//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//
// C++ interface to lower levels of libunwind
//===----------------------------------------------------------------------===//
#ifndef __UNWINDCURSOR_HPP__
#define __UNWINDCURSOR_HPP__
#include "cet_unwind.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unwind.h>
#ifdef _WIN32
#include <windows.h>
#include <ntverp.h>
#endif
#ifdef __APPLE__
#include <mach-o/dyld.h>
#endif
#ifdef _AIX
#include <dlfcn.h>
#include <sys/debug.h>
#include <sys/pseg.h>
#endif
#if defined(_LIBUNWIND_TARGET_LINUX) && \
(defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_RISCV) || \
defined(_LIBUNWIND_TARGET_S390X))
#include <errno.h>
#include <signal.h>
#include <sys/syscall.h>
#include <unistd.h>
#define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1
#endif
#include "AddressSpace.hpp"
#include "CompactUnwinder.hpp"
#include "config.h"
#include "DwarfInstructions.hpp"
#include "EHHeaderParser.hpp"
#include "libunwind.h"
#include "libunwind_ext.h"
#include "Registers.hpp"
#include "RWMutex.hpp"
#include "Unwind-EHABI.h"
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
// Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and
// earlier) SDKs.
// MinGW-w64 has always provided this struct.
#if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \
!defined(__MINGW32__) && VER_PRODUCTBUILD < 8000
struct _DISPATCHER_CONTEXT {
ULONG64 ControlPc;
ULONG64 ImageBase;
PRUNTIME_FUNCTION FunctionEntry;
ULONG64 EstablisherFrame;
ULONG64 TargetIp;
PCONTEXT ContextRecord;
PEXCEPTION_ROUTINE LanguageHandler;
PVOID HandlerData;
PUNWIND_HISTORY_TABLE HistoryTable;
ULONG ScopeIndex;
ULONG Fill0;
};
#endif
struct UNWIND_INFO {
uint8_t Version : 3;
uint8_t Flags : 5;
uint8_t SizeOfProlog;
uint8_t CountOfCodes;
uint8_t FrameRegister : 4;
uint8_t FrameOffset : 4;
uint16_t UnwindCodes[2];
};
extern "C" _Unwind_Reason_Code __libunwind_seh_personality(
int, _Unwind_Action, uint64_t, _Unwind_Exception *,
struct _Unwind_Context *);
#endif
namespace libunwind {
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
/// Cache of recently found FDEs.
template <typename A>
class _LIBUNWIND_HIDDEN DwarfFDECache {
typedef typename A::pint_t pint_t;
public:
static constexpr pint_t kSearchAll = static_cast<pint_t>(-1);
static pint_t findFDE(pint_t mh, pint_t pc);
static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
static void removeAllIn(pint_t mh);
static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
unw_word_t ip_end,
unw_word_t fde, unw_word_t mh));
private:
struct entry {
pint_t mh;
pint_t ip_start;
pint_t ip_end;
pint_t fde;
};
// These fields are all static to avoid needing an initializer.
// There is only one instance of this class per process.
static RWMutex _lock;
#ifdef __APPLE__
static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
static bool _registeredForDyldUnloads;
#endif
static entry *_buffer;
static entry *_bufferUsed;
static entry *_bufferEnd;
static entry _initialBuffer[64];
};
template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_buffer = _initialBuffer;
template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_bufferUsed = _initialBuffer;
template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];
template <typename A>
typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];
template <typename A>
RWMutex DwarfFDECache<A>::_lock;
#ifdef __APPLE__
template <typename A>
bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
#endif
template <typename A>
typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
pint_t result = 0;
_LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared());
for (entry *p = _buffer; p < _bufferUsed; ++p) {
if ((mh == p->mh) || (mh == kSearchAll)) {
if ((p->ip_start <= pc) && (pc < p->ip_end)) {
result = p->fde;
break;
}
}
}
_LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared());
return result;
}
template <typename A>
void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
pint_t fde) {
#if !defined(_LIBUNWIND_NO_HEAP)
_LIBUNWIND_LOG_IF_FALSE(_lock.lock());
if (_bufferUsed >= _bufferEnd) {
size_t oldSize = (size_t)(_bufferEnd - _buffer);
size_t newSize = oldSize * 4;
// Can't use operator new (we are below it).
entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
if (_buffer != _initialBuffer)
free(_buffer);
_buffer = newBuffer;
_bufferUsed = &newBuffer[oldSize];
_bufferEnd = &newBuffer[newSize];
}
_bufferUsed->mh = mh;
_bufferUsed->ip_start = ip_start;
_bufferUsed->ip_end = ip_end;
_bufferUsed->fde = fde;
++_bufferUsed;
#ifdef __APPLE__
if (!_registeredForDyldUnloads) {
_dyld_register_func_for_remove_image(&dyldUnloadHook);
_registeredForDyldUnloads = true;
}
#endif
_LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
#endif
}
template <typename A>
void DwarfFDECache<A>::removeAllIn(pint_t mh) {
_LIBUNWIND_LOG_IF_FALSE(_lock.lock());
entry *d = _buffer;
for (const entry *s = _buffer; s < _bufferUsed; ++s) {
if (s->mh != mh) {
if (d != s)
*d = *s;
++d;
}
}
_bufferUsed = d;
_LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
}
#ifdef __APPLE__
template <typename A>
void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
removeAllIn((pint_t) mh);
}
#endif
template <typename A>
void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
_LIBUNWIND_LOG_IF_FALSE(_lock.lock());
for (entry *p = _buffer; p < _bufferUsed; ++p) {
(*func)(p->ip_start, p->ip_end, p->fde, p->mh);
}
_LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
}
#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
#define arrayoffsetof(type, index, field) \
(sizeof(type) * (index) + offsetof(type, field))
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
template <typename A> class UnwindSectionHeader {
public:
UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
: _addressSpace(addressSpace), _addr(addr) {}
uint32_t version() const {
return _addressSpace.get32(_addr +
offsetof(unwind_info_section_header, version));
}
uint32_t commonEncodingsArraySectionOffset() const {
return _addressSpace.get32(_addr +
offsetof(unwind_info_section_header,
commonEncodingsArraySectionOffset));
}
uint32_t commonEncodingsArrayCount() const {
return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
commonEncodingsArrayCount));
}
uint32_t personalityArraySectionOffset() const {
return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
personalityArraySectionOffset));
}
uint32_t personalityArrayCount() const {
return _addressSpace.get32(
_addr + offsetof(unwind_info_section_header, personalityArrayCount));
}
uint32_t indexSectionOffset() const {
return _addressSpace.get32(
_addr + offsetof(unwind_info_section_header, indexSectionOffset));
}
uint32_t indexCount() const {
return _addressSpace.get32(
_addr + offsetof(unwind_info_section_header, indexCount));
}
private:
A &_addressSpace;
typename A::pint_t _addr;
};
template <typename A> class UnwindSectionIndexArray {
public:
UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
: _addressSpace(addressSpace), _addr(addr) {}
uint32_t functionOffset(uint32_t index) const {
return _addressSpace.get32(
_addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
functionOffset));
}
uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
return _addressSpace.get32(
_addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
secondLevelPagesSectionOffset));
}
uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
return _addressSpace.get32(
_addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
lsdaIndexArraySectionOffset));
}
private:
A &_addressSpace;
typename A::pint_t _addr;
};
template <typename A> class UnwindSectionRegularPageHeader {
public:
UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
: _addressSpace(addressSpace), _addr(addr) {}
uint32_t kind() const {
return _addressSpace.get32(
_addr + offsetof(unwind_info_regular_second_level_page_header, kind));
}
uint16_t entryPageOffset() const {
return _addressSpace.get16(
_addr + offsetof(unwind_info_regular_second_level_page_header,
entryPageOffset));
}
uint16_t entryCount() const {
return _addressSpace.get16(
_addr +
offsetof(unwind_info_regular_second_level_page_header, entryCount));
}
private:
A &_addressSpace;
typename A::pint_t _addr;
};
template <typename A> class UnwindSectionRegularArray {
public:
UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
: _addressSpace(addressSpace), _addr(addr) {}
uint32_t functionOffset(uint32_t index) const {
return _addressSpace.get32(
_addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
functionOffset));
}
uint32_t encoding(uint32_t index) const {
return _addressSpace.get32(
_addr +
arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
}
private:
A &_addressSpace;
typename A::pint_t _addr;
};
template <typename A> class UnwindSectionCompressedPageHeader {
public:
UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
: _addressSpace(addressSpace), _addr(addr) {}
uint32_t kind() const {
return _addressSpace.get32(
_addr +
offsetof(unwind_info_compressed_second_level_page_header, kind));
}
uint16_t entryPageOffset() const {
return _addressSpace.get16(
_addr + offsetof(unwind_info_compressed_second_level_page_header,
entryPageOffset));
}
uint16_t entryCount() const {
return _addressSpace.get16(
_addr +
offsetof(unwind_info_compressed_second_level_page_header, entryCount));
}
uint16_t encodingsPageOffset() const {
return _addressSpace.get16(
_addr + offsetof(unwind_info_compressed_second_level_page_header,
encodingsPageOffset));
}
uint16_t encodingsCount() const {
return _addressSpace.get16(
_addr + offsetof(unwind_info_compressed_second_level_page_header,
encodingsCount));
}
private:
A &_addressSpace;
typename A::pint_t _addr;
};
template <typename A> class UnwindSectionCompressedArray {
public:
UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
: _addressSpace(addressSpace), _addr(addr) {}
uint32_t functionOffset(uint32_t index) const {
return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
_addressSpace.get32(_addr + index * sizeof(uint32_t)));
}
uint16_t encodingIndex(uint32_t index) const {
return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
_addressSpace.get32(_addr + index * sizeof(uint32_t)));
}
private:
A &_addressSpace;
typename A::pint_t _addr;
};
template <typename A> class UnwindSectionLsdaArray {
public:
UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
: _addressSpace(addressSpace), _addr(addr) {}
uint32_t functionOffset(uint32_t index) const {
return _addressSpace.get32(
_addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
index, functionOffset));
}
uint32_t lsdaOffset(uint32_t index) const {
return _addressSpace.get32(
_addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
index, lsdaOffset));
}
private:
A &_addressSpace;
typename A::pint_t _addr;
};
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
public:
// NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
// This avoids an unnecessary dependency to libc++abi.
