPECT_NE(RingBufferAddress, nullptr);
EXPECT_EQ(RingBufferAddress, Allocator->getRingBufferAddress());
}
SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepotDefaultDisabled) {
// The StackDepot is not initialized until tracking is enabled for the
// first time.
auto *Allocator = this->Allocator.get();
EXPECT_EQ(0u, Allocator->getStackDepotSize());
EXPECT_EQ(nullptr, Allocator->getStackDepotAddress());
}
SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepotInitOnce) {
auto *Allocator = this->Allocator.get();
Allocator->setTrackAllocationStacks(true);
auto StackDepotSize = Allocator->getStackDepotSize();
EXPECT_GT(StackDepotSize, 0u);
auto *StackDepotAddress = Allocator->getStackDepotAddress();
EXPECT_NE(nullptr, StackDepotAddress);
// Enable tracking again to verify that the initialization only happens once.
Allocator->setTrackAllocationStacks(true);
EXPECT_EQ(StackDepotSize, Allocator->getStackDepotSize());
EXPECT_EQ(StackDepotAddress, Allocator->getStackDepotAddress());
}
SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepotSize) {
auto *Allocator = this->Allocator.get();
Allocator->setTrackAllocationStacks(true);
auto StackDepotSize = Allocator->getStackDepotSize();
EXPECT_GT(StackDepotSize, 0u);
EXPECT_EQ(Allocator->getStackDepotAddress()[StackDepotSize - 1], '\0');
}
SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepotAddress) {
auto *Allocator = this->Allocator.get();
Allocator->setTrackAllocationStacks(true);
auto *StackDepotAddress = Allocator->getStackDepotAddress();
EXPECT_NE(StackDepotAddress, nullptr);
EXPECT_EQ(StackDepotAddress, Allocator->getStackDepotAddress());
}
SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepot) {
alignas(scudo::StackDepot) char Buf[sizeof(scudo::StackDepot) +
1024 * sizeof(scudo::atomic_u64) +
1024 * sizeof(scudo::atomic_u32)] = {};
auto *Depot = reinterpret_cast<scudo::StackDepot *>(Buf);
Depot->init(1024, 1024);
ASSERT_TRUE(Depot->isValid(sizeof(Buf)));
ASSERT_FALSE(Depot->isValid(sizeof(Buf) - 1));
scudo::uptr Stack[] = {1, 2, 3};
scudo::u32 Elem = Depot->insert(&Stack[0], &Stack[3]);
scudo::uptr RingPosPtr = 0;
scudo::uptr SizePtr = 0;
ASSERT_TRUE(Depot->find(Elem, &RingPosPtr, &SizePtr));
ASSERT_EQ(SizePtr, 3u);
EXPECT_EQ(Depot->at(RingPosPtr), 1u);
EXPECT_EQ(Depot->at(RingPosPtr + 1), 2u);
EXPECT_EQ(Depot->at(RingPosPtr + 2), 3u);
}
#if SCUDO_CAN_USE_PRIMARY64
#if SCUDO_TRUSTY
// TrustyConfig is designed for a domain-specific allocator. Add a basic test
// which covers only simple operations and ensure the configuration is able to
// compile.
TEST(ScudoCombinedTest, BasicTrustyConfig) {
using AllocatorT = scudo::Allocator<scudo::TrustyConfig>;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
for (scudo::uptr ClassId = 1U;
ClassId <= scudo::TrustyConfig::SizeClassMap::LargestClassId;
ClassId++) {
const scudo::uptr Size =
scudo::TrustyConfig::SizeClassMap::getSizeByClassId(ClassId);
void *p = Allocator->allocate(Size - scudo::Chunk::getHeaderSize(), Origin);
ASSERT_NE(p, nullptr);
free(p);
}
bool UnlockRequired;
typename AllocatorT::TSDRegistryT::ScopedTSD TSD(
*Allocator->getTSDRegistry());
TSD->getCache().drain();
Allocator->releaseToOS(scudo::ReleaseToOS::Force);
}
#endif
#endif