//===--- Implementation of a Linux RwLock class ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_SUPPORT_THREADS_LINUX_RWLOCK_H
#define LLVM_LIBC_SRC_SUPPORT_THREADS_LINUX_RWLOCK_H
#include "hdr/errno_macros.h"
#include "hdr/types/pid_t.h"
#include "src/__support/CPP/atomic.h"
#include "src/__support/CPP/limits.h"
#include "src/__support/CPP/optional.h"
#include "src/__support/OSUtil/syscall.h"
#include "src/__support/common.h"
#include "src/__support/libc_assert.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h"
#include "src/__support/threads/identifier.h"
#include "src/__support/threads/linux/futex_utils.h"
#include "src/__support/threads/linux/futex_word.h"
#include "src/__support/threads/linux/raw_mutex.h"
#include "src/__support/threads/sleep.h"
#ifndef LIBC_COPT_RWLOCK_DEFAULT_SPIN_COUNT
#define LIBC_COPT_RWLOCK_DEFAULT_SPIN_COUNT 100
#endif
#ifndef LIBC_COPT_TIMEOUT_ENSURE_MONOTONICITY
#define LIBC_COPT_TIMEOUT_ENSURE_MONOTONICITY 1
#warning "LIBC_COPT_TIMEOUT_ENSURE_MONOTONICITY is not defined, defaulting to 1"
#endif
#if LIBC_COPT_TIMEOUT_ENSURE_MONOTONICITY
#include "src/__support/time/linux/monotonicity.h"
#endif
namespace LIBC_NAMESPACE_DECL {
// Forward declaration of the RwLock class.
class RwLock;
// A namespace to rwlock specific utilities.
namespace rwlock {
// The role of the thread in the RwLock.
enum class Role { Reader = 0, Writer = 1 };
// A waiting queue to keep track of the pending readers and writers.
class WaitingQueue final : private RawMutex {
/* FutexWordType raw_mutex; (from base class) */
// Pending reader count (protected by the mutex)
FutexWordType pending_readers;
// Pending writer count (protected by the mutex)
FutexWordType pending_writers;
// Reader serialization (increases on each reader-waking operation)
Futex reader_serialization;
// Writer serialization (increases on each writer-waking operation)
Futex writer_serialization;
public:
// RAII guard to lock and unlock the waiting queue.
class Guard {
WaitingQueue &queue;
bool is_pshared;
LIBC_INLINE Guard(WaitingQueue &queue, bool is_pshared)
: queue(queue), is_pshared(is_pshared) {
queue.lock(cpp::nullopt, is_pshared);
}
public:
LIBC_INLINE ~Guard() { queue.unlock(is_pshared); }
template <Role role> LIBC_INLINE FutexWordType &pending_count() {
if constexpr (role == Role::Reader)
return queue.pending_readers;
else
return queue.pending_writers;
}
template <Role role> LIBC_INLINE FutexWordType &serialization() {
if constexpr (role == Role::Reader)
return queue.reader_serialization.val;
else
return queue.writer_serialization.val;
}
friend WaitingQueue;
};
public:
LIBC_INLINE constexpr WaitingQueue()
: RawMutex(), pending_readers(0), pending_writers(0),
reader_serialization(0), writer_serialization(0) {}
LIBC_INLINE Guard acquire(bool is_pshared) {
return Guard(*this, is_pshared);
}
template <Role role>
LIBC_INLINE long wait(FutexWordType expected,
cpp::optional<Futex::Timeout> timeout,
bool is_pshared) {
if constexpr (role == Role::Reader)
return reader_serialization.wait(expected, timeout, is_pshared);
else
return writer_serialization.wait(expected, timeout, is_pshared);
}
template <Role role> LIBC_INLINE long notify(bool is_pshared) {
if constexpr (role == Role::Reader)
return reader_serialization.notify_all(is_pshared);
else
return writer_serialization.notify_one(is_pshared);
}
};
// The RwState of the RwLock is stored in an integer word, consisting of the
// following components:
// -----------------------------------------------
// | Range | Description |
// ===============================================
// | 0 | Pending Reader Bit |
// -----------------------------------------------
// | 1 | Pending Writer Bit |
// -----------------------------------------------
// | [2, MSB) | Active Reader Count |
// -----------------------------------------------
// | MSB | Active Writer Bit |
// -----------------------------------------------
class RwState {
// Shift amounts to access the components of the state.