void operator delete(void *, size_t) {}
virtual ~AbstractUnwindCursor() {}
virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
virtual void setReg(int, unw_word_t) {
_LIBUNWIND_ABORT("setReg not implemented");
}
virtual bool validFloatReg(int) {
_LIBUNWIND_ABORT("validFloatReg not implemented");
}
virtual unw_fpreg_t getFloatReg(int) {
_LIBUNWIND_ABORT("getFloatReg not implemented");
}
virtual void setFloatReg(int, unw_fpreg_t) {
_LIBUNWIND_ABORT("setFloatReg not implemented");
}
virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented"); }
virtual void getInfo(unw_proc_info_t *) {
_LIBUNWIND_ABORT("getInfo not implemented");
}
virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
virtual bool isSignalFrame() {
_LIBUNWIND_ABORT("isSignalFrame not implemented");
}
virtual bool getFunctionName(char *, size_t, unw_word_t *) {
_LIBUNWIND_ABORT("getFunctionName not implemented");
}
virtual void setInfoBasedOnIPRegister(bool = false) {
_LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
}
virtual const char *getRegisterName(int) {
_LIBUNWIND_ABORT("getRegisterName not implemented");
}
#ifdef __arm__
virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
#endif
#ifdef _AIX
virtual uintptr_t getDataRelBase() {
_LIBUNWIND_ABORT("getDataRelBase not implemented");
}
#endif
#if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS)
virtual void *get_registers() {
_LIBUNWIND_ABORT("get_registers not implemented");
}
#endif
};
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)
/// \c UnwindCursor contains all state (including all register values) during
/// an unwind. This is normally stack-allocated inside a unw_cursor_t.
template <typename A, typename R>
class UnwindCursor : public AbstractUnwindCursor {
typedef typename A::pint_t pint_t;
public:
UnwindCursor(unw_context_t *context, A &as);
UnwindCursor(CONTEXT *context, A &as);
UnwindCursor(A &as, void *threadArg);
virtual ~UnwindCursor() {}
virtual bool validReg(int);
virtual unw_word_t getReg(int);
virtual void setReg(int, unw_word_t);
virtual bool validFloatReg(int);
virtual unw_fpreg_t getFloatReg(int);
virtual void setFloatReg(int, unw_fpreg_t);
virtual int step(bool = false);
virtual void getInfo(unw_proc_info_t *);
virtual void jumpto();
virtual bool isSignalFrame();
virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off);
virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false);
virtual const char *getRegisterName(int num);
#ifdef __arm__
virtual void saveVFPAsX();
#endif
DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; }
void setDispatcherContext(DISPATCHER_CONTEXT *disp) {
_dispContext = *disp;
_info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
if (_dispContext.LanguageHandler) {
_info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
} else
_info.handler = 0;
}
// libunwind does not and should not depend on C++ library which means that we
// need our own definition of inline placement new.
static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }
private:
pint_t getLastPC() const { return _dispContext.ControlPc; }
void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; }
RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
#ifdef __arm__
// Remove the thumb bit; FunctionEntry ranges don't include the thumb bit.
pc &= ~1U;
#endif
// If pc points exactly at the end of the range, we might resolve the
// next function instead. Decrement pc by 1 to fit inside the current
// function.
pc -= 1;
_dispContext.FunctionEntry = RtlLookupFunctionEntry(pc,
&_dispContext.ImageBase,
_dispContext.HistoryTable);
*base = _dispContext.ImageBase;
return _dispContext.FunctionEntry;
}
bool getInfoFromSEH(pint_t pc);
int stepWithSEHData() {
_dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER,
_dispContext.ImageBase,
_dispContext.ControlPc,
_dispContext.FunctionEntry,
_dispContext.ContextRecord,
&_dispContext.HandlerData,
&_dispContext.EstablisherFrame,
NULL);
// Update some fields of the unwind info now, since we have them.
_info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
if (_dispContext.LanguageHandler) {
_info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
} else
_info.handler = 0;
return UNW_STEP_SUCCESS;
}
A &_addressSpace;
unw_proc_info_t _info;
DISPATCHER_CONTEXT _dispContext;
CONTEXT _msContext;
UNWIND_HISTORY_TABLE _histTable;
bool _unwindInfoMissing;
};
template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
: _addressSpace(as), _unwindInfoMissing(false) {
static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
"UnwindCursor<> does not fit in unw_cursor_t");
static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
"UnwindCursor<> requires more alignment than unw_cursor_t");
memset(&_info, 0, sizeof(_info));
memset(&_histTable, 0, sizeof(_histTable));
memset(&_dispContext, 0, sizeof(_dispContext));
_dispContext.ContextRecord = &_msContext;
_dispContext.HistoryTable = &_histTable;
// Initialize MS context from ours.
R r(context);
RtlCaptureContext(&_msContext);
_msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT;
#if defined(_LIBUNWIND_TARGET_X86_64)
_msContext.Rax = r.getRegister(UNW_X86_64_RAX);
_msContext.Rcx = r.getRegister(UNW_X86_64_RCX);
_msContext.Rdx = r.getRegister(UNW_X86_64_RDX);
_msContext.Rbx = r.getRegister(UNW_X86_64_RBX);
_msContext.Rsp = r.getRegister(UNW_X86_64_RSP);
_msContext.Rbp = r.getRegister(UNW_X86_64_RBP);
_msContext.Rsi = r.getRegister(UNW_X86_64_RSI);
_msContext.Rdi = r.getRegister(UNW_X86_64_RDI);
_msContext.R8 = r.getRegister(UNW_X86_64_R8);
_msContext.R9 = r.getRegister(UNW_X86_64_R9);
_msContext.R10 = r.getRegister(UNW_X86_64_R10);
_msContext.R11 = r.getRegister(UNW_X86_64_R11);
_msContext.R12 = r.getRegister(UNW_X86_64_R12);
_msContext.R13 = r.getRegister(UNW_X86_64_R13);
_msContext.R14 = r.getRegister(UNW_X86_64_R14);
_msContext.R15 = r.getRegister(UNW_X86_64_R15);
_msContext.Rip = r.getRegister(UNW_REG_IP);
union {
v128 v;
M128A m;
} t;
t.v = r.getVectorRegister(UNW_X86_64_XMM0);
_msContext.Xmm0 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM1);
_msContext.Xmm1 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM2);
_msContext.Xmm2 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM3);
_msContext.Xmm3 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM4);
_msContext.Xmm4 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM5);
_msContext.Xmm5 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM6);
_msContext.Xmm6 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM7);
_msContext.Xmm7 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM8);
_msContext.Xmm8 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM9);
_msContext.Xmm9 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM10);
_msContext.Xmm10 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM11);
_msContext.Xmm11 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM12);
_msContext.Xmm12 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM13);
_msContext.Xmm13 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM14);
_msContext.Xmm14 = t.m;
t.v = r.getVectorRegister(UNW_X86_64_XMM15);
_msContext.Xmm15 = t.m;
#elif defined(_LIBUNWIND_TARGET_ARM)
_msContext.R0 = r.getRegister(UNW_ARM_R0);
_msContext.R1 = r.getRegister(UNW_ARM_R1);
_msContext.R2 = r.getRegister(UNW_ARM_R2);
_msContext.R3 = r.getRegister(UNW_ARM_R3);
_msContext.R4 = r.getRegister(UNW_ARM_R4);
_msContext.R5 = r.getRegister(UNW_ARM_R5);
_msContext.R6 = r.getRegister(UNW_ARM_R6);
_msContext.R7 = r.getRegister(UNW_ARM_R7);
_msContext.R8 = r.getRegister(UNW_ARM_R8);
_msContext.R9 = r.getRegister(UNW_ARM_R9);
_msContext.R10 = r.getRegister(UNW_ARM_R10);
_msContext.R11 = r.getRegister(UNW_ARM_R11);
_msContext.R12 = r.getRegister(UNW_ARM_R12);
_msContext.Sp = r.getRegister(UNW_ARM_SP);
_msContext.Lr = r.getRegister(UNW_ARM_LR);
_msContext.Pc = r.getRegister(UNW_ARM_IP);
for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) {
union {
uint64_t w;
double d;
} d;
d.d = r.getFloatRegister(i);
_msContext.D[i - UNW_ARM_D0] = d.w;
}
#elif defined(_LIBUNWIND_TARGET_AARCH64)
for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i)
_msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i);
_msContext.Sp = r.getRegister(UNW_REG_SP);
_msContext.Pc = r.getRegister(UNW_REG_IP);
for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i)
_msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i);
#endif
}
template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as)
: _addressSpace(as), _unwindInfoMissing(false) {
static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
"UnwindCursor<> does not fit in unw_cursor_t");
memset(&_info, 0, sizeof(_info));
memset(&_histTable, 0, sizeof(_histTable));
memset(&_dispContext, 0, sizeof(_dispContext));
_dispContext.ContextRecord = &_msContext;
_dispContext.HistoryTable = &_histTable;
_msContext = *context;
}
template <typename A, typename R>
