/*
* mathtest.c - test rig for mathlib
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <setjmp.h>
#include <ctype.h>
#include <math.h>
#include <errno.h>
#include <limits.h>
#include <fenv.h>
#include "mathlib.h"
#ifndef math_errhandling
# define math_errhandling 0
#endif
#ifdef __cplusplus
#define EXTERN_C extern "C"
#else
#define EXTERN_C extern
#endif
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifdef IMPORT_SYMBOL
#define STR2(x) #x
#define STR(x) STR2(x)
_Pragma(STR(import IMPORT_SYMBOL))
#endif
int dmsd, dlsd;
int quiet = 0;
int doround = 0;
unsigned statusmask = FE_ALL_EXCEPT;
#define EXTRABITS (12)
#define ULPUNIT (1<<EXTRABITS)
typedef int (*test) (void);
/*
struct to hold info about a function (which could actually be a macro)
*/
typedef struct {
enum {
t_func, t_macro
} type;
enum {
at_d, at_s, /* double or single precision float */
at_d2, at_s2, /* same, but taking two args */
at_di, at_si, /* double/single and an int */
at_dip, at_sip, /* double/single and an int ptr */
at_ddp, at_ssp, /* d/s and a d/s ptr */
at_dc, at_sc, /* double or single precision complex */
at_dc2, at_sc2 /* same, but taking two args */
} argtype;
enum {
rt_d, rt_s, rt_i, /* double, single, int */
rt_dc, rt_sc, /* double, single precision complex */
rt_d2, rt_s2 /* also use res2 */
} rettype;
union {
void* ptr;
double (*d_d_ptr)(double);
float (*s_s_ptr)(float);
int (*d_i_ptr)(double);
int (*s_i_ptr)(float);
double (*d2_d_ptr)(double, double);
float (*s2_s_ptr)(float, float);
double (*di_d_ptr)(double,int);
float (*si_s_ptr)(float,int);
double (*dip_d_ptr)(double,int*);
float (*sip_s_ptr)(float,int*);
double (*ddp_d_ptr)(double,double*);
float (*ssp_s_ptr)(float,float*);
} func;
enum {
m_none,
m_isfinite, m_isfinitef,
m_isgreater, m_isgreaterequal,
m_isgreaterequalf, m_isgreaterf,
m_isinf, m_isinff,
m_isless, m_islessequal,
m_islessequalf, m_islessf,
m_islessgreater, m_islessgreaterf,
m_isnan, m_isnanf,
m_isnormal, m_isnormalf,
m_isunordered, m_isunorderedf,
m_fpclassify, m_fpclassifyf,
m_signbit, m_signbitf,
/* not actually a macro, but makes things easier */
m_rred, m_rredf,
m_cadd, m_csub, m_cmul, m_cdiv,
m_caddf, m_csubf, m_cmulf, m_cdivf
} macro_name; /* only used if a macro/something that can't be done using func */
long long tolerance;
const char* name;
} test_func;
/* used in qsort */
int compare_tfuncs(const void* a, const void* b) {
return strcmp(((test_func*)a)->name, ((test_func*)b)->name);
}
int is_double_argtype(int argtype) {
switch(argtype) {
case at_d:
case at_d2:
case at_dc:
case at_dc2:
return 1;
default:
return 0;
}
}
int is_single_argtype(int argtype) {
switch(argtype) {
case at_s:
case at_s2:
case at_sc:
case at_sc2:
return 1;
default:
return 0;
}
}
int is_double_rettype(int rettype) {
switch(rettype) {
case rt_d:
case rt_dc:
case rt_d2:
return 1;
default:
return 0;
}
}
int is_single_rettype(int rettype) {
switch(rettype) {
case rt_s:
case rt_sc:
case rt_s2:
return 1;
default:
return 0;
}
}
int is_complex_argtype(int argtype) {
switch(argtype) {
case at_dc:
case at_sc:
case at_dc2:
case at_sc2:
return 1;
default:
return 0;
}
}
int is_complex_rettype(int rettype) {
switch(rettype) {
case rt_dc:
case rt_sc:
return 1;
default:
return 0;
}
}
/*
* Special-case flags indicating that some functions' error
* tolerance handling is more complicated than a fixed relative
* error bound.
*/
#define ABSLOWERBOUND 0x4000000000000000LL
#define PLUSMINUSPIO2 0x1000000000000000LL
#define ARM_PREFIX(x) x
#define TFUNC(arg,ret,name,tolerance) { t_func, arg, ret, (void*)&name, m_none, tolerance, #name }
#define TFUNCARM(arg,ret,name,tolerance) { t_func, arg, ret, (void*)& ARM_PREFIX(name), m_none, tolerance, #name }
#define MFUNC(arg,ret,name,tolerance) { t_macro, arg, ret, NULL, m_##name, tolerance, #name }
/* sincosf wrappers for easier testing. */
static float sincosf_sinf(float x) { float s,c; sincosf(x, &s, &c); return s; }
static float sincosf_cosf(float x) { float s,c; sincosf(x, &s, &c); return c; }
test_func tfuncs[] = {
/* trigonometric */
TFUNC(at_d,rt_d, acos, 4*ULPUNIT),
TFUNC(at_d,rt_d, asin, 4*ULPUNIT),
TFUNC(at_d,rt_d, atan, 4*ULPUNIT),
TFUNC(at_d2,rt_d, atan2, 4*ULPUNIT),
TFUNC(at_d,rt_d, tan, 2*ULPUNIT),
TFUNC(at_d,rt_d, sin, 2*ULPUNIT),
TFUNC(at_d,rt_d, cos, 2*ULPUNIT),
TFUNC(at_s,rt_s, acosf, 4*ULPUNIT),
TFUNC(at_s,rt_s, asinf, 4*ULPUNIT),
TFUNC(at_s,rt_s, atanf, 4*ULPUNIT),
TFUNC(at_s2,rt_s, atan2f, 4*ULPUNIT),
TFUNCARM(at_s,rt_s, tanf, 4*ULPUNIT),
TFUNCARM(at_s,rt_s, sinf, 3*ULPUNIT/4),
TFUNCARM(at_s,rt_s, cosf, 3*ULPUNIT/4),
TFUNCARM(at_s,rt_s, sincosf_sinf, 3*ULPUNIT/4),
TFUNCARM(at_s,rt_s, sincosf_cosf, 3*ULPUNIT/4),
/* hyperbolic */
TFUNC(at_d, rt_d, atanh, 4*ULPUNIT),
TFUNC(at_d, rt_d, asinh, 4*ULPUNIT),
TFUNC(at_d, rt_d, acosh, 4*ULPUNIT),
TFUNC(at_d,rt_d, tanh, 4*ULPUNIT),
TFUNC(at_d,rt_d, sinh, 4*ULPUNIT),
TFUNC(at_d,rt_d, cosh, 4*ULPUNIT),
TFUNC(at_s, rt_s, atanhf, 4*ULPUNIT),
TFUNC(at_s, rt_s, asinhf, 4*ULPUNIT),
TFUNC(at_s, rt_s, acoshf, 4*ULPUNIT),
TFUNC(at_s,rt_s, tanhf, 4*ULPUNIT),
TFUNC(at_s,rt_s, sinhf, 4*ULPUNIT),
TFUNC(at_s,rt_s, coshf, 4*ULPUNIT),
/* exponential and logarithmic */
TFUNC(at_d,rt_d, log, 3*ULPUNIT/4),