LIBC_INLINE_VAR static constexpr int PENDING_READER_SHIFT = 0;
LIBC_INLINE_VAR static constexpr int PENDING_WRITER_SHIFT = 1;
LIBC_INLINE_VAR static constexpr int ACTIVE_READER_SHIFT = 2;
LIBC_INLINE_VAR static constexpr int ACTIVE_WRITER_SHIFT =
cpp::numeric_limits<int>::digits;
// Bitmasks to access the components of the state.
LIBC_INLINE_VAR static constexpr int PENDING_READER_BIT =
1 << PENDING_READER_SHIFT;
LIBC_INLINE_VAR static constexpr int PENDING_WRITER_BIT =
1 << PENDING_WRITER_SHIFT;
LIBC_INLINE_VAR static constexpr int ACTIVE_READER_COUNT_UNIT =
1 << ACTIVE_READER_SHIFT;
LIBC_INLINE_VAR static constexpr int ACTIVE_WRITER_BIT =
1 << ACTIVE_WRITER_SHIFT;
LIBC_INLINE_VAR static constexpr int PENDING_MASK =
PENDING_READER_BIT | PENDING_WRITER_BIT;
private:
// We use the signed integer as the state type. It is easier
// to reason about the state transitions using signness.
int state;
public:
// Construction and conversion functions.
LIBC_INLINE constexpr RwState(int state = 0) : state(state) {}
LIBC_INLINE constexpr operator int() const { return state; }
// Utilities to check the state of the RwLock.
LIBC_INLINE constexpr bool has_active_writer() const { return state < 0; }
LIBC_INLINE constexpr bool has_active_reader() const {
return state >= ACTIVE_READER_COUNT_UNIT;
}
LIBC_INLINE constexpr bool has_acitve_owner() const {
return has_active_reader() || has_active_writer();
}
LIBC_INLINE constexpr bool has_last_reader() const {
return (state >> ACTIVE_READER_SHIFT) == 1;
}
LIBC_INLINE constexpr bool has_pending_writer() const {
return state & PENDING_WRITER_BIT;
}
LIBC_INLINE constexpr bool has_pending() const {
return state & PENDING_MASK;
}
LIBC_INLINE constexpr RwState set_writer_bit() const {
return RwState(state | ACTIVE_WRITER_BIT);
}
// The preference parameter changes the behavior of the lock acquisition
// if there are both readers and writers waiting for the lock. If writers
// are preferred, reader acquisition will be blocked until all pending
// writers are served.
template <Role role> LIBC_INLINE bool can_acquire(Role preference) const {
if constexpr (role == Role::Reader) {
switch (preference) {
case Role::Reader:
return !has_active_writer();
case Role::Writer:
return !has_active_writer() && !has_pending_writer();
}
__builtin_unreachable();
} else
return !has_acitve_owner();
}
// This function check if it is possible to grow the reader count without
// overflowing the state.
LIBC_INLINE cpp::optional<RwState> try_increase_reader_count() const {
LIBC_ASSERT(!has_active_writer() &&
"try_increase_reader_count shall only be called when there "
"is no active writer.");
RwState res;
if (LIBC_UNLIKELY(__builtin_sadd_overflow(state, ACTIVE_READER_COUNT_UNIT,
&res.state)))
return cpp::nullopt;
return res;
}
// Utilities to do atomic operations on the state.