bool UnwindCursor<A, R>::validReg(int regNum) {
if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true;
#if defined(_LIBUNWIND_TARGET_X86_64)
if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_RIP) return true;
#elif defined(_LIBUNWIND_TARGET_ARM)
if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) ||
regNum == UNW_ARM_RA_AUTH_CODE)
return true;
#elif defined(_LIBUNWIND_TARGET_AARCH64)
if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true;
#endif
return false;
}
template <typename A, typename R>
unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
switch (regNum) {
#if defined(_LIBUNWIND_TARGET_X86_64)
case UNW_X86_64_RIP:
case UNW_REG_IP: return _msContext.Rip;
case UNW_X86_64_RAX: return _msContext.Rax;
case UNW_X86_64_RDX: return _msContext.Rdx;
case UNW_X86_64_RCX: return _msContext.Rcx;
case UNW_X86_64_RBX: return _msContext.Rbx;
case UNW_REG_SP:
case UNW_X86_64_RSP: return _msContext.Rsp;
case UNW_X86_64_RBP: return _msContext.Rbp;
case UNW_X86_64_RSI: return _msContext.Rsi;
case UNW_X86_64_RDI: return _msContext.Rdi;
case UNW_X86_64_R8: return _msContext.R8;
case UNW_X86_64_R9: return _msContext.R9;
case UNW_X86_64_R10: return _msContext.R10;
case UNW_X86_64_R11: return _msContext.R11;
case UNW_X86_64_R12: return _msContext.R12;
case UNW_X86_64_R13: return _msContext.R13;
case UNW_X86_64_R14: return _msContext.R14;
case UNW_X86_64_R15: return _msContext.R15;
#elif defined(_LIBUNWIND_TARGET_ARM)
case UNW_ARM_R0: return _msContext.R0;
case UNW_ARM_R1: return _msContext.R1;
case UNW_ARM_R2: return _msContext.R2;
case UNW_ARM_R3: return _msContext.R3;
case UNW_ARM_R4: return _msContext.R4;
case UNW_ARM_R5: return _msContext.R5;
case UNW_ARM_R6: return _msContext.R6;
case UNW_ARM_R7: return _msContext.R7;
case UNW_ARM_R8: return _msContext.R8;
case UNW_ARM_R9: return _msContext.R9;
case UNW_ARM_R10: return _msContext.R10;
case UNW_ARM_R11: return _msContext.R11;
case UNW_ARM_R12: return _msContext.R12;
case UNW_REG_SP:
case UNW_ARM_SP: return _msContext.Sp;
case UNW_ARM_LR: return _msContext.Lr;
case UNW_REG_IP:
case UNW_ARM_IP: return _msContext.Pc;
#elif defined(_LIBUNWIND_TARGET_AARCH64)
case UNW_REG_SP: return _msContext.Sp;
case UNW_REG_IP: return _msContext.Pc;
default: return _msContext.X[regNum - UNW_AARCH64_X0];
#endif
}
_LIBUNWIND_ABORT("unsupported register");
}
template <typename A, typename R>
void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
switch (regNum) {
#if defined(_LIBUNWIND_TARGET_X86_64)
case UNW_X86_64_RIP:
case UNW_REG_IP: _msContext.Rip = value; break;
case UNW_X86_64_RAX: _msContext.Rax = value; break;
case UNW_X86_64_RDX: _msContext.Rdx = value; break;
case UNW_X86_64_RCX: _msContext.Rcx = value; break;
case UNW_X86_64_RBX: _msContext.Rbx = value; break;
case UNW_REG_SP:
case UNW_X86_64_RSP: _msContext.Rsp = value; break;
case UNW_X86_64_RBP: _msContext.Rbp = value; break;
case UNW_X86_64_RSI: _msContext.Rsi = value; break;
case UNW_X86_64_RDI: _msContext.Rdi = value; break;
case UNW_X86_64_R8: _msContext.R8 = value; break;
case UNW_X86_64_R9: _msContext.R9 = value; break;
case UNW_X86_64_R10: _msContext.R10 = value; break;
case UNW_X86_64_R11: _msContext.R11 = value; break;
case UNW_X86_64_R12: _msContext.R12 = value; break;
case UNW_X86_64_R13: _msContext.R13 = value; break;
case UNW_X86_64_R14: _msContext.R14 = value; break;
case UNW_X86_64_R15: _msContext.R15 = value; break;
#elif defined(_LIBUNWIND_TARGET_ARM)
case UNW_ARM_R0: _msContext.R0 = value; break;
case UNW_ARM_R1: _msContext.R1 = value; break;
case UNW_ARM_R2: _msContext.R2 = value; break;
case UNW_ARM_R3: _msContext.R3 = value; break;
case UNW_ARM_R4: _msContext.R4 = value; break;
case UNW_ARM_R5: _msContext.R5 = value; break;
case UNW_ARM_R6: _msContext.R6 = value; break;
case UNW_ARM_R7: _msContext.R7 = value; break;
case UNW_ARM_R8: _msContext.R8 = value; break;
case UNW_ARM_R9: _msContext.R9 = value; break;
case UNW_ARM_R10: _msContext.R10 = value; break;
case UNW_ARM_R11: _msContext.R11 = value; break;
case UNW_ARM_R12: _msContext.R12 = value; break;
case UNW_REG_SP:
case UNW_ARM_SP: _msContext.Sp = value; break;
case UNW_ARM_LR: _msContext.Lr = value; break;
case UNW_REG_IP:
case UNW_ARM_IP: _msContext.Pc = value; break;
#elif defined(_LIBUNWIND_TARGET_AARCH64)
case UNW_REG_SP: _msContext.Sp = value; break;
case UNW_REG_IP: _msContext.Pc = value; break;
case UNW_AARCH64_X0:
case UNW_AARCH64_X1:
case UNW_AARCH64_X2:
case UNW_AARCH64_X3:
case UNW_AARCH64_X4:
case UNW_AARCH64_X5:
case UNW_AARCH64_X6:
case UNW_AARCH64_X7:
case UNW_AARCH64_X8:
case UNW_AARCH64_X9:
case UNW_AARCH64_X10:
case UNW_AARCH64_X11:
case UNW_AARCH64_X12:
case UNW_AARCH64_X13:
case UNW_AARCH64_X14:
case UNW_AARCH64_X15:
case UNW_AARCH64_X16:
case UNW_AARCH64_X17:
case UNW_AARCH64_X18:
case UNW_AARCH64_X19:
case UNW_AARCH64_X20:
case UNW_AARCH64_X21:
case UNW_AARCH64_X22:
case UNW_AARCH64_X23:
case UNW_AARCH64_X24:
case UNW_AARCH64_X25:
case UNW_AARCH64_X26:
case UNW_AARCH64_X27:
case UNW_AARCH64_X28:
case UNW_AARCH64_FP:
case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break;
#endif
default:
_LIBUNWIND_ABORT("unsupported register");
}
}
template <typename A, typename R>
bool UnwindCursor<A, R>::validFloatReg(int regNum) {
#if defined(_LIBUNWIND_TARGET_ARM)
if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true;
if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true;
#elif defined(_LIBUNWIND_TARGET_AARCH64)
if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true;
#else
(void)regNum;
#endif
return false;
}
template <typename A, typename R>
unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
#if defined(_LIBUNWIND_TARGET_ARM)
if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
union {
uint32_t w;
float f;
} d;
d.w = _msContext.S[regNum - UNW_ARM_S0];
return d.f;
}
if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
union {
uint64_t w;
double d;
} d;
d.w = _msContext.D[regNum - UNW_ARM_D0];
return d.d;
}
_LIBUNWIND_ABORT("unsupported float register");
#elif defined(_LIBUNWIND_TARGET_AARCH64)
return _msContext.V[regNum - UNW_AARCH64_V0].D[0];
#else
(void)regNum;
_LIBUNWIND_ABORT("float registers unimplemented");
#endif
}
template <typename A, typename R>
void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
#if defined(_LIBUNWIND_TARGET_ARM)
if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
union {
uint32_t w;
float f;
} d;
d.f = (float)value;
_msContext.S[regNum - UNW_ARM_S0] = d.w;
}
if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
union {
uint64_t w;
double d;
} d;
d.d = value;
_msContext.D[regNum - UNW_ARM_D0] = d.w;
}
_LIBUNWIND_ABORT("unsupported float register");
#elif defined(_LIBUNWIND_TARGET_AARCH64)
_msContext.V[regNum - UNW_AARCH64_V0].D[0] = value;
#else
(void)regNum;
(void)value;
_LIBUNWIND_ABORT("float registers unimplemented");
#endif
}
template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
RtlRestoreContext(&_msContext, nullptr);
}
#ifdef __arm__
template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {}
#endif
template <typename A, typename R>
const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
return R::getRegisterName(regNum);
}
template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
return false;
}
#else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32)
/// UnwindCursor contains all state (including all register values) during
/// an unwind. This is normally stack allocated inside a unw_cursor_t.
template <typename A, typename R>
class UnwindCursor : public AbstractUnwindCursor{
typedef typename A::pint_t pint_t;
public:
UnwindCursor(unw_context_t *context, A &as);
UnwindCursor(A &as, void *threadArg);
virtual ~UnwindCursor() {}
virtual bool validReg(int);
virtual unw_word_t getReg(int);
virtual void setReg(int, unw_word_t);
virtual bool validFloatReg(int);
virtual unw_fpreg_t getFloatReg(int);
virtual void setFloatReg(int, unw_fpreg_t);
virtual int step(bool stage2 = false);
virtual void getInfo(unw_proc_info_t *);
virtual void jumpto();
virtual bool isSignalFrame();
virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off);
virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false);
virtual const char *getRegisterName(int num);
#ifdef __arm__
virtual void saveVFPAsX();
#endif
#ifdef _AIX
virtual uintptr_t getDataRelBase();
#endif
#if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS)
virtual void *get_registers() { return &_registers; }
#endif
// libunwind does not and should not depend on C++ library which means that we
// need our own definition of inline placement new.
static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }
private:
#if defined(_LIBUNWIND_ARM_EHABI)
bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s);
int stepWithEHABI() {
size_t len = 0;
size_t off = 0;
// FIXME: Calling decode_eht_entry() here is violating the libunwind
// abstraction layer.