TFUNC(at_d,rt_d, log10, 3*ULPUNIT),
TFUNC(at_d,rt_d, log2, 3*ULPUNIT/4),
TFUNC(at_d,rt_d, log1p, 2*ULPUNIT),
TFUNC(at_d,rt_d, exp, 3*ULPUNIT/4),
TFUNC(at_d,rt_d, exp2, 3*ULPUNIT/4),
TFUNC(at_d,rt_d, expm1, ULPUNIT),
TFUNCARM(at_s,rt_s, logf, ULPUNIT),
TFUNC(at_s,rt_s, log10f, 3*ULPUNIT),
TFUNCARM(at_s,rt_s, log2f, ULPUNIT),
TFUNC(at_s,rt_s, log1pf, 2*ULPUNIT),
TFUNCARM(at_s,rt_s, expf, 3*ULPUNIT/4),
TFUNCARM(at_s,rt_s, exp2f, 3*ULPUNIT/4),
TFUNC(at_s,rt_s, expm1f, ULPUNIT),
/* power */
TFUNC(at_d2,rt_d, pow, 3*ULPUNIT/4),
TFUNC(at_d,rt_d, sqrt, ULPUNIT/2),
TFUNC(at_d,rt_d, cbrt, 2*ULPUNIT),
TFUNC(at_d2, rt_d, hypot, 4*ULPUNIT),
TFUNCARM(at_s2,rt_s, powf, ULPUNIT),
TFUNC(at_s,rt_s, sqrtf, ULPUNIT/2),
TFUNC(at_s,rt_s, cbrtf, 2*ULPUNIT),
TFUNC(at_s2, rt_s, hypotf, 4*ULPUNIT),
/* error function */
TFUNC(at_d,rt_d, erf, 16*ULPUNIT),
TFUNC(at_s,rt_s, erff, 16*ULPUNIT),
TFUNC(at_d,rt_d, erfc, 16*ULPUNIT),
TFUNC(at_s,rt_s, erfcf, 16*ULPUNIT),
/* gamma functions */
TFUNC(at_d,rt_d, tgamma, 16*ULPUNIT),
TFUNC(at_s,rt_s, tgammaf, 16*ULPUNIT),
TFUNC(at_d,rt_d, lgamma, 16*ULPUNIT | ABSLOWERBOUND),
TFUNC(at_s,rt_s, lgammaf, 16*ULPUNIT | ABSLOWERBOUND),
TFUNC(at_d,rt_d, ceil, 0),
TFUNC(at_s,rt_s, ceilf, 0),
TFUNC(at_d2,rt_d, copysign, 0),
TFUNC(at_s2,rt_s, copysignf, 0),
TFUNC(at_d,rt_d, floor, 0),
TFUNC(at_s,rt_s, floorf, 0),
TFUNC(at_d2,rt_d, fmax, 0),
TFUNC(at_s2,rt_s, fmaxf, 0),
TFUNC(at_d2,rt_d, fmin, 0),
TFUNC(at_s2,rt_s, fminf, 0),
TFUNC(at_d2,rt_d, fmod, 0),
TFUNC(at_s2,rt_s, fmodf, 0),
MFUNC(at_d, rt_i, fpclassify, 0),
MFUNC(at_s, rt_i, fpclassifyf, 0),
TFUNC(at_dip,rt_d, frexp, 0),
TFUNC(at_sip,rt_s, frexpf, 0),
MFUNC(at_d, rt_i, isfinite, 0),
MFUNC(at_s, rt_i, isfinitef, 0),
MFUNC(at_d, rt_i, isgreater, 0),
MFUNC(at_d, rt_i, isgreaterequal, 0),
MFUNC(at_s, rt_i, isgreaterequalf, 0),
MFUNC(at_s, rt_i, isgreaterf, 0),
MFUNC(at_d, rt_i, isinf, 0),
MFUNC(at_s, rt_i, isinff, 0),
MFUNC(at_d, rt_i, isless, 0),
MFUNC(at_d, rt_i, islessequal, 0),
MFUNC(at_s, rt_i, islessequalf, 0),
MFUNC(at_s, rt_i, islessf, 0),
MFUNC(at_d, rt_i, islessgreater, 0),
MFUNC(at_s, rt_i, islessgreaterf, 0),
MFUNC(at_d, rt_i, isnan, 0),
MFUNC(at_s, rt_i, isnanf, 0),
MFUNC(at_d, rt_i, isnormal, 0),
MFUNC(at_s, rt_i, isnormalf, 0),
MFUNC(at_d, rt_i, isunordered, 0),
MFUNC(at_s, rt_i, isunorderedf, 0),
TFUNC(at_di,rt_d, ldexp, 0),
TFUNC(at_si,rt_s, ldexpf, 0),
TFUNC(at_ddp,rt_d2, modf, 0),
TFUNC(at_ssp,rt_s2, modff, 0),
#ifndef BIGRANGERED
MFUNC(at_d, rt_d, rred, 2*ULPUNIT),
#else
MFUNC(at_d, rt_d, m_rred, ULPUNIT),
#endif
MFUNC(at_d, rt_i, signbit, 0),
MFUNC(at_s, rt_i, signbitf, 0),
};
/*
* keywords are: func size op1 op2 result res2 errno op1r op1i op2r op2i resultr resulti
* also we ignore: wrongresult wrongres2 wrongerrno
* op1 equivalent to op1r, same with op2 and result
*/
typedef struct {
test_func *func;
unsigned op1r[2]; /* real part, also used for non-complex numbers */
unsigned op1i[2]; /* imaginary part */
unsigned op2r[2];
unsigned op2i[2];
unsigned resultr[3];
unsigned resulti[3];
enum {
rc_none, rc_zero, rc_infinity, rc_nan, rc_finite
} resultc; /* special complex results, rc_none means use resultr and resulti as normal */
unsigned res2[2];
unsigned status; /* IEEE status return, if any */
unsigned maybestatus; /* for optional status, or allowance for spurious */
int nresult; /* number of result words */
int in_err, in_err_limit;
int err;
int maybeerr;
int valid;
int comment;
int random;
} testdetail;
enum { /* keywords */
k_errno, k_errno_in, k_error, k_func, k_maybeerror, k_maybestatus, k_op1, k_op1i, k_op1r, k_op2, k_op2i, k_op2r,
k_random, k_res2, k_result, k_resultc, k_resulti, k_resultr, k_status,
k_wrongres2, k_wrongresult, k_wrongstatus, k_wrongerrno
};
char *keywords[] = {
"errno", "errno_in", "error", "func", "maybeerror", "maybestatus", "op1", "op1i", "op1r", "op2", "op2i", "op2r",
"random", "res2", "result", "resultc", "resulti", "resultr", "status",
"wrongres2", "wrongresult", "wrongstatus", "wrongerrno"
};
enum {
e_0, e_EDOM, e_ERANGE,
/*
* This enum makes sure that we have the right number of errnos in the
* errno[] array
*/
e_number_of_errnos
};
char *errnos[] = {
"0", "EDOM", "ERANGE"
};
enum {
e_none, e_divbyzero, e_domain, e_overflow, e_underflow
};
char *errors[] = {
"0", "divbyzero", "domain", "overflow", "underflow"
};
static int verbose, fo, strict;
/* state toggled by random=on / random=off */
static int randomstate;
/* Canonify a double NaN: SNaNs all become 7FF00000.00000001 and QNaNs
* all become 7FF80000.00000001 */
void canon_dNaN(unsigned a[2]) {
if ((a[0] & 0x7FF00000) != 0x7FF00000)
return; /* not Inf or NaN */
if (!(a[0] & 0xFFFFF) && !a[1])
return; /* Inf */
a[0] &= 0x7FF80000; /* canonify top word */
a[1] = 0x00000001; /* canonify bottom word */
}
/* Canonify a single NaN: SNaNs all become 7F800001 and QNaNs
* all become 7FC00001. Returns classification of the NaN. */
void canon_sNaN(unsigned a[1]) {
if ((a[0] & 0x7F800000) != 0x7F800000)
return; /* not Inf or NaN */
if (!(a[0] & 0x7FFFFF))
return; /* Inf */
a[0] &= 0x7FC00000; /* canonify most bits */
a[0] |= 0x00000001; /* canonify bottom bit */
}
/*
* Detect difficult operands for FO mode.
