//===------------- AMDGPU implementation of timing utils --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_GPU_TIMING_AMDGPU
#define LLVM_LIBC_UTILS_GPU_TIMING_AMDGPU
#include "src/__support/CPP/array.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/GPU/utils.h"
#include "src/__support/common.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
#include <stdint.h>
namespace LIBC_NAMESPACE_DECL {
// Returns the overhead associated with calling the profiling region. This
// allows us to substract the constant-time overhead from the latency to
// obtain a true result. This can vary with system load.
[[gnu::noinline]] static LIBC_INLINE uint64_t overhead() {
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
uint32_t result = 0.0;
asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"(result));
asm("" ::"s"(start));
uint64_t stop = gpu::processor_clock();
return stop - start;
}
// Profile a simple function and obtain its latency in clock cycles on the
// system. This function cannot be inlined or else it will disturb the very
// delicate balance of hard-coded dependencies.
template <typename F, typename T>
[[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T t) {
// We need to store the input somewhere to guarantee that the compiler
// will not constant propagate it and remove the profiling region.
volatile T storage = t;
T arg = storage;
// The AMDGPU architecture needs to wait on pending results.
gpu::memory_fence();
// Get the current timestamp from the clock.
uint64_t start = gpu::processor_clock();
// This forces the compiler to load the input argument and run the clock
// cycle counter before the profiling region.
asm("" ::"s"(start));
// Run the function under test and return its value.
auto result = f(arg);
// This inline assembly performs a no-op which forces the result to both
// be used and prevents us from exiting this region before it's complete.
if constexpr (cpp::is_same_v<decltype(result), char> ||
cpp::is_same_v<decltype(result), bool>)
// AMDGPU does not support input register constraints for i1 and i8, so we
// cast it to a 32-bit integer. This does not add an additional assembly
// instruction (https://godbolt.org/z/zxGqv8G91).
asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"(
static_cast<uint32_t>(result)));
else
asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"(result));
// Obtain the current timestamp after running the calculation and force
// ordering.
uint64_t stop = gpu::processor_clock();
asm("" ::"s"(stop));
gpu::memory_fence();
// Return the time elapsed.
return stop - start;
}
template <typename F, typename T1, typename T2>
[[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T1 t1, T2 t2) {
volatile T1 storage1 = t1;
volatile T2 storage2 = t2;
T1 arg1 = storage1;
T2 arg2 = storage2;
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"s"(start));
auto result = f(arg1, arg2);
if constexpr (cpp::is_same_v<decltype(result), char> ||
cpp::is_same_v<decltype(result), bool>)
asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"(
static_cast<uint32_t>(result)));
else
asm("v_or_b32 %[v_reg], 0, %[v_reg]\n" ::[v_reg] "v"(result));
uint64_t stop = gpu::processor_clock();
asm("" ::"s"(stop));
gpu::memory_fence();
return stop - start;
}
// Provides throughput benchmarking.
template <typename F, typename T, size_t N>
[[gnu::noinline]] static LIBC_INLINE uint64_t
throughput(F f, const cpp::array<T, N> &inputs) {
asm("" ::"v"(&inputs));
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"s"(start));
for (auto input : inputs) {
auto result = f(input);
asm("" ::"v"(result));
}
uint64_t stop = gpu::processor_clock();
asm("" ::"s"(stop));
gpu::memory_fence();
// Return the time elapsed.
return stop - start;
}
// Provides throughput benchmarking for 2 arguments (e.g. atan2())
template <typename F, typename T, size_t N>
[[gnu::noinline]] static LIBC_INLINE uint64_t throughput(
F f, const cpp::array<T, N> &inputs1, const cpp::array<T, N> &inputs2) {
asm("" ::"v"(&inputs1), "v"(&inputs2));
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"s"(start));
for (size_t i = 0; i < inputs1.size(); i++) {
auto result = f(inputs1[i], inputs2[i]);
asm("" ::"v"(result));
}
uint64_t stop = gpu::processor_clock();
asm("" ::"s"(stop));
gpu::memory_fence();
// Return the time elapsed.
return stop - start;
}
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_UTILS_GPU_TIMING_AMDGPU