const uint32_t *ehtp =
decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
&off, &len);
if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
_URC_CONTINUE_UNWIND)
return UNW_STEP_END;
return UNW_STEP_SUCCESS;
}
#endif
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
bool setInfoForSigReturn() {
R dummy;
return setInfoForSigReturn(dummy);
}
int stepThroughSigReturn() {
R dummy;
return stepThroughSigReturn(dummy);
}
bool isReadableAddr(const pint_t addr) const;
#if defined(_LIBUNWIND_TARGET_AARCH64)
bool setInfoForSigReturn(Registers_arm64 &);
int stepThroughSigReturn(Registers_arm64 &);
#endif
#if defined(_LIBUNWIND_TARGET_RISCV)
bool setInfoForSigReturn(Registers_riscv &);
int stepThroughSigReturn(Registers_riscv &);
#endif
#if defined(_LIBUNWIND_TARGET_S390X)
bool setInfoForSigReturn(Registers_s390x &);
int stepThroughSigReturn(Registers_s390x &);
#endif
template <typename Registers> bool setInfoForSigReturn(Registers &) {
return false;
}
template <typename Registers> int stepThroughSigReturn(Registers &) {
return UNW_STEP_END;
}
#endif
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo,
const typename CFI_Parser<A>::CIE_Info &cieInfo,
pint_t pc, uintptr_t dso_base);
bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s,
uint32_t fdeSectionOffsetHint=0);
int stepWithDwarfFDE(bool stage2) {
return DwarfInstructions<A, R>::stepWithDwarf(
_addressSpace, (pint_t)this->getReg(UNW_REG_IP),
(pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2);
}
#endif
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
bool getInfoFromCompactEncodingSection(pint_t pc,
const UnwindInfoSections §s);
int stepWithCompactEncoding(bool stage2 = false) {
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
if ( compactSaysUseDwarf() )
return stepWithDwarfFDE(stage2);
#endif
R dummy;
return stepWithCompactEncoding(dummy);
}
#if defined(_LIBUNWIND_TARGET_X86_64)
int stepWithCompactEncoding(Registers_x86_64 &) {
return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
_info.format, _info.start_ip, _addressSpace, _registers);
}
#endif
#if defined(_LIBUNWIND_TARGET_I386)
int stepWithCompactEncoding(Registers_x86 &) {
return CompactUnwinder_x86<A>::stepWithCompactEncoding(
_info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
}
#endif
#if defined(_LIBUNWIND_TARGET_PPC)
int stepWithCompactEncoding(Registers_ppc &) {
return UNW_EINVAL;
}
#endif
#if defined(_LIBUNWIND_TARGET_PPC64)
int stepWithCompactEncoding(Registers_ppc64 &) {
return UNW_EINVAL;
}
#endif
#if defined(_LIBUNWIND_TARGET_AARCH64)
int stepWithCompactEncoding(Registers_arm64 &) {
return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
_info.format, _info.start_ip, _addressSpace, _registers);
}
#endif
#if defined(_LIBUNWIND_TARGET_MIPS_O32)
int stepWithCompactEncoding(Registers_mips_o32 &) {
return UNW_EINVAL;
}
#endif
#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
int stepWithCompactEncoding(Registers_mips_newabi &) {
return UNW_EINVAL;
}
#endif
#if defined(_LIBUNWIND_TARGET_LOONGARCH)
int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; }
#endif
#if defined(_LIBUNWIND_TARGET_SPARC)
int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; }
#endif
#if defined(_LIBUNWIND_TARGET_SPARC64)
int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; }
#endif
#if defined (_LIBUNWIND_TARGET_RISCV)
int stepWithCompactEncoding(Registers_riscv &) {
return UNW_EINVAL;
}
#endif
bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
R dummy;
return compactSaysUseDwarf(dummy, offset);
}
#if defined(_LIBUNWIND_TARGET_X86_64)
bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
if (offset)
*offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
return true;
}
return false;
}
#endif
#if defined(_LIBUNWIND_TARGET_I386)
bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
if (offset)
*offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
return true;
}
return false;
}
#endif
#if defined(_LIBUNWIND_TARGET_PPC)
bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
return true;
}
#endif
#if defined(_LIBUNWIND_TARGET_PPC64)
bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const {
return true;
}
#endif
#if defined(_LIBUNWIND_TARGET_AARCH64)
bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
if (offset)
*offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
return true;
}
return false;
}
#endif
#if defined(_LIBUNWIND_TARGET_MIPS_O32)
bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const {
return true;
}
#endif
#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const {
return true;
}
#endif
#if defined(_LIBUNWIND_TARGET_LOONGARCH)
bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const {
return true;
}
#endif
#if defined(_LIBUNWIND_TARGET_SPARC)
bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; }
#endif
#if defined(_LIBUNWIND_TARGET_SPARC64)
bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const {
return true;
}
#endif
#if defined (_LIBUNWIND_TARGET_RISCV)
bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const {
return true;
}
#endif
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
compact_unwind_encoding_t dwarfEncoding() const {
R dummy;
return dwarfEncoding(dummy);
}
#if defined(_LIBUNWIND_TARGET_X86_64)
compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
return UNWIND_X86_64_MODE_DWARF;
}
#endif
#if defined(_LIBUNWIND_TARGET_I386)
compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
return UNWIND_X86_MODE_DWARF;
}
#endif
#if defined(_LIBUNWIND_TARGET_PPC)
compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
return 0;
}
#endif
#if defined(_LIBUNWIND_TARGET_PPC64)
compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const {
return 0;
}
#endif
#if defined(_LIBUNWIND_TARGET_AARCH64)
compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
return UNWIND_ARM64_MODE_DWARF;
}
#endif
#if defined(_LIBUNWIND_TARGET_ARM)
compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const {
return 0;
}
#endif
#if defined (_LIBUNWIND_TARGET_OR1K)
compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
return 0;
}
#endif
#if defined (_LIBUNWIND_TARGET_HEXAGON)
compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const {
return 0;
}
#endif
#if defined (_LIBUNWIND_TARGET_MIPS_O32)
compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const {
return 0;
}
#endif
#if defined (_LIBUNWIND_TARGET_MIPS_NEWABI)
compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const {
return 0;
}
#endif
#if defined(_LIBUNWIND_TARGET_LOONGARCH)
compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const {
return 0;
}
#endif
#if defined(_LIBUNWIND_TARGET_SPARC)
compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; }
#endif
#if defined(_LIBUNWIND_TARGET_SPARC64)
compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const {
return 0;
}
#endif
#if defined (_LIBUNWIND_TARGET_RISCV)
compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const {
return 0;
}
#endif
#if defined (_LIBUNWIND_TARGET_S390X)
compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const {
return 0;
}
#endif
#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
// For runtime environments using SEH unwind data without Windows runtime
// support.
pint_t getLastPC() const { /* FIXME: Implement */ return 0; }
void setLastPC(pint_t pc) { /* FIXME: Implement */ }
RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
/* FIXME: Implement */
*base = 0;
return nullptr;
}
bool getInfoFromSEH(pint_t pc);
int stepWithSEHData() { /* FIXME: Implement */ return 0; }
#endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
bool getInfoFromTBTable(pint_t pc, R ®isters);
int stepWithTBTable(pint_t pc, tbtable *TBTable, R ®isters,
bool &isSignalFrame);
int stepWithTBTableData() {
return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)),
reinterpret_cast<tbtable *>(_info.unwind_info),
_registers, _isSignalFrame);
}
#endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
A &_addressSpace;
R _registers;
unw_proc_info_t _info;
bool _unwindInfoMissing;
bool _isSignalFrame;
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
bool _isSigReturn = false;
#endif
};
template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
: _addressSpace(as), _registers(context), _unwindInfoMissing(false),
_isSignalFrame(false) {
static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
"UnwindCursor<> does not fit in unw_cursor_t");
static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
"UnwindCursor<> requires more alignment than unw_cursor_t");
memset(&_info, 0, sizeof(_info));
}
template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(A &as, void *)
: _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
memset(&_info, 0, sizeof(_info));
// FIXME
// fill in _registers from thread arg
}
template <typename A, typename R>
bool UnwindCursor<A, R>::validReg(int regNum) {
return _registers.validRegister(regNum);
}
template <typename A, typename R>
unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
return _registers.getRegister(regNum);
}
template <typename A, typename R>
void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
_registers.setRegister(regNum, (typename A::pint_t)value);
}
template <typename A, typename R>
bool UnwindCursor<A, R>::validFloatReg(int regNum) {
return _registers.validFloatRegister(regNum);
}
template <typename A, typename R>
unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
return _registers.getFloatRegister(regNum);
}
template <typename A, typename R>
void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
_registers.setFloatRegister(regNum, value);
}
template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
_registers.jumpto();
}
#ifdef __arm__
template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
_registers.saveVFPAsX();
}
#endif
#ifdef _AIX
template <typename A, typename R>
uintptr_t UnwindCursor<A, R>::getDataRelBase() {
return reinterpret_cast<uintptr_t>(_info.extra);
}
#endif
template <typename A, typename R>
const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
return _registers.getRegisterName(regNum);
}
template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
return _isSignalFrame;
}
#endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
#if defined(_LIBUNWIND_ARM_EHABI)
template<typename A>
struct EHABISectionIterator {
typedef EHABISectionIterator _Self;
typedef typename A::pint_t value_type;
typedef typename A::pint_t* pointer;
typedef typename A::pint_t& reference;
typedef size_t size_type;
typedef size_t difference_type;
static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
return _Self(addressSpace, sects, 0);
}
static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
return _Self(addressSpace, sects,
sects.arm_section_length / sizeof(EHABIIndexEntry));
}
EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
: _i(i), _addressSpace(&addressSpace), _sects(§s) {}
_Self& operator++() { ++_i; return *this; }
_Self& operator+=(size_t a) { _i += a; return *this; }
_Self& operator--() { assert(_i > 0); --_i; return *this; }
_Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
_Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
_Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
size_t operator-(const _Self& other) const { return _i - other._i; }
bool operator==(const _Self& other) const {
assert(_addressSpace == other._addressSpace);
assert(_sects == other._sects);
return _i == other._i;
}
bool operator!=(const _Self& other) const {
assert(_addressSpace == other._addressSpace);
assert(_sects == other._sects);
return _i != other._i;
}
typename A::pint_t operator*() const { return functionAddress(); }
typename A::pint_t functionAddress() const {
typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
EHABIIndexEntry, _i, functionOffset);
return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
}
typename A::pint_t dataAddress() {
typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
EHABIIndexEntry, _i, data);
return indexAddr;
}
private:
size_t _i;
A* _addressSpace;
const UnwindInfoSections* _sects;
};
namespace {
template <typename A>
EHABISectionIterator<A> EHABISectionUpperBound(
EHABISectionIterator<A> first,
EHABISectionIterator<A> last,
typename A::pint_t value) {
size_t len = last - first;
while (len > 0) {
size_t l2 = len / 2;
EHABISectionIterator<A> m = first + l2;
if (value < *m) {
len = l2;
} else {
first = ++m;
len -= l2 + 1;
}
}
return first;
}
}
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromEHABISection(
pint_t pc,
const UnwindInfoSections §s) {
EHABISectionIterator<A> begin =
EHABISectionIterator<A>::begin(_addressSpace, sects);
EHABISectionIterator<A> end =
EHABISectionIterator<A>::end(_addressSpace, sects);
if (begin == end)
return false;
EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc);
if (itNextPC == begin)
return false;
EHABISectionIterator<A> itThisPC = itNextPC - 1;
pint_t thisPC = itThisPC.functionAddress();
// If an exception is thrown from a function, corresponding to the last entry
// in the table, we don't really know the function extent and have to choose a
// value for nextPC. Choosing max() will allow the range check during trace to
// succeed.
pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress();
pint_t indexDataAddr = itThisPC.dataAddress();
if (indexDataAddr == 0)
return false;
uint32_t indexData = _addressSpace.get32(indexDataAddr);
if (indexData == UNW_EXIDX_CANTUNWIND)
return false;
// If the high bit is set, the exception handling table entry is inline inside
// the index table entry on the second word (aka |indexDataAddr|). Otherwise,
// the table points at an offset in the exception handling table (section 5
// EHABI).
pint_t exceptionTableAddr;
uint32_t exceptionTableData;
bool isSingleWordEHT;
if (indexData & 0x80000000) {
exceptionTableAddr = indexDataAddr;
// TODO(ajwong): Should this data be 0?
exceptionTableData = indexData;
isSingleWordEHT = true;
} else {
exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
exceptionTableData = _addressSpace.get32(exceptionTableAddr);
isSingleWordEHT = false;
}
// Now we know the 3 things:
// exceptionTableAddr -- exception handler table entry.
// exceptionTableData -- the data inside the first word of the eht entry.
