//===-- Calculate square root of fixed point numbers. -----*- C++ -*-=========//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H
#define LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H
#include "include/llvm-libc-macros/stdfix-macros.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/CPP/limits.h" // CHAR_BIT
#include "src/__support/CPP/type_traits.h"
#include "src/__support/macros/attributes.h" // LIBC_INLINE
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "fx_rep.h"
#ifdef LIBC_COMPILER_HAS_FIXED_POINT
namespace LIBC_NAMESPACE_DECL {
namespace fixed_point {
namespace internal {
template <typename T> struct SqrtConfig;
template <> struct SqrtConfig<unsigned short fract> {
using Type = unsigned short fract;
static constexpr int EXTRA_STEPS = 0;
// Linear approximation for the initial values, with errors bounded by:
// max(1.5 * 2^-11, eps)
// Generated with Sollya:
// > for i from 4 to 15 do {
// P = fpminimax(sqrt(x), 1, [|8, 8|], [i * 2^-4, (i + 1)*2^-4],
// fixed, absolute);
// print("{", coeff(P, 1), "uhr,", coeff(P, 0), "uhr},");
// };
static constexpr Type FIRST_APPROX[12][2] = {
{0x1.e8p-1uhr, 0x1.0cp-2uhr}, {0x1.bap-1uhr, 0x1.28p-2uhr},
{0x1.94p-1uhr, 0x1.44p-2uhr}, {0x1.74p-1uhr, 0x1.6p-2uhr},
{0x1.6p-1uhr, 0x1.74p-2uhr}, {0x1.4ep-1uhr, 0x1.88p-2uhr},
{0x1.3ep-1uhr, 0x1.9cp-2uhr}, {0x1.32p-1uhr, 0x1.acp-2uhr},
{0x1.22p-1uhr, 0x1.c4p-2uhr}, {0x1.18p-1uhr, 0x1.d4p-2uhr},
{0x1.08p-1uhr, 0x1.fp-2uhr}, {0x1.04p-1uhr, 0x1.f8p-2uhr},
};
};
template <> struct SqrtConfig<unsigned fract> {
using Type = unsigned fract;
static constexpr int EXTRA_STEPS = 1;
// Linear approximation for the initial values, with errors bounded by:
// max(1.5 * 2^-11, eps)
// Generated with Sollya:
// > for i from 4 to 14 do {
// P = fpminimax(sqrt(x), 1, [|16, 16|], [i * 2^-4, (i + 1)*2^-4],
// fixed, absolute);
// print("{", coeff(P, 1), "ur,", coeff(P, 0), "ur},");
// };
// For the last interval [15/16, 1), we choose the linear function Q such that
// Q(1) = 1 and Q(15/16) = P(15/16),
// where P is the polynomial generated by Sollya above for [14/16, 15/16].
// This is to prevent overflow in the last interval [15/16, 1).
static constexpr Type FIRST_APPROX[12][2] = {
{0x1.e378p-1ur, 0x1.0ebp-2ur}, {0x1.b512p-1ur, 0x1.2b94p-2ur},
{0x1.91fp-1ur, 0x1.45dcp-2ur}, {0x1.7622p-1ur, 0x1.5e24p-2ur},
{0x1.5f5ap-1ur, 0x1.74e4p-2ur}, {0x1.4c58p-1ur, 0x1.8a4p-2ur},
{0x1.3c1ep-1ur, 0x1.9e84p-2ur}, {0x1.2e0cp-1ur, 0x1.b1d8p-2ur},
{0x1.21aap-1ur, 0x1.c468p-2ur}, {0x1.16bap-1ur, 0x1.d62cp-2ur},
{0x1.0cfp-1ur, 0x1.e74cp-2ur}, {0x1.039p-1ur, 0x1.f8ep-2ur},
};
};
template <> struct SqrtConfig<unsigned long fract> {
using Type = unsigned long fract;
static constexpr int EXTRA_STEPS = 2;
// Linear approximation for the initial values, with errors bounded by:
// max(1.5 * 2^-11, eps)
// Generated with Sollya:
// > for i from 4 to 14 do {
// P = fpminimax(sqrt(x), 1, [|32, 32|], [i * 2^-4, (i + 1)*2^-4],
// fixed, absolute);
// print("{", coeff(P, 1), "ulr,", coeff(P, 0), "ulr},");
// };
// For the last interval [15/16, 1), we choose the linear function Q such that
// Q(1) = 1 and Q(15/16) = P(15/16),
// where P is the polynomial generated by Sollya above for [14/16, 15/16].