*/
int is_dhard(unsigned a[2])
{
if ((a[0] & 0x7FF00000) == 0x7FF00000)
return TRUE; /* inf or NaN */
if ((a[0] & 0x7FF00000) == 0 &&
((a[0] & 0x7FFFFFFF) | a[1]) != 0)
return TRUE; /* denormal */
return FALSE;
}
int is_shard(unsigned a[1])
{
if ((a[0] & 0x7F800000) == 0x7F800000)
return TRUE; /* inf or NaN */
if ((a[0] & 0x7F800000) == 0 &&
(a[0] & 0x7FFFFFFF) != 0)
return TRUE; /* denormal */
return FALSE;
}
/*
* Normalise all zeroes into +0, for FO mode.
*/
void dnormzero(unsigned a[2])
{
if (a[0] == 0x80000000 && a[1] == 0)
a[0] = 0;
}
void snormzero(unsigned a[1])
{
if (a[0] == 0x80000000)
a[0] = 0;
}
static int find(char *word, char **array, int asize) {
int i, j;
asize /= sizeof(char *);
i = -1; j = asize; /* strictly between i and j */
while (j-i > 1) {
int k = (i+j) / 2;
int c = strcmp(word, array[k]);
if (c > 0)
i = k;
else if (c < 0)
j = k;
else /* found it! */
return k;
}
return -1; /* not found */
}
static test_func* find_testfunc(char *word) {
int i, j, asize;
asize = sizeof(tfuncs)/sizeof(test_func);
i = -1; j = asize; /* strictly between i and j */
while (j-i > 1) {
int k = (i+j) / 2;
int c = strcmp(word, tfuncs[k].name);
if (c > 0)
i = k;
else if (c < 0)
j = k;
else /* found it! */
return tfuncs + k;
}
return NULL; /* not found */
}
static long long calc_error(unsigned a[2], unsigned b[3], int shift, int rettype) {
unsigned r0, r1, r2;
int sign, carry;
long long result;
/*
* If either number is infinite, require exact equality. If
* either number is NaN, require that both are NaN. If either
* of these requirements is broken, return INT_MAX.
*/
if (is_double_rettype(rettype)) {
if ((a[0] & 0x7FF00000) == 0x7FF00000 ||
(b[0] & 0x7FF00000) == 0x7FF00000) {
if (((a[0] & 0x800FFFFF) || a[1]) &&
((b[0] & 0x800FFFFF) || b[1]) &&
(a[0] & 0x7FF00000) == 0x7FF00000 &&
(b[0] & 0x7FF00000) == 0x7FF00000)
return 0; /* both NaN - OK */
if (!((a[0] & 0xFFFFF) || a[1]) &&
!((b[0] & 0xFFFFF) || b[1]) &&
a[0] == b[0])
return 0; /* both same sign of Inf - OK */
return LLONG_MAX;
}
} else {
if ((a[0] & 0x7F800000) == 0x7F800000 ||
(b[0] & 0x7F800000) == 0x7F800000) {
if ((a[0] & 0x807FFFFF) &&
(b[0] & 0x807FFFFF) &&
(a[0] & 0x7F800000) == 0x7F800000 &&
(b[0] & 0x7F800000) == 0x7F800000)
return 0; /* both NaN - OK */
if (!(a[0] & 0x7FFFFF) &&
!(b[0] & 0x7FFFFF) &&
a[0] == b[0])
return 0; /* both same sign of Inf - OK */
return LLONG_MAX;
}
}
/*
* Both finite. Return INT_MAX if the signs differ.
*/
if ((a[0] ^ b[0]) & 0x80000000)
return LLONG_MAX;
/*
* Now it's just straight multiple-word subtraction.
*/
if (is_double_rettype(rettype)) {
r2 = -b[2]; carry = (r2 == 0);
r1 = a[1] + ~b[1] + carry; carry = (r1 < a[1] || (carry && r1 == a[1]));
r0 = a[0] + ~b[0] + carry;
} else {
r2 = -b[1]; carry = (r2 == 0);
r1 = a[0] + ~b[0] + carry; carry = (r1 < a[0] || (carry && r1 == a[0]));
r0 = ~0 + carry;
}
/*
* Forgive larger errors in specialised cases.