// isSingleWordEHT -- whether the entry is in the index.
unw_word_t personalityRoutine = 0xbadf00d;
bool scope32 = false;
uintptr_t lsda;
// If the high bit in the exception handling table entry is set, the entry is
// in compact form (section 6.3 EHABI).
if (exceptionTableData & 0x80000000) {
// Grab the index of the personality routine from the compact form.
uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
uint32_t extraWords = 0;
switch (choice) {
case 0:
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
extraWords = 0;
scope32 = false;
lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
break;
case 1:
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
extraWords = (exceptionTableData & 0x00ff0000) >> 16;
scope32 = false;
lsda = exceptionTableAddr + (extraWords + 1) * 4;
break;
case 2:
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
extraWords = (exceptionTableData & 0x00ff0000) >> 16;
scope32 = true;
lsda = exceptionTableAddr + (extraWords + 1) * 4;
break;
default:
_LIBUNWIND_ABORT("unknown personality routine");
return false;
}
if (isSingleWordEHT) {
if (extraWords != 0) {
_LIBUNWIND_ABORT("index inlined table detected but pr function "
"requires extra words");
return false;
}
}
} else {
pint_t personalityAddr =
exceptionTableAddr + signExtendPrel31(exceptionTableData);
personalityRoutine = personalityAddr;
// ARM EHABI # 6.2, # 9.2
//
// +---- ehtp
// v
// +--------------------------------------+
// | +--------+--------+--------+-------+ |
// | |0| prel31 to personalityRoutine | |
// | +--------+--------+--------+-------+ |
// | | N | unwind opcodes | | <-- UnwindData
// | +--------+--------+--------+-------+ |
// | | Word 2 unwind opcodes | |
// | +--------+--------+--------+-------+ |
// | ... |
// | +--------+--------+--------+-------+ |
// | | Word N unwind opcodes | |
// | +--------+--------+--------+-------+ |
// | | LSDA | | <-- lsda
// | | ... | |
// | +--------+--------+--------+-------+ |
// +--------------------------------------+
uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
uint32_t FirstDataWord = *UnwindData;
size_t N = ((FirstDataWord >> 24) & 0xff);
size_t NDataWords = N + 1;
lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
}
_info.start_ip = thisPC;
_info.end_ip = nextPC;
_info.handler = personalityRoutine;
_info.unwind_info = exceptionTableAddr;
_info.lsda = lsda;
// flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
_info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum?
return true;
}
#endif
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromFdeCie(
const typename CFI_Parser<A>::FDE_Info &fdeInfo,
const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc,
uintptr_t dso_base) {
typename CFI_Parser<A>::PrologInfo prolog;
if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
R::getArch(), &prolog)) {
// Save off parsed FDE info
_info.start_ip = fdeInfo.pcStart;
_info.end_ip = fdeInfo.pcEnd;
_info.lsda = fdeInfo.lsda;
_info.handler = cieInfo.personality;
// Some frameless functions need SP altered when resuming in function, so
// propagate spExtraArgSize.
_info.gp = prolog.spExtraArgSize;
_info.flags = 0;
_info.format = dwarfEncoding();
_info.unwind_info = fdeInfo.fdeStart;
_info.unwind_info_size = static_cast<uint32_t>(fdeInfo.fdeLength);
_info.extra = static_cast<unw_word_t>(dso_base);
return true;
}
return false;
}
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
const UnwindInfoSections §s,
uint32_t fdeSectionOffsetHint) {
typename CFI_Parser<A>::FDE_Info fdeInfo;
typename CFI_Parser<A>::CIE_Info cieInfo;
bool foundFDE = false;
bool foundInCache = false;
// If compact encoding table gave offset into dwarf section, go directly there
if (fdeSectionOffsetHint != 0) {
foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
sects.dwarf_section_length,
sects.dwarf_section + fdeSectionOffsetHint,
&fdeInfo, &cieInfo);
}
#if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
if (!foundFDE && (sects.dwarf_index_section != 0)) {
foundFDE = EHHeaderParser<A>::findFDE(
_addressSpace, pc, sects.dwarf_index_section,
(uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
}
#endif
if (!foundFDE) {
// otherwise, search cache of previously found FDEs.
pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
if (cachedFDE != 0) {
foundFDE =
CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
sects.dwarf_section_length,
cachedFDE, &fdeInfo, &cieInfo);
foundInCache = foundFDE;
}
}
if (!foundFDE) {
// Still not found, do full scan of __eh_frame section.
foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
sects.dwarf_section_length, 0,
&fdeInfo, &cieInfo);
}
if (foundFDE) {
if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, sects.dso_base)) {
// Add to cache (to make next lookup faster) if we had no hint
// and there was no index.
if (!foundInCache && (fdeSectionOffsetHint == 0)) {
#if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
if (sects.dwarf_index_section == 0)
#endif
DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
fdeInfo.fdeStart);
}
return true;
}
}
//_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
return false;
}
#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
const UnwindInfoSections §s) {
const bool log = false;
if (log)
fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
(uint64_t)pc, (uint64_t)sects.dso_base);
const UnwindSectionHeader<A> sectionHeader(_addressSpace,
sects.compact_unwind_section);
if (sectionHeader.version() != UNWIND_SECTION_VERSION)
return false;
// do a binary search of top level index to find page with unwind info
pint_t targetFunctionOffset = pc - sects.dso_base;
const UnwindSectionIndexArray<A> topIndex(_addressSpace,
sects.compact_unwind_section
+ sectionHeader.indexSectionOffset());
uint32_t low = 0;
uint32_t high = sectionHeader.indexCount();
uint32_t last = high - 1;
while (low < high) {
uint32_t mid = (low + high) / 2;
//if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
//mid, low, high, topIndex.functionOffset(mid));
if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
if ((mid == last) ||
(topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
low = mid;
break;
} else {
low = mid + 1;
}
} else {
high = mid;
}
}
const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
const uint32_t firstLevelNextPageFunctionOffset =
topIndex.functionOffset(low + 1);
const pint_t secondLevelAddr =
sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
const pint_t lsdaArrayStartAddr =
sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
const pint_t lsdaArrayEndAddr =
sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
if (log)
fprintf(stderr, "\tfirst level search for result index=%d "
"to secondLevelAddr=0x%llX\n",
low, (uint64_t) secondLevelAddr);
// do a binary search of second level page index
uint32_t encoding = 0;
pint_t funcStart = 0;
pint_t funcEnd = 0;
pint_t lsda = 0;
pint_t personality = 0;
uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
// regular page
UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
secondLevelAddr);
UnwindSectionRegularArray<A> pageIndex(
_addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
// binary search looks for entry with e where index[e].offset <= pc <
// index[e+1].offset
if (log)
fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
"regular page starting at secondLevelAddr=0x%llX\n",
(uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
low = 0;
high = pageHeader.entryCount();
while (low < high) {
uint32_t mid = (low + high) / 2;
if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
// at end of table
low = mid;
funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
break;
} else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
// next is too big, so we found it
low = mid;
funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
break;
} else {
low = mid + 1;
}
} else {
high = mid;
}
}
encoding = pageIndex.encoding(low);
funcStart = pageIndex.functionOffset(low) + sects.dso_base;
if (pc < funcStart) {
if (log)
fprintf(
stderr,
"\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
(uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
return false;
}
if (pc > funcEnd) {
if (log)
fprintf(
stderr,
"\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
(uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
return false;
}
} else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
// compressed page
UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
secondLevelAddr);
UnwindSectionCompressedArray<A> pageIndex(
_addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
const uint32_t targetFunctionPageOffset =
(uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
// binary search looks for entry with e where index[e].offset <= pc <
// index[e+1].offset
if (log)
fprintf(stderr, "\tbinary search of compressed page starting at "
"secondLevelAddr=0x%llX\n",
(uint64_t) secondLevelAddr);
low = 0;
last = pageHeader.entryCount() - 1;
high = pageHeader.entryCount();
while (low < high) {
uint32_t mid = (low + high) / 2;
if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
if ((mid == last) ||
(pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
low = mid;
break;
} else {
low = mid + 1;
}
} else {
high = mid;
}
}
funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
+ sects.dso_base;
if (low < last)
funcEnd =
pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
+ sects.dso_base;
else
funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
if (pc < funcStart) {
_LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
"not in second level compressed unwind table. "
"funcStart=0x%llX",
(uint64_t) pc, (uint64_t) funcStart);
return false;
}
if (pc > funcEnd) {
_LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
"not in second level compressed unwind table. "
"funcEnd=0x%llX",
(uint64_t) pc, (uint64_t) funcEnd);
return false;
}
uint16_t encodingIndex = pageIndex.encodingIndex(low);
if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
// encoding is in common table in section header
encoding = _addressSpace.get32(
sects.compact_unwind_section +
sectionHeader.commonEncodingsArraySectionOffset() +
encodingIndex * sizeof(uint32_t));
} else {
// encoding is in page specific table
uint16_t pageEncodingIndex =
encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
encoding = _addressSpace.get32(secondLevelAddr +
pageHeader.encodingsPageOffset() +
pageEncodingIndex * sizeof(uint32_t));
}
} else {
_LIBUNWIND_DEBUG_LOG(
"malformed __unwind_info at 0x%0llX bad second level page",
(uint64_t)sects.compact_unwind_section);
return false;
}
// look up LSDA, if encoding says function has one
if (encoding & UNWIND_HAS_LSDA) {
UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
low = 0;
high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
sizeof(unwind_info_section_header_lsda_index_entry);
// binary search looks for entry with exact match for functionOffset
if (log)
fprintf(stderr,
"\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
funcStartOffset);
while (low < high) {
uint32_t mid = (low + high) / 2;
if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
break;
} else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
low = mid + 1;
} else {
high = mid;
}
}
if (lsda == 0) {
_LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
"pc=0x%0llX, but lsda table has no entry",
encoding, (uint64_t) pc);
return false;
}
}
// extract personality routine, if encoding says function has one
uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
(__builtin_ctz(UNWIND_PERSONALITY_MASK));
if (personalityIndex != 0) {
--personalityIndex; // change 1-based to zero-based index
if (personalityIndex >= sectionHeader.personalityArrayCount()) {
_LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, "
"but personality table has only %d entries",
encoding, personalityIndex,
sectionHeader.personalityArrayCount());
return false;
}
int32_t personalityDelta = (int32_t)_addressSpace.get32(
sects.compact_unwind_section +
sectionHeader.personalityArraySectionOffset() +
personalityIndex * sizeof(uint32_t));
pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
personality = _addressSpace.getP(personalityPointer);
if (log)
fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
"personalityDelta=0x%08X, personality=0x%08llX\n",
(uint64_t) pc, personalityDelta, (uint64_t) personality);
}
if (log)
fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
"encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
(uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
_info.start_ip = funcStart;
_info.end_ip = funcEnd;
_info.lsda = lsda;
_info.handler = personality;
_info.gp = 0;
_info.flags = 0;
_info.format = encoding;
_info.unwind_info = 0;
_info.unwind_info_size = 0;
_info.extra = sects.dso_base;
return true;
}
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) {
pint_t base;
RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base);
if (!unwindEntry) {
_LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc);
return false;
}
_info.gp = 0;
_info.flags = 0;
_info.format = 0;
_info.unwind_info_size = sizeof(RUNTIME_FUNCTION);
_info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry);
_info.extra = base;
_info.start_ip = base + unwindEntry->BeginAddress;
#ifdef _LIBUNWIND_TARGET_X86_64
_info.end_ip = base + unwindEntry->EndAddress;
// Only fill in the handler and LSDA if they're stale.
if (pc != getLastPC()) {
UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData);
if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) {
// The personality is given in the UNWIND_INFO itself. The LSDA immediately
// follows the UNWIND_INFO. (This follows how both Clang and MSVC emit
// these structures.)