// This is to prevent overflow in the last interval [15/16, 1).
static constexpr Type FIRST_APPROX[12][2] = {
{0x1.e3779b98p-1ulr, 0x1.0eaff788p-2ulr},
{0x1.b5167872p-1ulr, 0x1.2b908ad4p-2ulr},
{0x1.91f195cap-1ulr, 0x1.45da800cp-2ulr},
{0x1.761ebcb4p-1ulr, 0x1.5e27004cp-2ulr},
{0x1.5f619986p-1ulr, 0x1.74db933cp-2ulr},
{0x1.4c583adep-1ulr, 0x1.8a3fbfccp-2ulr},
{0x1.3c1a591cp-1ulr, 0x1.9e88373cp-2ulr},
{0x1.2e08545ap-1ulr, 0x1.b1dd2534p-2ulr},
{0x1.21b05c0ap-1ulr, 0x1.c45e023p-2ulr},
{0x1.16becd02p-1ulr, 0x1.d624031p-2ulr},
{0x1.0cf49fep-1ulr, 0x1.e743b844p-2ulr},
{0x1.038cdfcp-1ulr, 0x1.f8e6408p-2ulr},
};
};
template <>
struct SqrtConfig<unsigned short accum> : SqrtConfig<unsigned fract> {};
template <>
struct SqrtConfig<unsigned accum> : SqrtConfig<unsigned long fract> {};
// Integer square root
template <> struct SqrtConfig<unsigned short> {
using OutType = unsigned short accum;
using FracType = unsigned fract;
// For fast-but-less-accurate version
using FastFracType = unsigned short fract;
using HalfType = unsigned char;
};
template <> struct SqrtConfig<unsigned int> {
using OutType = unsigned accum;
using FracType = unsigned long fract;
// For fast-but-less-accurate version
using FastFracType = unsigned fract;
using HalfType = unsigned short;
};
// TODO: unsigned long accum type is 64-bit, and will need 64-bit fract type.
// Probably we will use DyadicFloat<64> for intermediate computations instead.
} // namespace internal
// Core computation for sqrt with normalized inputs (0.25 <= x < 1).
template <typename Config>
LIBC_INLINE constexpr typename Config::Type
sqrt_core(typename Config::Type x_frac) {
using FracType = typename Config::Type;
using FXRep = FXRep<FracType>;
using StorageType = typename FXRep::StorageType;
// Exact case:
if (x_frac == FXRep::ONE_FOURTH())
return FXRep::ONE_HALF();
// Use use Newton method to approximate sqrt(a):
// x_{n + 1} = 1/2 (x_n + a / x_n)
// For the initial values, we choose x_0
// Use the leading 4 bits to do look up for sqrt(x).
// After normalization, 0.25 <= x_frac < 1, so the leading 4 bits of x_frac
// are between 0b0100 and 0b1111. Hence the lookup table only needs 12
// entries, and we can get the index by subtracting the leading 4 bits of
// x_frac by 4 = 0b0100.
StorageType x_bit = cpp::bit_cast<StorageType>(x_frac);
int index = (static_cast<int>(x_bit >> (FXRep::TOTAL_LEN - 4))) - 4;
FracType a = Config::FIRST_APPROX[index][0];
FracType b = Config::FIRST_APPROX[index][1];
// Initial approximation step.
// Estimated error bounds: | r - sqrt(x_frac) | < max(1.5 * 2^-11, eps).
FracType r = a * x_frac + b;
// Further Newton-method iterations for square-root:
// x_{n + 1} = 0.5 * (x_n + a / x_n)
// We distribute and do the multiplication by 0.5 first to avoid overflow.