*/
if (shift > 0) {
if (shift > 32*3)
return 0; /* all errors are forgiven! */
while (shift >= 32) {
r2 = r1;
r1 = r0;
r0 = -(r0 >> 31);
shift -= 32;
}
if (shift > 0) {
r2 = (r2 >> shift) | (r1 << (32-shift));
r1 = (r1 >> shift) | (r0 << (32-shift));
r0 = (r0 >> shift) | ((-(r0 >> 31)) << (32-shift));
}
}
if (r0 & 0x80000000) {
sign = 1;
r2 = ~r2; carry = (r2 == 0);
r1 = 0 + ~r1 + carry; carry = (carry && (r2 == 0));
r0 = 0 + ~r0 + carry;
} else {
sign = 0;
}
if (r0 >= (1LL<<(31-EXTRABITS)))
return LLONG_MAX; /* many ulps out */
result = (r2 >> (32-EXTRABITS)) & (ULPUNIT-1);
result |= r1 << EXTRABITS;
result |= (long long)r0 << (32+EXTRABITS);
if (sign)
result = -result;
return result;
}
/* special named operands */
typedef struct {
unsigned op1, op2;
char* name;
} special_op;
static special_op special_ops_double[] = {
{0x00000000,0x00000000,"0"},
{0x3FF00000,0x00000000,"1"},
{0x7FF00000,0x00000000,"inf"},
{0x7FF80000,0x00000001,"qnan"},
{0x7FF00000,0x00000001,"snan"},
{0x3ff921fb,0x54442d18,"pi2"},
{0x400921fb,0x54442d18,"pi"},
{0x3fe921fb,0x54442d18,"pi4"},
{0x4002d97c,0x7f3321d2,"3pi4"},
};
static special_op special_ops_float[] = {
{0x00000000,0,"0"},
{0x3f800000,0,"1"},
{0x7f800000,0,"inf"},
{0x7fc00000,0,"qnan"},
{0x7f800001,0,"snan"},
{0x3fc90fdb,0,"pi2"},
{0x40490fdb,0,"pi"},
{0x3f490fdb,0,"pi4"},
{0x4016cbe4,0,"3pi4"},
};
/*
This is what is returned by the below functions.
We need it to handle the sign of the number
*/
static special_op tmp_op = {0,0,0};
special_op* find_special_op_from_op(unsigned op1, unsigned op2, int is_double) {
int i;
special_op* sop;
if(is_double) {
sop = special_ops_double;
} else {
sop = special_ops_float;
}
for(i = 0; i < sizeof(special_ops_double)/sizeof(special_op); i++) {
if(sop->op1 == (op1&0x7fffffff) && sop->op2 == op2) {
if(tmp_op.name) free(tmp_op.name);
tmp_op.name = malloc(strlen(sop->name)+2);
if(op1>>31) {
sprintf(tmp_op.name,"-%s",sop->name);
} else {
strcpy(tmp_op.name,sop->name);
}
return &tmp_op;
}
sop++;
}
return NULL;
}
special_op* find_special_op_from_name(const char* name, int is_double) {
int i, neg=0;
special_op* sop;
if(is_double) {
sop = special_ops_double;
} else {
sop = special_ops_float;
}
if(*name=='-') {
neg=1;
name++;
} else if(*name=='+') {
name++;
}
for(i = 0; i < sizeof(special_ops_double)/sizeof(special_op); i++) {
if(0 == strcmp(name,sop->name)) {
tmp_op.op1 = sop->op1;
if(neg) {
tmp_op.op1 |= 0x80000000;
}
tmp_op.op2 = sop->op2;
return &tmp_op;
}
sop++;
}
return NULL;
}
/*
helper function for the below
type=0 for single, 1 for double, 2 for no sop
*/
int do_op(char* q, unsigned* op, const char* name, int num, int sop_type) {
int i;
int n=num;
special_op* sop = NULL;
for(i = 0; i < num; i++) {
op[i] = 0;
}
if(sop_type<2) {
sop = find_special_op_from_name(q,sop_type);
}
if(sop != NULL) {
op[0] = sop->op1;
op[1] = sop->op2;
} else {
switch(num) {
case 1: n = sscanf(q, "%x", &op[0]); break;
case 2: n = sscanf(q, "%x.%x", &op[0], &op[1]); break;
case 3: n = sscanf(q, "%x.%x.%x", &op[0], &op[1], &op[2]); break;
default: return -1;
}
}
if (verbose) {
printf("%s=",name);
for (i = 0; (i < n); ++i) printf("%x.", op[i]);
printf(" (n=%d)\n", n);
}
return n;
}
testdetail parsetest(char *testbuf, testdetail oldtest) {
char *p; /* Current part of line: Option name */
char *q; /* Current part of line: Option value */
testdetail ret; /* What we return */
int k; /* Function enum from k_* */
int n; /* Used as returns for scanfs */
int argtype=2, rettype=2; /* for do_op */
/* clear ret */
memset(&ret, 0, sizeof(ret));
if (verbose) printf("Parsing line: %s\n", testbuf);
while (*testbuf && isspace(*testbuf)) testbuf++;
if (testbuf[0] == ';' || testbuf[0] == '#' || testbuf[0] == '!' ||
testbuf[0] == '>' || testbuf[0] == '\0') {
ret.comment = 1;
if (verbose) printf("Line is a comment\n");
return ret;
}
ret.comment = 0;
if (*testbuf == '+') {
if (oldtest.valid) {
ret = oldtest; /* structure copy */
} else {
fprintf(stderr, "copy from invalid: ignored\n");
}
testbuf++;
}
ret.random = randomstate;
ret.in_err = 0;
ret.in_err_limit = e_number_of_errnos;
p = strtok(testbuf, " \t");
while (p != NULL) {
q = strchr(p, '=');
if (!q)
goto balderdash;
*q++ = '\0';
k = find(p, keywords, sizeof(keywords));
switch (k) {
case k_random:
randomstate = (!strcmp(q, "on"));
ret.comment = 1;
return ret; /* otherwise ignore this line */
case k_func:
if (verbose) printf("func=%s ", q);
//ret.func = find(q, funcs, sizeof(funcs));
ret.func = find_testfunc(q);
if (ret.func == NULL)
{
if (verbose) printf("(id=unknown)\n");
goto balderdash;
}
if(is_single_argtype(ret.func->argtype))
argtype = 0;
else if(is_double_argtype(ret.func->argtype))
argtype = 1;
if(is_single_rettype(ret.func->rettype))
rettype = 0;
else if(is_double_rettype(ret.func->rettype))
rettype = 1;
//ret.size = sizes[ret.func];
if (verbose) printf("(name=%s) (size=%d)\n", ret.func->name, ret.func->argtype);
break;
case k_op1:
case k_op1r:
n = do_op(q,ret.op1r,"op1r",2,argtype);
if (n < 1)
goto balderdash;
break;
case k_op1i:
n = do_op(q,ret.op1i,"op1i",2,argtype);
if (n < 1)
goto balderdash;
break;
case k_op2:
case k_op2r:
n = do_op(q,ret.op2r,"op2r",2,argtype);
if (n < 1)
goto balderdash;