// N.B. UNWIND_INFO structs are DWORD-aligned.
uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1;
const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]);
_info.lsda = reinterpret_cast<unw_word_t>(handler+1);
_dispContext.HandlerData = reinterpret_cast<void *>(_info.lsda);
_dispContext.LanguageHandler =
reinterpret_cast<EXCEPTION_ROUTINE *>(base + *handler);
if (*handler) {
_info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
} else
_info.handler = 0;
} else {
_info.lsda = 0;
_info.handler = 0;
}
}
#endif
setLastPC(pc);
return true;
}
#endif
#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
// Masks for traceback table field xtbtable.
enum xTBTableMask : uint8_t {
reservedBit = 0x02, // The traceback table was incorrectly generated if set
// (see comments in function getInfoFromTBTable().
ehInfoBit = 0x08 // Exception handling info is present if set
};
enum frameType : unw_word_t {
frameWithXLEHStateTable = 0,
frameWithEHInfo = 1
};
extern "C" {
typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action,
uint64_t,
_Unwind_Exception *,
struct _Unwind_Context *);
__attribute__((__weak__)) __xlcxx_personality_v0_t __xlcxx_personality_v0;
}
static __xlcxx_personality_v0_t *xlcPersonalityV0;
static RWMutex xlcPersonalityV0InitLock;
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R ®isters) {
uint32_t *p = reinterpret_cast<uint32_t *>(pc);
// Keep looking forward until a word of 0 is found. The traceback
// table starts at the following word.
while (*p)
++p;
tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1);
if (_LIBUNWIND_TRACING_UNWINDING) {
char functionBuf[512];
const char *functionName = functionBuf;
unw_word_t offset;
if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
functionName = ".anonymous.";
}
_LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p",
__func__, functionName,
reinterpret_cast<void *>(TBTable));
}
// If the traceback table does not contain necessary info, bypass this frame.
if (!TBTable->tb.has_tboff)
return false;
// Structure tbtable_ext contains important data we are looking for.
p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);
// Skip field parminfo if it exists.
if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
++p;
// p now points to tb_offset, the offset from start of function to TB table.
unw_word_t start_ip =
reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t);
unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable);
++p;
_LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n",
reinterpret_cast<void *>(start_ip),
reinterpret_cast<void *>(end_ip));
// Skip field hand_mask if it exists.
if (TBTable->tb.int_hndl)
++p;
unw_word_t lsda = 0;
unw_word_t handler = 0;
unw_word_t flags = frameType::frameWithXLEHStateTable;
if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) {
// State table info is available. The ctl_info field indicates the
// number of CTL anchors. There should be only one entry for the C++
// state table.
assert(*p == 1 && "libunwind: there must be only one ctl_info entry");
++p;
// p points to the offset of the state table into the stack.
pint_t stateTableOffset = *p++;
int framePointerReg;
// Skip fields name_len and name if exist.
if (TBTable->tb.name_present) {
const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p));
p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len +
sizeof(uint16_t));
}
if (TBTable->tb.uses_alloca)
framePointerReg = *(reinterpret_cast<char *>(p));
else
framePointerReg = 1; // default frame pointer == SP
_LIBUNWIND_TRACE_UNWINDING(
"framePointerReg=%d, framePointer=%p, "
"stateTableOffset=%#lx\n",
framePointerReg,
reinterpret_cast<void *>(_registers.getRegister(framePointerReg)),
stateTableOffset);
lsda = _registers.getRegister(framePointerReg) + stateTableOffset;
// Since the traceback table generated by the legacy XLC++ does not
// provide the location of the personality for the state table,
// function __xlcxx_personality_v0(), which is the personality for the state
// table and is exported from libc++abi, is directly assigned as the
// handler here. When a legacy XLC++ frame is encountered, the symbol
// is resolved dynamically using dlopen() to avoid hard dependency from
// libunwind on libc++abi.
// Resolve the function pointer to the state table personality if it has
// not already.
if (xlcPersonalityV0 == NULL) {
xlcPersonalityV0InitLock.lock();
if (xlcPersonalityV0 == NULL) {
// If libc++abi is statically linked in, symbol __xlcxx_personality_v0
// has been resolved at the link time.
xlcPersonalityV0 = &__xlcxx_personality_v0;
if (xlcPersonalityV0 == NULL) {
// libc++abi is dynamically linked. Resolve __xlcxx_personality_v0
// using dlopen().
const char libcxxabi[] = "libc++abi.a(libc++abi.so.1)";
void *libHandle;
// The AIX dlopen() sets errno to 0 when it is successful, which
// clobbers the value of errno from the user code. This is an AIX
// bug because according to POSIX it should not set errno to 0. To
// workaround before AIX fixes the bug, errno is saved and restored.
int saveErrno = errno;
libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW);
if (libHandle == NULL) {
_LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n",
errno);
assert(0 && "dlopen() failed");
}
xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>(
dlsym(libHandle, "__xlcxx_personality_v0"));
if (xlcPersonalityV0 == NULL) {
_LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n", errno);
assert(0 && "dlsym() failed");
}
dlclose(libHandle);
errno = saveErrno;
}
}
xlcPersonalityV0InitLock.unlock();
}
handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0);
_LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n",
reinterpret_cast<void *>(lsda),
reinterpret_cast<void *>(handler));
} else if (TBTable->tb.longtbtable) {
// This frame has the traceback table extension. Possible cases are
// 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that
// is not EH aware; or, 3) a frame of other languages. We need to figure out
// if the traceback table extension contains the 'eh_info' structure.
//
// We also need to deal with the complexity arising from some XL compiler
// versions use the wrong ordering of 'longtbtable' and 'has_vec' bits
// where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice
// versa. For frames of code generated by those compilers, the 'longtbtable'
// bit may be set but there isn't really a traceback table extension.
//
// In </usr/include/sys/debug.h>, there is the following definition of
// 'struct tbtable_ext'. It is not really a structure but a dummy to
// collect the description of optional parts of the traceback table.
//
// struct tbtable_ext {
// ...
// char alloca_reg; /* Register for alloca automatic storage */
// struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */
// unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/
// };
//
// Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data
// following 'alloca_reg' can be treated either as 'struct vec_ext' or
// 'unsigned char xtbtable'. 'xtbtable' bits are defined in
// </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently
// unused and should not be set. 'struct vec_ext' is defined in
// </usr/include/sys/debug.h> as follows:
//
// struct vec_ext {
// unsigned vr_saved:6; /* Number of non-volatile vector regs saved
// */
// /* first register saved is assumed to be */
// /* 32 - vr_saved */
// unsigned saves_vrsave:1; /* Set if vrsave is saved on the stack */
// unsigned has_varargs:1;
// ...
// };
//
// Here, the 7th bit is used as 'saves_vrsave'. To determine whether it
// is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg',
// we checks if the 7th bit is set or not because 'xtbtable' should
// never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved
// in the future to make sure the mitigation works. This mitigation
// is not 100% bullet proof because 'struct vec_ext' may not always have
// 'saves_vrsave' bit set.
//
// 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for
// checking the 7th bit.
// p points to field name len.
uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
// Skip fields name_len and name if they exist.
if (TBTable->tb.name_present) {
const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
charPtr = charPtr + name_len + sizeof(uint16_t);
}
// Skip field alloc_reg if it exists.
if (TBTable->tb.uses_alloca)
++charPtr;
// Check traceback table bit has_vec. Skip struct vec_ext if it exists.
if (TBTable->tb.has_vec)
// Note struct vec_ext does exist at this point because whether the
// ordering of longtbtable and has_vec bits is correct or not, both
// are set.
charPtr += sizeof(struct vec_ext);
// charPtr points to field 'xtbtable'. Check if the EH info is available.
// Also check if the reserved bit of the extended traceback table field
// 'xtbtable' is set. If it is, the traceback table was incorrectly
// generated by an XL compiler that uses the wrong ordering of 'longtbtable'
// and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the
// frame.
if ((*charPtr & xTBTableMask::ehInfoBit) &&
!(*charPtr & xTBTableMask::reservedBit)) {
// Mark this frame has the new EH info.
flags = frameType::frameWithEHInfo;
// eh_info is available.
charPtr++;
// The pointer is 4-byte aligned.
if (reinterpret_cast<uintptr_t>(charPtr) % 4)
charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4;
uintptr_t *ehInfo =
reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>(
registers.getRegister(2) +
*(reinterpret_cast<uintptr_t *>(charPtr)))));
// ehInfo points to structure en_info. The first member is version.
// Only version 0 is currently supported.
assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 &&
"libunwind: ehInfo version other than 0 is not supported");
// Increment ehInfo to point to member lsda.