LIBC_INLINE static RwState fetch_sub_reader_count(cpp::Atomic<int> &target,
cpp::MemoryOrder order) {
return RwState(target.fetch_sub(ACTIVE_READER_COUNT_UNIT, order));
}
LIBC_INLINE static RwState load(cpp::Atomic<int> &target,
cpp::MemoryOrder order) {
return RwState(target.load(order));
}
template <Role role>
LIBC_INLINE static RwState fetch_set_pending_bit(cpp::Atomic<int> &target,
cpp::MemoryOrder order) {
if constexpr (role == Role::Reader)
return RwState(target.fetch_or(PENDING_READER_BIT, order));
else
return RwState(target.fetch_or(PENDING_WRITER_BIT, order));
}
template <Role role>
LIBC_INLINE static RwState fetch_clear_pending_bit(cpp::Atomic<int> &target,
cpp::MemoryOrder order) {
if constexpr (role == Role::Reader)
return RwState(target.fetch_and(~PENDING_READER_BIT, order));
else
return RwState(target.fetch_and(~PENDING_WRITER_BIT, order));
}
LIBC_INLINE static RwState fetch_clear_active_writer(cpp::Atomic<int> &target,
cpp::MemoryOrder order) {
return RwState(target.fetch_and(~ACTIVE_WRITER_BIT, order));
}
LIBC_INLINE bool compare_exchange_weak_with(cpp::Atomic<int> &target,
RwState desired,
cpp::MemoryOrder success_order,
cpp::MemoryOrder failure_order) {
return target.compare_exchange_weak(state, desired, success_order,
failure_order);
}
// Utilities to spin and reload the state.
private:
template <class F>
LIBC_INLINE static RwState spin_reload_until(cpp::Atomic<int> &target,
F &&func, unsigned spin_count) {
for (;;) {
auto state = RwState::load(target, cpp::MemoryOrder::RELAXED);
if (func(state) || spin_count == 0)
return state;
sleep_briefly();
spin_count--;
}
}
public:
template <Role role>
LIBC_INLINE static RwState spin_reload(cpp::Atomic<int> &target,
Role preference, unsigned spin_count) {
if constexpr (role == Role::Reader) {
// Return the reader state if either the lock is available or there is
// any ongoing contention.
return spin_reload_until(
target,
[=](RwState state) {
return state.can_acquire<Role::Reader>(preference) ||
state.has_pending();
},
spin_count);
} else {
// Return the writer state if either the lock is available or there is
// any contention *between writers*. Since writers can be way less than
// readers, we allow them to spin more to improve the fairness.
return spin_reload_until(
target,
[=](RwState state) {
return state.can_acquire<Role::Writer>(preference) ||
state.has_pending_writer();
},
spin_count);
}
}
friend class RwLockTester;
};
} // namespace rwlock
class RwLock {
using RwState = rwlock::RwState;
using Role = rwlock::Role;
using WaitingQueue = rwlock::WaitingQueue;
public:
// Return types for the lock functions.
// All the locking routines returning this type are marked as [[nodiscard]]
// because it is a common error to assume the lock success without checking
// the return value, which can lead to undefined behaviors or other subtle
// bugs that are hard to reason about.
enum class LockResult : int {
Success = 0,
TimedOut = ETIMEDOUT,
Overflow = EAGAIN, /* EAGAIN is specified in the standard for overflow. */
Busy = EBUSY,
Deadlock = EDEADLOCK,
PermissionDenied = EPERM,
};
private:
// Whether the RwLock is shared between processes.
LIBC_PREFERED_TYPE(bool)
unsigned is_pshared : 1;
// Reader/Writer preference.
LIBC_PREFERED_TYPE(Role)
unsigned preference : 1;
// RwState to keep track of the RwLock.
cpp::Atomic<int> state;
// writer_tid is used to keep track of the thread id of the writer. Notice
// that TLS address is not a good idea here since it may remains the same
// across forked processes.
cpp::Atomic<pid_t> writer_tid;
// Waiting queue to keep track of the readers and writers.
WaitingQueue queue;
private:
// Load the bitfield preference.