break;
case k_op2i:
n = do_op(q,ret.op2i,"op2i",2,argtype);
if (n < 1)
goto balderdash;
break;
case k_resultc:
puts(q);
if(strncmp(q,"inf",3)==0) {
ret.resultc = rc_infinity;
} else if(strcmp(q,"zero")==0) {
ret.resultc = rc_zero;
} else if(strcmp(q,"nan")==0) {
ret.resultc = rc_nan;
} else if(strcmp(q,"finite")==0) {
ret.resultc = rc_finite;
} else {
goto balderdash;
}
break;
case k_result:
case k_resultr:
n = (do_op)(q,ret.resultr,"resultr",3,rettype);
if (n < 1)
goto balderdash;
ret.nresult = n; /* assume real and imaginary have same no. words */
break;
case k_resulti:
n = do_op(q,ret.resulti,"resulti",3,rettype);
if (n < 1)
goto balderdash;
break;
case k_res2:
n = do_op(q,ret.res2,"res2",2,rettype);
if (n < 1)
goto balderdash;
break;
case k_status:
while (*q) {
if (*q == 'i') ret.status |= FE_INVALID;
if (*q == 'z') ret.status |= FE_DIVBYZERO;
if (*q == 'o') ret.status |= FE_OVERFLOW;
if (*q == 'u') ret.status |= FE_UNDERFLOW;
q++;
}
break;
case k_maybeerror:
n = find(q, errors, sizeof(errors));
if (n < 0)
goto balderdash;
if(math_errhandling&MATH_ERREXCEPT) {
switch(n) {
case e_domain: ret.maybestatus |= FE_INVALID; break;
case e_divbyzero: ret.maybestatus |= FE_DIVBYZERO; break;
case e_overflow: ret.maybestatus |= FE_OVERFLOW; break;
case e_underflow: ret.maybestatus |= FE_UNDERFLOW; break;
}
}
{
switch(n) {
case e_domain:
ret.maybeerr = e_EDOM; break;
case e_divbyzero:
case e_overflow:
case e_underflow:
ret.maybeerr = e_ERANGE; break;
}
}
case k_maybestatus:
while (*q) {
if (*q == 'i') ret.maybestatus |= FE_INVALID;
if (*q == 'z') ret.maybestatus |= FE_DIVBYZERO;
if (*q == 'o') ret.maybestatus |= FE_OVERFLOW;
if (*q == 'u') ret.maybestatus |= FE_UNDERFLOW;
q++;
}
break;
case k_error:
n = find(q, errors, sizeof(errors));
if (n < 0)
goto balderdash;
if(math_errhandling&MATH_ERREXCEPT) {
switch(n) {
case e_domain: ret.status |= FE_INVALID; break;
case e_divbyzero: ret.status |= FE_DIVBYZERO; break;
case e_overflow: ret.status |= FE_OVERFLOW; break;
case e_underflow: ret.status |= FE_UNDERFLOW; break;
}
}
if(math_errhandling&MATH_ERRNO) {
switch(n) {
case e_domain:
ret.err = e_EDOM; break;
case e_divbyzero:
case e_overflow:
case e_underflow:
ret.err = e_ERANGE; break;
}
}
if(!(math_errhandling&MATH_ERRNO)) {
switch(n) {
case e_domain:
ret.maybeerr = e_EDOM; break;
case e_divbyzero:
case e_overflow:
case e_underflow:
ret.maybeerr = e_ERANGE; break;
}
}
break;
case k_errno:
ret.err = find(q, errnos, sizeof(errnos));
if (ret.err < 0)
goto balderdash;
break;
case k_errno_in:
ret.in_err = find(q, errnos, sizeof(errnos));
if (ret.err < 0)
goto balderdash;
ret.in_err_limit = ret.in_err + 1;
break;
case k_wrongresult:
case k_wrongstatus:
case k_wrongres2:
case k_wrongerrno:
/* quietly ignore these keys */
break;
default:
goto balderdash;
}
p = strtok(NULL, " \t");
}
ret.valid = 1;
return ret;
/* come here from almost any error */
balderdash:
ret.valid = 0;
return ret;
}
typedef enum {
test_comment, /* deliberately not a test */
test_invalid, /* accidentally not a test */
test_decline, /* was a test, and wasn't run */
test_fail, /* was a test, and failed */
test_pass /* was a test, and passed */
} testresult;
char failtext[512];
typedef union {
unsigned i[2];
double f;
double da[2];
} dbl;
typedef union {
unsigned i;
float f;
float da[2];
} sgl;
/* helper function for runtest */
void print_error(int rettype, unsigned *result, char* text, char** failp) {
special_op *sop;
char *str;
if(result) {
*failp += sprintf(*failp," %s=",text);
sop = find_special_op_from_op(result[0],result[1],is_double_rettype(rettype));
if(sop) {
*failp += sprintf(*failp,"%s",sop->name);
} else {
if(is_double_rettype(rettype)) {
str="%08x.%08x";
} else {
str="%08x";
}
*failp += sprintf(*failp,str,result[0],result[1]);
}
}
}
void print_ulps_helper(const char *name, long long ulps, char** failp) {
if(ulps == LLONG_MAX) {
*failp += sprintf(*failp, " %s=HUGE", name);
} else {
*failp += sprintf(*failp, " %s=%.3f", name, (double)ulps / ULPUNIT);
}
}
/* for complex args make ulpsr or ulpsri = 0 to not print */
void print_ulps(int rettype, long long ulpsr, long long ulpsi, char** failp) {
if(is_complex_rettype(rettype)) {
if (ulpsr) print_ulps_helper("ulpsr",ulpsr,failp);
if (ulpsi) print_ulps_helper("ulpsi",ulpsi,failp);
} else {
if (ulpsr) print_ulps_helper("ulps",ulpsr,failp);
}
}
int runtest(testdetail t) {
int err, status;
dbl d_arg1, d_arg2, d_res, d_res2;
sgl s_arg1, s_arg2, s_res, s_res2;
int deferred_decline = FALSE;
char *failp = failtext;
unsigned int intres=0;
int res2_adjust = 0;
if (t.comment)
return test_comment;
if (!t.valid)
return test_invalid;
/* Set IEEE status to mathlib-normal */
feclearexcept(FE_ALL_EXCEPT);
/* Deal with operands */
#define DO_DOP(arg,op) arg.i[dmsd] = t.op[0]; arg.i[dlsd] = t.op[1]
DO_DOP(d_arg1,op1r);
DO_DOP(d_arg2,op2r);
s_arg1.i = t.op1r[0]; s_arg2.i = t.op2r[0];
/*
* Detect NaNs, infinities and denormals on input, and set a
* deferred decline flag if we're in FO mode.
*
* (We defer the decline rather than doing it immediately
* because even in FO mode the operation is not permitted to
* crash or tight-loop; so we _run_ the test, and then ignore
* all the results.)