++ehInfo;
lsda = *ehInfo++;
// enInfo now points to member personality.
handler = *ehInfo;
_LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n",
lsda, handler);
}
}
_info.start_ip = start_ip;
_info.end_ip = end_ip;
_info.lsda = lsda;
_info.handler = handler;
_info.gp = 0;
_info.flags = flags;
_info.format = 0;
_info.unwind_info = reinterpret_cast<unw_word_t>(TBTable);
_info.unwind_info_size = 0;
_info.extra = registers.getRegister(2);
return true;
}
// Step back up the stack following the frame back link.
template <typename A, typename R>
int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable,
R ®isters, bool &isSignalFrame) {
if (_LIBUNWIND_TRACING_UNWINDING) {
char functionBuf[512];
const char *functionName = functionBuf;
unw_word_t offset;
if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
functionName = ".anonymous.";
}
_LIBUNWIND_TRACE_UNWINDING(
"%s: Look up traceback table of func=%s at %p, pc=%p, "
"SP=%p, saves_lr=%d, stores_bc=%d",
__func__, functionName, reinterpret_cast<void *>(TBTable),
reinterpret_cast<void *>(pc),
reinterpret_cast<void *>(registers.getSP()), TBTable->tb.saves_lr,
TBTable->tb.stores_bc);
}
#if defined(__powerpc64__)
// Instruction to reload TOC register "ld r2,40(r1)"
const uint32_t loadTOCRegInst = 0xe8410028;
const int32_t unwPPCF0Index = UNW_PPC64_F0;
const int32_t unwPPCV0Index = UNW_PPC64_V0;
#else
// Instruction to reload TOC register "lwz r2,20(r1)"
const uint32_t loadTOCRegInst = 0x80410014;
const int32_t unwPPCF0Index = UNW_PPC_F0;
const int32_t unwPPCV0Index = UNW_PPC_V0;
#endif
// lastStack points to the stack frame of the next routine up.
pint_t curStack = static_cast<pint_t>(registers.getSP());
pint_t lastStack = *reinterpret_cast<pint_t *>(curStack);
if (lastStack == 0)
return UNW_STEP_END;
R newRegisters = registers;
// If backchain is not stored, use the current stack frame.
if (!TBTable->tb.stores_bc)
lastStack = curStack;
// Return address is the address after call site instruction.
pint_t returnAddress;
if (isSignalFrame) {
_LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p",
reinterpret_cast<void *>(lastStack));
sigcontext *sigContext = reinterpret_cast<sigcontext *>(
reinterpret_cast<char *>(lastStack) + STKMINALIGN);
returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
bool useSTKMIN = false;
if (returnAddress < 0x10000000) {
// Try again using STKMIN.
sigContext = reinterpret_cast<sigcontext *>(
reinterpret_cast<char *>(lastStack) + STKMIN);
returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
if (returnAddress < 0x10000000) {
_LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p from sigcontext=%p",
reinterpret_cast<void *>(returnAddress),
reinterpret_cast<void *>(sigContext));
return UNW_EBADFRAME;
}
useSTKMIN = true;
}
_LIBUNWIND_TRACE_UNWINDING("Returning from a signal handler %s: "
"sigContext=%p, returnAddress=%p. "
"Seems to be a valid address",
useSTKMIN ? "STKMIN" : "STKMINALIGN",
reinterpret_cast<void *>(sigContext),
reinterpret_cast<void *>(returnAddress));
// Restore the condition register from sigcontext.
newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr);
// Save the LR in sigcontext for stepping up when the function that
// raised the signal is a leaf function. This LR has the return address
// to the caller of the leaf function.
newRegisters.setLR(sigContext->sc_jmpbuf.jmp_context.lr);
_LIBUNWIND_TRACE_UNWINDING(
"Save LR=%p from sigcontext",
reinterpret_cast<void *>(sigContext->sc_jmpbuf.jmp_context.lr));
// Restore GPRs from sigcontext.
for (int i = 0; i < 32; ++i)
newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]);
// Restore FPRs from sigcontext.
for (int i = 0; i < 32; ++i)
newRegisters.setFloatRegister(i + unwPPCF0Index,
sigContext->sc_jmpbuf.jmp_context.fpr[i]);
// Restore vector registers if there is an associated extended context
// structure.
if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) {
ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext);
if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) {
for (int i = 0; i < 32; ++i)
newRegisters.setVectorRegister(
i + unwPPCV0Index, *(reinterpret_cast<v128 *>(
&(uContext->__extctx->__vmx.__vr[i]))));
}
}
} else {
// Step up a normal frame.
if (!TBTable->tb.saves_lr && registers.getLR()) {
// This case should only occur if we were called from a signal handler
// and the signal occurred in a function that doesn't save the LR.
returnAddress = static_cast<pint_t>(registers.getLR());
_LIBUNWIND_TRACE_UNWINDING("Use saved LR=%p",
reinterpret_cast<void *>(returnAddress));
} else {
// Otherwise, use the LR value in the stack link area.
returnAddress = reinterpret_cast<pint_t *>(lastStack)[2];
}
// Reset LR in the current context.
newRegisters.setLR(static_cast<uintptr_t>(NULL));
_LIBUNWIND_TRACE_UNWINDING(
"Extract info from lastStack=%p, returnAddress=%p",
reinterpret_cast<void *>(lastStack),
reinterpret_cast<void *>(returnAddress));
_LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d",
TBTable->tb.fpr_saved, TBTable->tb.gpr_saved,
TBTable->tb.saves_cr);
// Restore FP registers.
char *ptrToRegs = reinterpret_cast<char *>(lastStack);
double *FPRegs = reinterpret_cast<double *>(
ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double)));
for (int i = 0; i < TBTable->tb.fpr_saved; ++i)
newRegisters.setFloatRegister(
32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]);
// Restore GP registers.
ptrToRegs = reinterpret_cast<char *>(FPRegs);
uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>(
ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t)));
for (int i = 0; i < TBTable->tb.gpr_saved; ++i)
newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]);
// Restore Vector registers.
ptrToRegs = reinterpret_cast<char *>(GPRegs);
// Restore vector registers only if this is a Clang frame. Also
// check if traceback table bit has_vec is set. If it is, structure
// vec_ext is available.
if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) {
// Get to the vec_ext structure to check if vector registers are saved.
uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);
// Skip field parminfo if exists.
if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
++p;
// Skip field tb_offset if exists.
if (TBTable->tb.has_tboff)
++p;
// Skip field hand_mask if exists.
if (TBTable->tb.int_hndl)
++p;
// Skip fields ctl_info and ctl_info_disp if exist.
if (TBTable->tb.has_ctl) {
// Skip field ctl_info.
++p;
// Skip field ctl_info_disp.
++p;
}
// Skip fields name_len and name if exist.
// p is supposed to point to field name_len now.
uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
if (TBTable->tb.name_present) {
const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
charPtr = charPtr + name_len + sizeof(uint16_t);
}
// Skip field alloc_reg if it exists.
if (TBTable->tb.uses_alloca)
++charPtr;
struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr);
_LIBUNWIND_TRACE_UNWINDING("vr_saved=%d", vec_ext->vr_saved);
// Restore vector register(s) if saved on the stack.
if (vec_ext->vr_saved) {
// Saved vector registers are 16-byte aligned.
if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16)
ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16;
v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved *
sizeof(v128));
for (int i = 0; i < vec_ext->vr_saved; ++i) {
newRegisters.setVectorRegister(
32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]);
}
}
}
if (TBTable->tb.saves_cr) {
// Get the saved condition register. The condition register is only
// a single word.
newRegisters.setCR(
*(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t))));
}
// Restore the SP.
newRegisters.setSP(lastStack);
// The first instruction after return.
uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress));
// Do we need to set the TOC register?
_LIBUNWIND_TRACE_UNWINDING(
"Current gpr2=%p",
reinterpret_cast<void *>(newRegisters.getRegister(2)));
if (firstInstruction == loadTOCRegInst) {
_LIBUNWIND_TRACE_UNWINDING(
"Set gpr2=%p from frame",
reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5]));
newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]);
}
}
_LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n",
reinterpret_cast<void *>(lastStack),
reinterpret_cast<void *>(returnAddress),
reinterpret_cast<void *>(pc));
// The return address is the address after call site instruction, so
// setting IP to that simulates a return.
newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress));
// Simulate the step by replacing the register set with the new ones.
registers = newRegisters;
// Check if the next frame is a signal frame.
pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP()));
// Return address is the address after call site instruction.
pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2];
if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) {
_LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: "
"nextStack=%p, next return address=%p\n",
reinterpret_cast<void *>(nextStack),
reinterpret_cast<void *>(nextReturnAddress));
isSignalFrame = true;
} else {
isSignalFrame = false;
}
return UNW_STEP_SUCCESS;
}
#endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
template <typename A, typename R>
void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
_isSigReturn = false;
#endif
pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
#if defined(_LIBUNWIND_ARM_EHABI)
// Remove the thumb bit so the IP represents the actual instruction address.
// This matches the behaviour of _Unwind_GetIP on arm.
pc &= (pint_t)~0x1;
#endif
// Exit early if at the top of the stack.
if (pc == 0) {
_unwindInfoMissing = true;
return;
}
// If the last line of a function is a "throw" the compiler sometimes
// emits no instructions after the call to __cxa_throw. This means
// the return address is actually the start of the next function.
// To disambiguate this, back up the pc when we know it is a return
// address.
if (isReturnAddress)
#if defined(_AIX)
// PC needs to be a 4-byte aligned address to be able to look for a
// word of 0 that indicates the start of the traceback table at the end
// of a function on AIX.
pc -= 4;
#else
--pc;
#endif
#if !(defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)) && \
!defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
// In case of this is frame of signal handler, the IP saved in the signal
// handler points to first non-executed instruction, while FDE/CIE expects IP
// to be after the first non-executed instruction.
if (_isSignalFrame)
++pc;
#endif
// Ask address space object to find unwind sections for this pc.
UnwindInfoSections sects;
if (_addressSpace.findUnwindSections(pc, sects)) {
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
// If there is a compact unwind encoding table, look there first.
if (sects.compact_unwind_section != 0) {
if (this->getInfoFromCompactEncodingSection(pc, sects)) {
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
// Found info in table, done unless encoding says to use dwarf.
uint32_t dwarfOffset;
if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
// found info in dwarf, done
return;
}
}
#endif
// If unwind table has entry, but entry says there is no unwind info,
// record that we have no unwind info.
if (_info.format == 0)
_unwindInfoMissing = true;
return;
}
}
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
// If there is SEH unwind info, look there next.
if (this->getInfoFromSEH(pc))
return;
#endif
#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
// If there is unwind info in the traceback table, look there next.
if (this->getInfoFromTBTable(pc, _registers))
return;
#endif
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
// If there is dwarf unwind info, look there next.
if (sects.dwarf_section != 0) {
if (this->getInfoFromDwarfSection(pc, sects)) {
// found info in dwarf, done
return;
}
}
#endif
#if defined(_LIBUNWIND_ARM_EHABI)
// If there is ARM EHABI unwind info, look there next.
if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
return;
#endif
}
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
// There is no static unwind info for this pc. Look to see if an FDE was
// dynamically registered for it.
pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll,
pc);
if (cachedFDE != 0) {
typename CFI_Parser<A>::FDE_Info fdeInfo;
typename CFI_Parser<A>::CIE_Info cieInfo;
if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo))
if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
return;
}
// Lastly, ask AddressSpace object about platform specific ways to locate
// other FDEs.
pint_t fde;
if (_addressSpace.findOtherFDE(pc, fde)) {
typename CFI_Parser<A>::FDE_Info fdeInfo;
typename CFI_Parser<A>::CIE_Info cieInfo;
if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
// Double check this FDE is for a function that includes the pc.
if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd))
if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
return;
}
}
#endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
if (setInfoForSigReturn())
return;
#endif
// no unwind info, flag that we can't reliably unwind
_unwindInfoMissing = true;
}
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \
defined(_LIBUNWIND_TARGET_AARCH64)
template <typename A, typename R>
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) {
// Look for the sigreturn trampoline. The trampoline's body is two
// specific instructions (see below). Typically the trampoline comes from the
// vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its
// own restorer function, though, or user-mode QEMU might write a trampoline
// onto the stack.