LIBC_INLINE Role get_preference() const {
return static_cast<Role>(preference);
}
template <Role role> LIBC_INLINE LockResult try_lock(RwState &old) {
if constexpr (role == Role::Reader) {
while (LIBC_LIKELY(old.can_acquire<Role::Reader>(get_preference()))) {
cpp::optional<RwState> next = old.try_increase_reader_count();
if (!next)
return LockResult::Overflow;
if (LIBC_LIKELY(old.compare_exchange_weak_with(
state, *next, cpp::MemoryOrder::ACQUIRE,
cpp::MemoryOrder::RELAXED)))
return LockResult::Success;
// Notice that old is updated by the compare_exchange_weak_with
// function.
}
return LockResult::Busy;
} else {
// This while loop should terminate quickly
while (LIBC_LIKELY(old.can_acquire<Role::Writer>(get_preference()))) {
if (LIBC_LIKELY(old.compare_exchange_weak_with(
state, old.set_writer_bit(), cpp::MemoryOrder::ACQUIRE,
cpp::MemoryOrder::RELAXED))) {
writer_tid.store(internal::gettid(), cpp::MemoryOrder::RELAXED);
return LockResult::Success;
}
// Notice that old is updated by the compare_exchange_weak_with
// function.
}
return LockResult::Busy;
}
}
public:
LIBC_INLINE constexpr RwLock(Role preference = Role::Reader,
bool is_pshared = false)
: is_pshared(is_pshared),
preference(static_cast<unsigned>(preference) & 1u), state(0),
writer_tid(0), queue() {}
[[nodiscard]]
LIBC_INLINE LockResult try_read_lock() {
RwState old = RwState::load(state, cpp::MemoryOrder::RELAXED);
return try_lock<Role::Reader>(old);
}
[[nodiscard]]
LIBC_INLINE LockResult try_write_lock() {
RwState old = RwState::load(state, cpp::MemoryOrder::RELAXED);
return try_lock<Role::Writer>(old);
}
private:
template <Role role>
LIBC_INLINE LockResult
lock_slow(cpp::optional<Futex::Timeout> timeout = cpp::nullopt,
unsigned spin_count = LIBC_COPT_RWLOCK_DEFAULT_SPIN_COUNT) {
// Phase 1: deadlock detection.
// A deadlock happens if this is a RAW/WAW lock in the same thread.
if (writer_tid.load(cpp::MemoryOrder::RELAXED) == internal::gettid())
return LockResult::Deadlock;
#if LIBC_COPT_TIMEOUT_ENSURE_MONOTONICITY
// Phase 2: convert the timeout if necessary.
if (timeout)
ensure_monotonicity(*timeout);
#endif
// Phase 3: spin to get the initial state. We ignore the timing due to
// spin since it should end quickly.
RwState old =
RwState::spin_reload<role>(state, get_preference(), spin_count);
// Enter the main acquisition loop.
for (;;) {
// Phase 4: if the lock can be acquired, try to acquire it.
LockResult result = try_lock<role>(old);
if (result != LockResult::Busy)
return result;
// Phase 5: register ourselves as a reader.
int serial_number;
{
// The queue need to be protected by a mutex since the operations in
// this block must be executed as a whole transaction. It is possible
// that this lock will make the timeout imprecise, but this is the
// best we can do. The transaction is small and everyone should make
// progress rather quickly.
WaitingQueue::Guard guard = queue.acquire(is_pshared);
guard.template pending_count<role>()++;
// Use atomic operation to guarantee the total order of the operations
// on the state. The pending flag update should be visible to any
// succeeding unlock events. Or, if a unlock does happen before we
// sleep on the futex, we can avoid such waiting.
old = RwState::fetch_set_pending_bit<role>(state,
cpp::MemoryOrder::RELAXED);
// no need to use atomic since it is already protected by the mutex.
serial_number = guard.serialization<role>();
}
// Phase 6: do futex wait until the lock is available or timeout is
// reached.
bool timeout_flag = false;
if (!old.can_acquire<role>(get_preference()))
timeout_flag = (queue.wait<role>(serial_number, timeout, is_pshared) ==
-ETIMEDOUT);
// Phase 7: unregister ourselves as a pending reader/writer.
{
// Similarly, the unregister operation should also be an atomic
// transaction.