*/
if (fo) {
if (is_double_argtype(t.func->argtype) && is_dhard(t.op1r))
deferred_decline = TRUE;
if (t.func->argtype==at_d2 && is_dhard(t.op2r))
deferred_decline = TRUE;
if (is_single_argtype(t.func->argtype) && is_shard(t.op1r))
deferred_decline = TRUE;
if (t.func->argtype==at_s2 && is_shard(t.op2r))
deferred_decline = TRUE;
if (is_double_rettype(t.func->rettype) && is_dhard(t.resultr))
deferred_decline = TRUE;
if (t.func->rettype==rt_d2 && is_dhard(t.res2))
deferred_decline = TRUE;
if (is_single_argtype(t.func->rettype) && is_shard(t.resultr))
deferred_decline = TRUE;
if (t.func->rettype==rt_s2 && is_shard(t.res2))
deferred_decline = TRUE;
if (t.err == e_ERANGE)
deferred_decline = TRUE;
}
/*
* Perform the operation
*/
errno = t.in_err == e_EDOM ? EDOM : t.in_err == e_ERANGE ? ERANGE : 0;
if (t.err == e_0)
t.err = t.in_err;
if (t.maybeerr == e_0)
t.maybeerr = t.in_err;
if(t.func->type == t_func) {
switch(t.func->argtype) {
case at_d: d_res.f = t.func->func.d_d_ptr(d_arg1.f); break;
case at_s: s_res.f = t.func->func.s_s_ptr(s_arg1.f); break;
case at_d2: d_res.f = t.func->func.d2_d_ptr(d_arg1.f, d_arg2.f); break;
case at_s2: s_res.f = t.func->func.s2_s_ptr(s_arg1.f, s_arg2.f); break;
case at_di: d_res.f = t.func->func.di_d_ptr(d_arg1.f, d_arg2.i[dmsd]); break;
case at_si: s_res.f = t.func->func.si_s_ptr(s_arg1.f, s_arg2.i); break;
case at_dip: d_res.f = t.func->func.dip_d_ptr(d_arg1.f, (int*)&intres); break;
case at_sip: s_res.f = t.func->func.sip_s_ptr(s_arg1.f, (int*)&intres); break;
case at_ddp: d_res.f = t.func->func.ddp_d_ptr(d_arg1.f, &d_res2.f); break;
case at_ssp: s_res.f = t.func->func.ssp_s_ptr(s_arg1.f, &s_res2.f); break;
default:
printf("unhandled function: %s\n",t.func->name);
return test_fail;
}
} else {
/* printf("macro: name=%s, num=%i, s1.i=0x%08x s1.f=%f\n",t.func->name, t.func->macro_name, s_arg1.i, (double)s_arg1.f); */
switch(t.func->macro_name) {
case m_isfinite: intres = isfinite(d_arg1.f); break;
case m_isinf: intres = isinf(d_arg1.f); break;
case m_isnan: intres = isnan(d_arg1.f); break;
case m_isnormal: intres = isnormal(d_arg1.f); break;
case m_signbit: intres = signbit(d_arg1.f); break;
case m_fpclassify: intres = fpclassify(d_arg1.f); break;
case m_isgreater: intres = isgreater(d_arg1.f, d_arg2.f); break;
case m_isgreaterequal: intres = isgreaterequal(d_arg1.f, d_arg2.f); break;
case m_isless: intres = isless(d_arg1.f, d_arg2.f); break;
case m_islessequal: intres = islessequal(d_arg1.f, d_arg2.f); break;
case m_islessgreater: intres = islessgreater(d_arg1.f, d_arg2.f); break;
case m_isunordered: intres = isunordered(d_arg1.f, d_arg2.f); break;
case m_isfinitef: intres = isfinite(s_arg1.f); break;
case m_isinff: intres = isinf(s_arg1.f); break;
case m_isnanf: intres = isnan(s_arg1.f); break;
case m_isnormalf: intres = isnormal(s_arg1.f); break;
case m_signbitf: intres = signbit(s_arg1.f); break;
case m_fpclassifyf: intres = fpclassify(s_arg1.f); break;
case m_isgreaterf: intres = isgreater(s_arg1.f, s_arg2.f); break;
case m_isgreaterequalf: intres = isgreaterequal(s_arg1.f, s_arg2.f); break;
case m_islessf: intres = isless(s_arg1.f, s_arg2.f); break;
case m_islessequalf: intres = islessequal(s_arg1.f, s_arg2.f); break;
case m_islessgreaterf: intres = islessgreater(s_arg1.f, s_arg2.f); break;
case m_isunorderedf: intres = isunordered(s_arg1.f, s_arg2.f); break;
default:
printf("unhandled macro: %s\n",t.func->name);
return test_fail;
}
}
/*
* Decline the test if the deferred decline flag was set above.
*/
if (deferred_decline)
return test_decline;
/* printf("intres=%i\n",intres); */
/* Clear the fail text (indicating a pass unless we change it) */
failp[0] = '\0';
/* Check the IEEE status bits (except INX, which we disregard).
* We don't bother with this for complex numbers, because the
* complex functions are hard to get exactly right and we don't
* have to anyway (C99 annex G is only informative). */
if (!(is_complex_argtype(t.func->argtype) || is_complex_rettype(t.func->rettype))) {
status = fetestexcept(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW);
if ((status|t.maybestatus|~statusmask) != (t.status|t.maybestatus|~statusmask)) {
if (quiet) failtext[0]='x';
else {
failp += sprintf(failp,
" wrongstatus=%s%s%s%s%s",
(status & FE_INVALID ? "i" : ""),
(status & FE_DIVBYZERO ? "z" : ""),
(status & FE_OVERFLOW ? "o" : ""),
(status & FE_UNDERFLOW ? "u" : ""),
(status ? "" : "OK"));
}
}
}
/* Check the result */
{
unsigned resultr[2], resulti[2];
unsigned tresultr[3], tresulti[3], wres;
switch(t.func->rettype) {
case rt_d:
case rt_d2:
tresultr[0] = t.resultr[0];
tresultr[1] = t.resultr[1];
resultr[0] = d_res.i[dmsd]; resultr[1] = d_res.i[dlsd];
wres = 2;
break;
case rt_i:
tresultr[0] = t.resultr[0];
resultr[0] = intres;
wres = 1;
break;
case rt_s:
case rt_s2:
tresultr[0] = t.resultr[0];
resultr[0] = s_res.i;
wres = 1;
break;
default:
puts("unhandled rettype in runtest");
wres = 0;
}
if(t.resultc != rc_none) {
int err = 0;
switch(t.resultc) {
case rc_zero:
if(resultr[0] != 0 || resulti[0] != 0 ||
(wres==2 && (resultr[1] != 0 || resulti[1] != 0))) {
err = 1;
}
break;
case rc_infinity:
if(wres==1) {
if(!((resultr[0]&0x7fffffff)==0x7f800000 ||
(resulti[0]&0x7fffffff)==0x7f800000)) {
err = 1;
}
} else {
if(!(((resultr[0]&0x7fffffff)==0x7ff00000 && resultr[1]==0) ||
((resulti[0]&0x7fffffff)==0x7ff00000 && resulti[1]==0))) {
err = 1;
}
}
break;
case rc_nan:
if(wres==1) {
if(!((resultr[0]&0x7fffffff)>0x7f800000 ||
(resulti[0]&0x7fffffff)>0x7f800000)) {
err = 1;
}
} else {
canon_dNaN(resultr);
canon_dNaN(resulti);
if(!(((resultr[0]&0x7fffffff)>0x7ff00000 && resultr[1]==1) ||
((resulti[0]&0x7fffffff)>0x7ff00000 && resulti[1]==1))) {
err = 1;
}
}
break;
case rc_finite:
if(wres==1) {
if(!((resultr[0]&0x7fffffff)<0x7f800000 ||
(resulti[0]&0x7fffffff)<0x7f800000)) {
err = 1;
}
} else {
if(!((resultr[0]&0x7fffffff)<0x7ff00000 ||
(resulti[0]&0x7fffffff)<0x7ff00000)) {
err = 1;
}
}
break;
default:
break;
}
if(err) {
print_error(t.func->rettype,resultr,"wrongresultr",&failp);
print_error(t.func->rettype,resulti,"wrongresulti",&failp);
}
} else if (t.nresult > wres) {
/*
* The test case data has provided the result to more
* than double precision. Instead of testing exact
* equality, we test against our maximum error
* tolerance.