//
// This special code path is a fallback that is only used if the trampoline
// lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register
// constant for the PC needs to be defined before DWARF can handle a signal
// trampoline. This code may segfault if the target PC is unreadable, e.g.:
// - The PC points at a function compiled without unwind info, and which is
// part of an execute-only mapping (e.g. using -Wl,--execute-only).
// - The PC is invalid and happens to point to unreadable or unmapped memory.
//
// [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S
const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
// The PC might contain an invalid address if the unwind info is bad, so
// directly accessing it could cause a SIGSEGV.
if (!isReadableAddr(pc))
return false;
auto *instructions = reinterpret_cast<const uint32_t *>(pc);
// Look for instructions: mov x8, #0x8b; svc #0x0
if (instructions[0] != 0xd2801168 || instructions[1] != 0xd4000001)
return false;
_info = {};
_info.start_ip = pc;
_info.end_ip = pc + 4;
_isSigReturn = true;
return true;
}
template <typename A, typename R>
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) {
// In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
// - 128-byte siginfo struct
// - ucontext struct:
// - 8-byte long (uc_flags)
// - 8-byte pointer (uc_link)
// - 24-byte stack_t
// - 128-byte signal set
// - 8 bytes of padding because sigcontext has 16-byte alignment
// - sigcontext/mcontext_t
// [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c
const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304
// Offsets from sigcontext to each register.
const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field
const pint_t kOffsetSp = 256; // offset to "__u64 sp" field
const pint_t kOffsetPc = 264; // offset to "__u64 pc" field
pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
for (int i = 0; i <= 30; ++i) {
uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs +
static_cast<pint_t>(i * 8));
_registers.setRegister(UNW_AARCH64_X0 + i, value);
}
_registers.setSP(_addressSpace.get64(sigctx + kOffsetSp));
_registers.setIP(_addressSpace.get64(sigctx + kOffsetPc));
_isSignalFrame = true;
return UNW_STEP_SUCCESS;
}
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
// defined(_LIBUNWIND_TARGET_AARCH64)
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \
defined(_LIBUNWIND_TARGET_RISCV)
template <typename A, typename R>
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_riscv &) {
const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP));
// The PC might contain an invalid address if the unwind info is bad, so
// directly accessing it could cause a SIGSEGV.
if (!isReadableAddr(pc))
return false;
const auto *instructions = reinterpret_cast<const uint32_t *>(pc);
// Look for the two instructions used in the sigreturn trampoline
// __vdso_rt_sigreturn:
//
// 0x08b00893 li a7,0x8b
// 0x00000073 ecall
if (instructions[0] != 0x08b00893 || instructions[1] != 0x00000073)
return false;
_info = {};
_info.start_ip = pc;
_info.end_ip = pc + 4;
_isSigReturn = true;
return true;
}
template <typename A, typename R>
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_riscv &) {
// In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
// - 128-byte siginfo struct
// - ucontext_t struct:
// - 8-byte long (__uc_flags)
// - 8-byte pointer (*uc_link)
// - 24-byte uc_stack
// - 8-byte uc_sigmask
// - 120-byte of padding to allow sigset_t to be expanded in the future
// - 8 bytes of padding because sigcontext has 16-byte alignment
// - struct sigcontext uc_mcontext
// [1]
// https://github.com/torvalds/linux/blob/master/arch/riscv/kernel/signal.c
const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128;
const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
_registers.setIP(_addressSpace.get64(sigctx));
for (int i = UNW_RISCV_X1; i <= UNW_RISCV_X31; ++i) {
uint64_t value = _addressSpace.get64(sigctx + static_cast<pint_t>(i * 8));
_registers.setRegister(i, value);
}
_isSignalFrame = true;
return UNW_STEP_SUCCESS;
}
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
// defined(_LIBUNWIND_TARGET_RISCV)
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \
defined(_LIBUNWIND_TARGET_S390X)
template <typename A, typename R>
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) {
// Look for the sigreturn trampoline. The trampoline's body is a
// specific instruction (see below). Typically the trampoline comes from the
// vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its
// own restorer function, though, or user-mode QEMU might write a trampoline
// onto the stack.
const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
// The PC might contain an invalid address if the unwind info is bad, so
// directly accessing it could cause a SIGSEGV.
if (!isReadableAddr(pc))
return false;
const auto inst = *reinterpret_cast<const uint16_t *>(pc);
if (inst == 0x0a77 || inst == 0x0aad) {
_info = {};
_info.start_ip = pc;
_info.end_ip = pc + 2;
_isSigReturn = true;
return true;
}
return false;
}
template <typename A, typename R>
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) {
// Determine current SP.
const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP));
// According to the s390x ABI, the CFA is at (incoming) SP + 160.
const pint_t cfa = sp + 160;
// Determine current PC and instruction there (this must be either
// a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn").
const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
const uint16_t inst = _addressSpace.get16(pc);
// Find the addresses of the signo and sigcontext in the frame.
pint_t pSigctx = 0;
pint_t pSigno = 0;
// "svc __NR_sigreturn" uses a non-RT signal trampoline frame.
if (inst == 0x0a77) {
// Layout of a non-RT signal trampoline frame, starting at the CFA:
// - 8-byte signal mask
// - 8-byte pointer to sigcontext, followed by signo
// - 4-byte signo
pSigctx = _addressSpace.get64(cfa + 8);
pSigno = pSigctx + 344;
}
// "svc __NR_rt_sigreturn" uses a RT signal trampoline frame.
if (inst == 0x0aad) {
// Layout of a RT signal trampoline frame, starting at the CFA:
// - 8-byte retcode (+ alignment)
// - 128-byte siginfo struct (starts with signo)
// - ucontext struct:
// - 8-byte long (uc_flags)
// - 8-byte pointer (uc_link)
// - 24-byte stack_t
// - 8 bytes of padding because sigcontext has 16-byte alignment
// - sigcontext/mcontext_t
pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8;
pSigno = cfa + 8;
}
assert(pSigctx != 0);
assert(pSigno != 0);
// Offsets from sigcontext to each register.
const pint_t kOffsetPc = 8;
const pint_t kOffsetGprs = 16;
const pint_t kOffsetFprs = 216;
// Restore all registers.
for (int i = 0; i < 16; ++i) {
uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs +
static_cast<pint_t>(i * 8));
_registers.setRegister(UNW_S390X_R0 + i, value);
}
for (int i = 0; i < 16; ++i) {
static const int fpr[16] = {
UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3,
UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7,
UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11,
UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15
};
double value = _addressSpace.getDouble(pSigctx + kOffsetFprs +
static_cast<pint_t>(i * 8));
_registers.setFloatRegister(fpr[i], value);
}
_registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc));
// SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr
// after the faulting instruction rather than before it.
// Do not set _isSignalFrame in that case.
uint32_t signo = _addressSpace.get32(pSigno);
_isSignalFrame = (signo != 4 && signo != 5 && signo != 8);
return UNW_STEP_SUCCESS;
}
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
// defined(_LIBUNWIND_TARGET_S390X)
template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) {
(void)stage2;
// Bottom of stack is defined is when unwind info cannot be found.
if (_unwindInfoMissing)
return UNW_STEP_END;
// Use unwinding info to modify register set as if function returned.
int result;
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
if (_isSigReturn) {
result = this->stepThroughSigReturn();
} else
#endif
{
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
result = this->stepWithCompactEncoding(stage2);
#elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
result = this->stepWithSEHData();
#elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
result = this->stepWithTBTableData();
#elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
result = this->stepWithDwarfFDE(stage2);
#elif defined(_LIBUNWIND_ARM_EHABI)
result = this->stepWithEHABI();
#else
#error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
_LIBUNWIND_SUPPORT_SEH_UNWIND or \
_LIBUNWIND_SUPPORT_DWARF_UNWIND or \
_LIBUNWIND_ARM_EHABI
#endif
}
// update info based on new PC
if (result == UNW_STEP_SUCCESS) {
this->setInfoBasedOnIPRegister(true);
if (_unwindInfoMissing)
return UNW_STEP_END;
}
return result;
}
template <typename A, typename R>
void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
if (_unwindInfoMissing)
memset(info, 0, sizeof(*info));
else
*info = _info;
}
template <typename A, typename R>
bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
unw_word_t *offset) {
return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
buf, bufLen, offset);
}
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
template <typename A, typename R>
bool UnwindCursor<A, R>::isReadableAddr(const pint_t addr) const {
// We use SYS_rt_sigprocmask, inspired by Abseil's AddressIsReadable.
const auto sigsetAddr = reinterpret_cast<sigset_t *>(addr);
// We have to check that addr is nullptr because sigprocmask allows that
// as an argument without failure.
if (!sigsetAddr)
return false;
const auto saveErrno = errno;
// We MUST use a raw syscall here, as wrappers may try to access
// sigsetAddr which may cause a SIGSEGV. A raw syscall however is
// safe. Additionally, we need to pass the kernel_sigset_size, which is
// different from libc sizeof(sigset_t). For the majority of architectures,
// it's 64 bits (_NSIG), and libc NSIG is _NSIG + 1.
const auto kernelSigsetSize = NSIG / 8;
[[maybe_unused]] const int Result = syscall(
SYS_rt_sigprocmask, /*how=*/~0, sigsetAddr, nullptr, kernelSigsetSize);
// Because our "how" is invalid, this syscall should always fail, and our
// errno should always be EINVAL or an EFAULT. This relies on the Linux
// kernel to check copy_from_user before checking if the "how" argument is
// invalid.
assert(Result == -1);
assert(errno == EFAULT || errno == EINVAL);
const auto readable = errno != EFAULT;
errno = saveErrno;
return readable;
}
#endif
#if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS)
extern "C" void *__libunwind_cet_get_registers(unw_cursor_t *cursor) {
AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
return co->get_registers();
}
#endif
} // namespace libunwind
#endif // __UNWINDCURSOR_HPP__