WaitingQueue::Guard guard = queue.acquire(is_pshared);
guard.pending_count<role>()--;
// Clear the flag if we are the last reader. The flag must be
// cleared otherwise operations like trylock may fail even though
// there is no competitors.
if (guard.pending_count<role>() == 0)
RwState::fetch_clear_pending_bit<role>(state,
cpp::MemoryOrder::RELAXED);
}
// Phase 8: exit the loop is timeout is reached.
if (timeout_flag)
return LockResult::TimedOut;
// Phase 9: reload the state and retry the acquisition.
old = RwState::spin_reload<role>(state, get_preference(), spin_count);
}
}
public:
[[nodiscard]]
LIBC_INLINE LockResult
read_lock(cpp::optional<Futex::Timeout> timeout = cpp::nullopt,
unsigned spin_count = LIBC_COPT_RWLOCK_DEFAULT_SPIN_COUNT) {
LockResult result = try_read_lock();
if (LIBC_LIKELY(result != LockResult::Busy))
return result;
return lock_slow<Role::Reader>(timeout, spin_count);
}
[[nodiscard]]
LIBC_INLINE LockResult
write_lock(cpp::optional<Futex::Timeout> timeout = cpp::nullopt,
unsigned spin_count = LIBC_COPT_RWLOCK_DEFAULT_SPIN_COUNT) {
LockResult result = try_write_lock();
if (LIBC_LIKELY(result != LockResult::Busy))
return result;
return lock_slow<Role::Writer>(timeout, spin_count);
}
private:
// Compiler (clang 19.0) somehow decides that this function may be inlined,
// which leads to a larger unlock function that is infeasible to be inlined.
// Since notifcation routine is colder we mark it as noinline explicitly.
[[gnu::noinline]]
LIBC_INLINE void notify_pending_threads() {
enum class WakeTarget { Readers, Writers, None };
WakeTarget status;
{
WaitingQueue::Guard guard = queue.acquire(is_pshared);
if (guard.pending_count<Role::Writer>() != 0) {
guard.serialization<Role::Writer>()++;
status = WakeTarget::Writers;
} else if (guard.pending_count<Role::Reader>() != 0) {
guard.serialization<Role::Reader>()++;
status = WakeTarget::Readers;
} else
status = WakeTarget::None;
}
if (status == WakeTarget::Readers)
queue.notify<Role::Reader>(is_pshared);
else if (status == WakeTarget::Writers)
queue.notify<Role::Writer>(is_pshared);
}
public:
[[nodiscard]]
LIBC_INLINE LockResult unlock() {
RwState old = RwState::load(state, cpp::MemoryOrder::RELAXED);
if (old.has_active_writer()) {
// The lock is held by a writer.
// Check if we are the owner of the lock.
if (writer_tid.load(cpp::MemoryOrder::RELAXED) != internal::gettid())
return LockResult::PermissionDenied;
// clear writer tid.
writer_tid.store(0, cpp::MemoryOrder::RELAXED);
// clear the writer bit.
old =
RwState::fetch_clear_active_writer(state, cpp::MemoryOrder::RELEASE);
// If there is no pending readers or writers, we are done.
if (!old.has_pending())
return LockResult::Success;
} else if (old.has_active_reader()) {
// The lock is held by readers.
// Decrease the reader count.
old = RwState::fetch_sub_reader_count(state, cpp::MemoryOrder::RELEASE);
// If there is no pending readers or writers, we are done.
if (!old.has_last_reader() || !old.has_pending())
return LockResult::Success;
} else
return LockResult::PermissionDenied;
notify_pending_threads();
return LockResult::Success;
}
// We do not allocate any special resources for the RwLock, so this function
// will only check if the lock is currently held by any thread.
[[nodiscard]]
LIBC_INLINE LockResult check_for_destroy() {
RwState old = RwState::load(state, cpp::MemoryOrder::RELAXED);
if (old.has_acitve_owner())
return LockResult::Busy;
return LockResult::Success;
}
};
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC_SUPPORT_THREADS_LINUX_RWLOCK_H