//===------------- NVPTX implementation of timing utils ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
#define LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
#include "src/__support/CPP/array.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/GPU/utils.h"
#include "src/__support/common.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
#include <stdint.h>
namespace LIBC_NAMESPACE_DECL {
// Returns the overhead associated with calling the profiling region. This
// allows us to substract the constant-time overhead from the latency to
// obtain a true result. This can vary with system load.
[[gnu::noinline]] static uint64_t overhead() {
volatile uint32_t x = 1;
uint32_t y = x;
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
uint32_t result = y;
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
uint64_t stop = gpu::processor_clock();
volatile auto storage = result;
return stop - start;
}
// Stimulate a simple function and obtain its latency in clock cycles on the
// system. This function cannot be inlined or else it will disturb the very
// delicate balance of hard-coded dependencies.
template <typename F, typename T>
[[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T t) {
// We need to store the input somewhere to guarantee that the compiler will
// not constant propagate it and remove the profiling region.
volatile T storage = t;
T arg = storage;
// Get the current timestamp from the clock.
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
// This forces the compiler to load the input argument and run the clock cycle
// counter before the profiling region.
asm("" ::"llr"(start));
// Run the function under test and return its value.
auto result = f(arg);
// This inline assembly performs a no-op which forces the result to both be
// used and prevents us from exiting this region before it's complete.
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
// Obtain the current timestamp after running the calculation and force
// ordering.
uint64_t stop = gpu::processor_clock();
gpu::memory_fence();
asm("" ::"r"(stop));
volatile T output = result;
// Return the time elapsed.
return stop - start;
}
template <typename F, typename T1, typename T2>
static LIBC_INLINE uint64_t latency(F f, T1 t1, T2 t2) {
volatile T1 storage = t1;
volatile T2 storage2 = t2;
T1 arg = storage;
T2 arg2 = storage2;
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
auto result = f(arg, arg2);
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
uint64_t stop = gpu::processor_clock();
gpu::memory_fence();
asm("" ::"r"(stop));
volatile auto output = result;
return stop - start;
}
// Provides throughput benchmarking.
template <typename F, typename T, size_t N>
[[gnu::noinline]] static LIBC_INLINE uint64_t
throughput(F f, const cpp::array<T, N> &inputs) {
asm("" ::"r"(&inputs));
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
uint64_t result;
for (auto input : inputs) {
asm("" ::"r"(input));
result = f(input);
asm("" ::"r"(result));
}
uint64_t stop = gpu::processor_clock();
gpu::memory_fence();
asm("" ::"r"(stop));
volatile auto output = result;
// Return the time elapsed.
return stop - start;
}
// Provides throughput benchmarking for 2 arguments (e.g. atan2())
template <typename F, typename T, size_t N>
[[gnu::noinline]] static LIBC_INLINE uint64_t throughput(
F f, const cpp::array<T, N> &inputs1, const cpp::array<T, N> &inputs2) {
asm("" ::"r"(&inputs1), "r"(&inputs2));
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
uint64_t result;
for (size_t i = 0; i < inputs1.size(); i++) {
result = f(inputs1[i], inputs2[i]);
asm("" ::"r"(result));
}
uint64_t stop = gpu::processor_clock();
gpu::memory_fence();
asm("" ::"r"(stop));
volatile auto output = result;
// Return the time elapsed.
return stop - start;
}
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_UTILS_GPU_TIMING_NVPTX