*/
int rshift, ishift;
long long ulpsr, ulpsi, ulptolerance;
tresultr[wres] = t.resultr[wres] << (32-EXTRABITS);
tresulti[wres] = t.resulti[wres] << (32-EXTRABITS);
if(strict) {
ulptolerance = 4096; /* one ulp */
} else {
ulptolerance = t.func->tolerance;
}
rshift = ishift = 0;
if (ulptolerance & ABSLOWERBOUND) {
/*
* Hack for the lgamma functions, which have an
* error behaviour that can't conveniently be
* characterised in pure ULPs. Really, we want to
* say that the error in lgamma is "at most N ULPs,
* or at most an absolute error of X, whichever is
* larger", for appropriately chosen N,X. But since
* these two functions are the only cases where it
* arises, I haven't bothered to do it in a nice way
* in the function table above.
*
* (The difficult cases arise with negative input
* values such that |gamma(x)| is very near to 1; in
* this situation implementations tend to separately
* compute lgamma(|x|) and the log of the correction
* term from the Euler reflection formula, and
* subtract - which catastrophically loses
* significance.)
*
* As far as I can tell, nobody cares about this:
* GNU libm doesn't get those cases right either,
* and OpenCL explicitly doesn't state a ULP error
* limit for lgamma. So my guess is that this is
* simply considered acceptable error behaviour for
* this particular function, and hence I feel free
* to allow for it here.
*/
ulptolerance &= ~ABSLOWERBOUND;
if (t.op1r[0] & 0x80000000) {
if (t.func->rettype == rt_d)
rshift = 0x400 - ((tresultr[0] >> 20) & 0x7ff);
else if (t.func->rettype == rt_s)
rshift = 0x80 - ((tresultr[0] >> 23) & 0xff);
if (rshift < 0)
rshift = 0;
}
}
if (ulptolerance & PLUSMINUSPIO2) {
ulptolerance &= ~PLUSMINUSPIO2;
/*
* Hack for range reduction, which can reduce
* borderline cases in the wrong direction, i.e.
* return a value just outside one end of the interval
* [-pi/4,+pi/4] when it could have returned a value
* just inside the other end by subtracting an
* adjacent multiple of pi/2.
*
* We tolerate this, up to a point, because the
* trigonometric functions making use of the output of
* rred can cope and because making the range reducer
* do the exactly right thing in every case would be
* more expensive.
*/
if (wres == 1) {
/* Upper bound of overshoot derived in rredf.h */
if ((resultr[0]&0x7FFFFFFF) <= 0x3f494b02 &&
(resultr[0]&0x7FFFFFFF) > 0x3f490fda &&
(resultr[0]&0x80000000) != (tresultr[0]&0x80000000)) {
unsigned long long val;
val = tresultr[0];
val = (val << 32) | tresultr[1];
/*
* Compute the alternative permitted result by
* subtracting from the sum of the extended
* single-precision bit patterns of +pi/4 and
* -pi/4. This is a horrible hack which only
* works because we can be confident that
* numbers in this range all have the same
* exponent!
*/
val = 0xfe921fb54442d184ULL - val;
tresultr[0] = val >> 32;
tresultr[1] = (val >> (32-EXTRABITS)) << (32-EXTRABITS);
/*
* Also, expect a correspondingly different
* value of res2 as a result of this change.
* The adjustment depends on whether we just
* flipped the result from + to - or vice
* versa.
*/
if (resultr[0] & 0x80000000) {
res2_adjust = +1;
} else {
res2_adjust = -1;
}
}
}
}
ulpsr = calc_error(resultr, tresultr, rshift, t.func->rettype);
if(is_complex_rettype(t.func->rettype)) {
ulpsi = calc_error(resulti, tresulti, ishift, t.func->rettype);
} else {
ulpsi = 0;
}
unsigned *rr = (ulpsr > ulptolerance || ulpsr < -ulptolerance) ? resultr : NULL;
unsigned *ri = (ulpsi > ulptolerance || ulpsi < -ulptolerance) ? resulti : NULL;
/* printf("tolerance=%i, ulpsr=%i, ulpsi=%i, rr=%p, ri=%p\n",ulptolerance,ulpsr,ulpsi,rr,ri); */
if (rr || ri) {
if (quiet) failtext[0]='x';
else {
print_error(t.func->rettype,rr,"wrongresultr",&failp);
print_error(t.func->rettype,ri,"wrongresulti",&failp);
print_ulps(t.func->rettype,rr ? ulpsr : 0, ri ? ulpsi : 0,&failp);
}
}
} else {
if(is_complex_rettype(t.func->rettype))
/*
* Complex functions are not fully supported,
* this is unreachable, but prevents warnings.
*/
abort();
/*
* The test case data has provided the result in
* exactly the output precision. Therefore we must
* complain about _any_ violation.
*/
switch(t.func->rettype) {
case rt_dc:
canon_dNaN(tresulti);
canon_dNaN(resulti);
if (fo) {
dnormzero(tresulti);
dnormzero(resulti);
}
/* deliberate fall-through */
case rt_d:
canon_dNaN(tresultr);
canon_dNaN(resultr);
if (fo) {
dnormzero(tresultr);
dnormzero(resultr);
}
break;
case rt_sc:
canon_sNaN(tresulti);
canon_sNaN(resulti);
if (fo) {
snormzero(tresulti);
snormzero(resulti);
}
/* deliberate fall-through */
case rt_s:
canon_sNaN(tresultr);
canon_sNaN(resultr);
if (fo) {
snormzero(tresultr);
snormzero(resultr);
}
break;
default:
break;
}
if(is_complex_rettype(t.func->rettype)) {
unsigned *rr, *ri;
if(resultr[0] != tresultr[0] ||
(wres > 1 && resultr[1] != tresultr[1])) {
rr = resultr;
} else {
rr = NULL;
}
if(resulti[0] != tresulti[0] ||
(wres > 1 && resulti[1] != tresulti[1])) {
ri = resulti;
} else {
ri = NULL;
}
if(rr || ri) {
if (quiet) failtext[0]='x';
print_error(t.func->rettype,rr,"wrongresultr",&failp);
print_error(t.func->rettype,ri,"wrongresulti",&failp);
}
} else if (resultr[0] != tresultr[0] ||
(wres > 1 && resultr[1] != tresultr[1])) {
if (quiet) failtext[0]='x';
print_error(t.func->rettype,resultr,"wrongresult",&failp);
}
}
/*
* Now test res2, for those functions (frexp, modf, rred)
* which use it.