// TODO: Investigate the performance and accuracy of using division-free
// iterations from:
// Blanchard, J. D. and Chamberland, M., "Newton's Method Without Division",
// The American Mathematical Monthly (2023).
// https://chamberland.math.grinnell.edu/papers/newton.pdf
for (int i = 0; i < Config::EXTRA_STEPS; ++i)
r = (r >> 1) + (x_frac >> 1) / r;
return r;
}
template <typename T>
LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_fixed_point_v<T>, T> sqrt(T x) {
using BitType = typename FXRep<T>::StorageType;
BitType x_bit = cpp::bit_cast<BitType>(x);
if (LIBC_UNLIKELY(x_bit == 0))
return FXRep<T>::ZERO();
int leading_zeros = cpp::countl_zero(x_bit);
constexpr int STORAGE_LENGTH = sizeof(BitType) * CHAR_BIT;
constexpr int EXP_ADJUSTMENT = STORAGE_LENGTH - FXRep<T>::FRACTION_LEN - 1;
// x_exp is the real exponent of the leading bit of x.
int x_exp = EXP_ADJUSTMENT - leading_zeros;
int shift = EXP_ADJUSTMENT - 1 - (x_exp & (~1));
// Normalize.
x_bit <<= shift;
using FracType = typename internal::SqrtConfig<T>::Type;
FracType x_frac = cpp::bit_cast<FracType>(x_bit);
// Compute sqrt(x_frac) using Newton-method.
FracType r = sqrt_core<internal::SqrtConfig<T>>(x_frac);
// Re-scaling
r >>= EXP_ADJUSTMENT - (x_exp >> 1);
// Return result.
return cpp::bit_cast<T>(r);
}
// Integer square root - Accurate version:
// Absolute errors < 2^(-fraction length).
template <typename T>
LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType isqrt(T x) {
using OutType = typename internal::SqrtConfig<T>::OutType;
using FracType = typename internal::SqrtConfig<T>::FracType;
if (x == 0)
return FXRep<OutType>::ZERO();
// Normalize the leading bits to the first two bits.
// Shift and then Bit cast x to x_frac gives us:
// x = 2^(FRACTION_LEN + 1 - shift) * x_frac;
int leading_zeros = cpp::countl_zero(x);
int shift = ((leading_zeros >> 1) << 1);
x <<= shift;
// Convert to frac type and compute square root.
FracType x_frac = cpp::bit_cast<FracType>(x);
FracType r = sqrt_core<internal::SqrtConfig<FracType>>(x_frac);
// To rescale back to the OutType (Accum)
r >>= (shift >> 1);
return cpp::bit_cast<OutType>(r);
}
// Integer square root - Fast but less accurate version:
// Relative errors < 2^(-fraction length).
template <typename T>
LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType
isqrt_fast(T x) {
using OutType = typename internal::SqrtConfig<T>::OutType;
using FracType = typename internal::SqrtConfig<T>::FastFracType;
using StorageType = typename FXRep<FracType>::StorageType;
if (x == 0)
return FXRep<OutType>::ZERO();
// Normalize the leading bits to the first two bits.
// Shift and then Bit cast x to x_frac gives us:
// x = 2^(FRACTION_LEN + 1 - shift) * x_frac;
int leading_zeros = cpp::countl_zero(x);
int shift = (leading_zeros & (~1));
x <<= shift;
// Convert to frac type and compute square root.
FracType x_frac = cpp::bit_cast<FracType>(
static_cast<StorageType>(x >> FXRep<FracType>::FRACTION_LEN));
OutType r =
static_cast<OutType>(sqrt_core<internal::SqrtConfig<FracType>>(x_frac));
// To rescale back to the OutType (Accum)
r <<= (FXRep<OutType>::INTEGRAL_LEN - (shift >> 1));
return cpp::bit_cast<OutType>(r);
}
} // namespace fixed_point
} // namespace LIBC_NAMESPACE_DECL
#endif // LIBC_COMPILER_HAS_FIXED_POINT
#endif // LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H