//===-- Generic device loader interface -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_GPU_LOADER_LOADER_H
#define LLVM_LIBC_UTILS_GPU_LOADER_LOADER_H
#include "utils/gpu/server/llvmlibc_rpc_server.h"
#include "include/llvm-libc-types/test_rpc_opcodes_t.h"
#include "llvm-libc-types/rpc_opcodes_t.h"
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
/// Generic launch parameters for configuration the number of blocks / threads.
struct LaunchParameters {
uint32_t num_threads_x;
uint32_t num_threads_y;
uint32_t num_threads_z;
uint32_t num_blocks_x;
uint32_t num_blocks_y;
uint32_t num_blocks_z;
};
/// The arguments to the '_begin' kernel.
struct begin_args_t {
int argc;
void *argv;
void *envp;
};
/// The arguments to the '_start' kernel.
struct start_args_t {
int argc;
void *argv;
void *envp;
void *ret;
};
/// The arguments to the '_end' kernel.
struct end_args_t {
int argc;
};
/// Generic interface to load the \p image and launch execution of the _start
/// kernel on the target device. Copies \p argc and \p argv to the device.
/// Returns the final value of the `main` function on the device.
int load(int argc, const char **argv, const char **evnp, void *image,
size_t size, const LaunchParameters ¶ms,
bool print_resource_usage);
/// Return \p V aligned "upwards" according to \p Align.
template <typename V, typename A> inline V align_up(V val, A align) {
return ((val + V(align) - 1) / V(align)) * V(align);
}
/// Copy the system's argument vector to GPU memory allocated using \p alloc.
template <typename Allocator>
void *copy_argument_vector(int argc, const char **argv, Allocator alloc) {
size_t argv_size = sizeof(char *) * (argc + 1);
size_t str_size = 0;
for (int i = 0; i < argc; ++i)
str_size += strlen(argv[i]) + 1;
// We allocate enough space for a null terminated array and all the strings.
void *dev_argv = alloc(argv_size + str_size);
if (!dev_argv)
return nullptr;
// Store the strings linerally in the same memory buffer.
void *dev_str = reinterpret_cast<uint8_t *>(dev_argv) + argv_size;
for (int i = 0; i < argc; ++i) {
size_t size = strlen(argv[i]) + 1;
std::memcpy(dev_str, argv[i], size);
static_cast<void **>(dev_argv)[i] = dev_str;
dev_str = reinterpret_cast<uint8_t *>(dev_str) + size;
}
// Ensure the vector is null terminated.
reinterpret_cast<void **>(dev_argv)[argc] = nullptr;
return dev_argv;
}
/// Copy the system's environment to GPU memory allocated using \p alloc.
template <typename Allocator>
void *copy_environment(const char **envp, Allocator alloc) {
int envc = 0;
for (const char **env = envp; *env != 0; ++env)
++envc;
return copy_argument_vector(envc, envp, alloc);
}
inline void handle_error_impl(const char *file, int32_t line, const char *msg) {
fprintf(stderr, "%s:%d:0: Error: %s\n", file, line, msg);
exit(EXIT_FAILURE);
}
inline void handle_error_impl(const char *file, int32_t line,
rpc_status_t err) {
fprintf(stderr, "%s:%d:0: Error: %d\n", file, line, err);
exit(EXIT_FAILURE);
}
#define handle_error(X) handle_error_impl(__FILE__, __LINE__, X)
template <uint32_t lane_size>
inline void register_rpc_callbacks(rpc_device_t device) {
static_assert(lane_size == 32 || lane_size == 64, "Invalid Lane size");
// Register the ping test for the `libc` tests.
rpc_register_callback(
device, static_cast<rpc_opcode_t>(RPC_TEST_INCREMENT),
[](rpc_port_t port, void *data) {
rpc_recv_and_send(
port,
[](rpc_buffer_t *buffer, void *data) {
reinterpret_cast<uint64_t *>(buffer->data)[0] += 1;
},
data);
},
nullptr);
// Register the interface test callbacks.
rpc_register_callback(
device, static_cast<rpc_opcode_t>(RPC_TEST_INTERFACE),
[](rpc_port_t port, void *data) {
uint64_t cnt = 0;
bool end_with_recv;
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<bool *>(data) = buffer->data[0];
},
&end_with_recv);
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
if (end_with_recv)
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
else
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
},
nullptr);
// Register the stream test handler.
rpc_register_callback(
device, static_cast<rpc_opcode_t>(RPC_TEST_STREAM),
[](rpc_port_t port, void *data) {
uint64_t sizes[lane_size] = {0};
void *dst[lane_size] = {nullptr};
rpc_recv_n(
port, dst, sizes,
[](uint64_t size, void *) -> void * { return new char[size]; },
nullptr);
rpc_send_n(port, dst, sizes);
for (uint64_t i = 0; i < lane_size; ++i) {
if (dst[i])
delete[] reinterpret_cast<uint8_t *>(dst[i]);
}
},
nullptr);
}
#endif