*/
if (t.func->func.ptr == &frexp || t.func->func.ptr == &frexpf ||
t.func->macro_name == m_rred || t.func->macro_name == m_rredf) {
unsigned tres2 = t.res2[0];
if (res2_adjust) {
/* Fix for range reduction, propagated from further up */
tres2 = (tres2 + res2_adjust) & 3;
}
if (tres2 != intres) {
if (quiet) failtext[0]='x';
else {
failp += sprintf(failp,
" wrongres2=%08x", intres);
}
}
} else if (t.func->func.ptr == &modf || t.func->func.ptr == &modff) {
tresultr[0] = t.res2[0];
tresultr[1] = t.res2[1];
if (is_double_rettype(t.func->rettype)) {
canon_dNaN(tresultr);
resultr[0] = d_res2.i[dmsd];
resultr[1] = d_res2.i[dlsd];
canon_dNaN(resultr);
if (fo) {
dnormzero(tresultr);
dnormzero(resultr);
}
} else {
canon_sNaN(tresultr);
resultr[0] = s_res2.i;
resultr[1] = s_res2.i;
canon_sNaN(resultr);
if (fo) {
snormzero(tresultr);
snormzero(resultr);
}
}
if (resultr[0] != tresultr[0] ||
(wres > 1 && resultr[1] != tresultr[1])) {
if (quiet) failtext[0]='x';
else {
if (is_double_rettype(t.func->rettype))
failp += sprintf(failp, " wrongres2=%08x.%08x",
resultr[0], resultr[1]);
else
failp += sprintf(failp, " wrongres2=%08x",
resultr[0]);
}
}
}
}
/* Check errno */
err = (errno == EDOM ? e_EDOM : errno == ERANGE ? e_ERANGE : e_0);
if (err != t.err && err != t.maybeerr) {
if (quiet) failtext[0]='x';
else {
failp += sprintf(failp, " wrongerrno=%s expecterrno=%s ", errnos[err], errnos[t.err]);
}
}
return *failtext ? test_fail : test_pass;
}
int passed, failed, declined;
void runtests(char *name, FILE *fp) {
char testbuf[512], linebuf[512];
int lineno = 1;
testdetail test;
test.valid = 0;
if (verbose) printf("runtests: %s\n", name);
while (fgets(testbuf, sizeof(testbuf), fp)) {
int res, print_errno;
testbuf[strcspn(testbuf, "\r\n")] = '\0';
strcpy(linebuf, testbuf);
test = parsetest(testbuf, test);
print_errno = 0;
while (test.in_err < test.in_err_limit) {
res = runtest(test);
if (res == test_pass) {
if (verbose)
printf("%s:%d: pass\n", name, lineno);
++passed;
} else if (res == test_decline) {
if (verbose)
printf("%s:%d: declined\n", name, lineno);
++declined;
} else if (res == test_fail) {
if (!quiet)
printf("%s:%d: FAIL%s: %s%s%s%s\n", name, lineno,
test.random ? " (random)" : "",
linebuf,
print_errno ? " errno_in=" : "",
print_errno ? errnos[test.in_err] : "",
failtext);
++failed;
} else if (res == test_invalid) {
printf("%s:%d: malformed: %s\n", name, lineno, linebuf);
++failed;
}
test.in_err++;
print_errno = 1;
}
lineno++;
}
}
int main(int ac, char **av) {
char **files;
int i, nfiles = 0;
dbl d;
#ifdef MICROLIB
/*
* Invent argc and argv ourselves.
*/
char *argv[256];
char args[256];
{
int sargs[2];
char *p;
ac = 0;
sargs[0]=(int)args;
sargs[1]=(int)sizeof(args);
if (!__semihost(0x15, sargs)) {
args[sizeof(args)-1] = '\0'; /* just in case */
p = args;
while (1) {
while (*p == ' ' || *p == '\t') p++;
if (!*p) break;
argv[ac++] = p;
while (*p && *p != ' ' && *p != '\t') p++;
if (*p) *p++ = '\0';
}
}
av = argv;
}
#endif
/* Sort tfuncs */
qsort(tfuncs, sizeof(tfuncs)/sizeof(test_func), sizeof(test_func), &compare_tfuncs);
/*
* Autodetect the `double' endianness.
*/
dmsd = 0;
d.f = 1.0; /* 0x3ff00000 / 0x00000000 */
if (d.i[dmsd] == 0) {
dmsd = 1;
}
/*
* Now dmsd denotes what the compiler thinks we're at. Let's
* check that it agrees with what the runtime thinks.
*/
d.i[0] = d.i[1] = 0x11111111;/* a random +ve number */
d.f /= d.f; /* must now be one */
if (d.i[dmsd] == 0) {
fprintf(stderr, "YIKES! Compiler and runtime disagree on endianness"
" of `double'. Bailing out\n");
return 1;
}
dlsd = !dmsd;
/* default is terse */
verbose = 0;
fo = 0;
strict = 0;
files = (char **)malloc((ac+1) * sizeof(char *));
if (!files) {
fprintf(stderr, "initial malloc failed!\n");
return 1;
}
#ifdef NOCMDLINE
files[nfiles++] = "testfile";
#endif
while (--ac) {
char *p = *++av;
if (*p == '-') {
static char *options[] = {
"-fo",
#if 0
"-noinexact",
"-noround",
#endif
"-nostatus",
"-quiet",
"-strict",
"-v",
"-verbose",
};
enum {
op_fo,
#if 0
op_noinexact,
op_noround,
#endif
op_nostatus,
op_quiet,
op_strict,
op_v,
op_verbose,
};
switch (find(p, options, sizeof(options))) {
case op_quiet:
quiet = 1;
break;
#if 0
case op_noinexact:
statusmask &= 0x0F; /* remove bit 4 */
break;
case op_noround:
doround = 0;
break;
#endif
case op_nostatus: /* no status word => noinx,noround */
statusmask = 0;
doround = 0;
break;
case op_v:
case op_verbose:
verbose = 1;
break;
case op_fo:
fo = 1;
break;
case op_strict: /* tolerance is 1 ulp */
strict = 1;
break;
default:
fprintf(stderr, "unrecognised option: %s\n", p);
break;
}
} else {
files[nfiles++] = p;
}
}
passed = failed = declined = 0;
if (nfiles) {
for (i = 0; i < nfiles; i++) {
FILE *fp = fopen(files[i], "r");
if (!fp) {
fprintf(stderr, "Couldn't open %s\n", files[i]);
} else
runtests(files[i], fp);
}
} else
runtests("(stdin)", stdin);
printf("Completed. Passed %d, failed %d (total %d",
passed, failed, passed+failed);
if (declined)
printf(" plus %d declined", declined);
printf(")\n");
if (failed || passed == 0)
return 1;
printf("** TEST PASSED OK **\n");
return 0;
}
void undef_func() {
failed++;
puts("ERROR: undefined function called");
}