//===- Synchronization.cpp - OpenMP Device synchronization API ---- c++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Include all synchronization.
//
//===----------------------------------------------------------------------===//
#include "Synchronization.h"
#include "Debug.h"
#include "Interface.h"
#include "Mapping.h"
#include "State.h"
#include "Types.h"
#include "Utils.h"
#pragma omp begin declare target device_type(nohost)
using namespace ompx;
namespace impl {
/// Atomics
///
///{
/// NOTE: This function needs to be implemented by every target.
uint32_t atomicInc(uint32_t *Address, uint32_t Val, atomic::OrderingTy Ordering,
atomic::MemScopeTy MemScope);
template <typename Ty>
Ty atomicAdd(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
return __scoped_atomic_fetch_add(Address, Val, Ordering,
__MEMORY_SCOPE_DEVICE);
}
template <typename Ty>
Ty atomicMul(Ty *Address, Ty V, atomic::OrderingTy Ordering) {
Ty TypedCurrentVal, TypedResultVal, TypedNewVal;
bool Success;
do {
TypedCurrentVal = atomic::load(Address, Ordering);
TypedNewVal = TypedCurrentVal * V;
Success = atomic::cas(Address, TypedCurrentVal, TypedNewVal, Ordering,
atomic::relaxed);
} while (!Success);
return TypedResultVal;
}
template <typename Ty> Ty atomicLoad(Ty *Address, atomic::OrderingTy Ordering) {
return atomicAdd(Address, Ty(0), Ordering);
}
template <typename Ty>
void atomicStore(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
__scoped_atomic_store_n(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE);
}
template <typename Ty>
bool atomicCAS(Ty *Address, Ty ExpectedV, Ty DesiredV,
atomic::OrderingTy OrderingSucc,
atomic::OrderingTy OrderingFail) {
return __scoped_atomic_compare_exchange(Address, &ExpectedV, &DesiredV, false,
OrderingSucc, OrderingFail,
__MEMORY_SCOPE_DEVICE);
}
template <typename Ty>
Ty atomicMin(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
return __scoped_atomic_fetch_min(Address, Val, Ordering,
__MEMORY_SCOPE_DEVICE);
}
template <typename Ty>
Ty atomicMax(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
return __scoped_atomic_fetch_max(Address, Val, Ordering,
__MEMORY_SCOPE_DEVICE);
}
// TODO: Implement this with __atomic_fetch_max and remove the duplication.
template <typename Ty, typename STy, typename UTy>
Ty atomicMinFP(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
if (Val >= 0)
return atomicMin((STy *)Address, utils::convertViaPun<STy>(Val), Ordering);
return atomicMax((UTy *)Address, utils::convertViaPun<UTy>(Val), Ordering);
}
template <typename Ty, typename STy, typename UTy>
Ty atomicMaxFP(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
if (Val >= 0)
return atomicMax((STy *)Address, utils::convertViaPun<STy>(Val), Ordering);
return atomicMin((UTy *)Address, utils::convertViaPun<UTy>(Val), Ordering);
}
template <typename Ty>
Ty atomicOr(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
return __scoped_atomic_fetch_or(Address, Val, Ordering,
__MEMORY_SCOPE_DEVICE);
}
template <typename Ty>
Ty atomicAnd(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
return __scoped_atomic_fetch_and(Address, Val, Ordering,
__MEMORY_SCOPE_DEVICE);
}
template <typename Ty>
Ty atomicXOr(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
return __scoped_atomic_fetch_xor(Address, Val, Ordering,
__MEMORY_SCOPE_DEVICE);
}
uint32_t atomicExchange(uint32_t *Address, uint32_t Val,
atomic::OrderingTy Ordering) {
uint32_t R;
__scoped_atomic_exchange(Address, &Val, &R, Ordering, __MEMORY_SCOPE_DEVICE);
return R;
}
///}
// Forward declarations defined to be defined for AMDGCN and NVPTX.
uint32_t atomicInc(uint32_t *A, uint32_t V, atomic::OrderingTy Ordering,
atomic::MemScopeTy MemScope);
void namedBarrierInit();
void namedBarrier();
void fenceTeam(atomic::OrderingTy Ordering);
void fenceKernel(atomic::OrderingTy Ordering);
void fenceSystem(atomic::OrderingTy Ordering);
void syncWarp(__kmpc_impl_lanemask_t);
void syncThreads(atomic::OrderingTy Ordering);
void syncThreadsAligned(atomic::OrderingTy Ordering) { syncThreads(Ordering); }
void unsetLock(omp_lock_t *);
int testLock(omp_lock_t *);
void initLock(omp_lock_t *);
void destroyLock(omp_lock_t *);
void setLock(omp_lock_t *);
void unsetCriticalLock(omp_lock_t *);
void setCriticalLock(omp_lock_t *);
/// AMDGCN Implementation
///
///{
#pragma omp begin declare variant match(device = {arch(amdgcn)})
uint32_t atomicInc(uint32_t *A, uint32_t V, atomic::OrderingTy Ordering,
atomic::MemScopeTy MemScope) {
// builtin_amdgcn_atomic_inc32 should expand to this switch when
// passed a runtime value, but does not do so yet. Workaround here.
#define ScopeSwitch(ORDER) \
switch (MemScope) { \
case atomic::MemScopeTy::all: \
return __builtin_amdgcn_atomic_inc32(A, V, ORDER, ""); \
case atomic::MemScopeTy::device: \
return __builtin_amdgcn_atomic_inc32(A, V, ORDER, "agent"); \
case atomic::MemScopeTy::cgroup: \
return __builtin_amdgcn_atomic_inc32(A, V, ORDER, "workgroup"); \
}
#define Case(ORDER) \
case ORDER: \
ScopeSwitch(ORDER)
switch (Ordering) {
default:
__builtin_unreachable();
Case(atomic::relaxed);
Case(atomic::aquire);
Case(atomic::release);
Case(atomic::acq_rel);
Case(atomic::seq_cst);
#undef Case
#undef ScopeSwitch
}
}
uint32_t SHARED(namedBarrierTracker);
void namedBarrierInit() {
// Don't have global ctors, and shared memory is not zero init
atomic::store(&namedBarrierTracker, 0u, atomic::release);
}
void namedBarrier() {
uint32_t NumThreads = omp_get_num_threads();
// assert(NumThreads % 32 == 0);
uint32_t WarpSize = mapping::getWarpSize();
uint32_t NumWaves = NumThreads / WarpSize;
fence::team(atomic::aquire);
// named barrier implementation for amdgcn.
// Uses two 16 bit unsigned counters. One for the number of waves to have
// reached the barrier, and one to count how many times the barrier has been
// passed. These are packed in a single atomically accessed 32 bit integer.
// Low bits for the number of waves, assumed zero before this call.
// High bits to count the number of times the barrier has been passed.
// precondition: NumWaves != 0;
// invariant: NumWaves * WarpSize == NumThreads;
// precondition: NumWaves < 0xffffu;
// Increment the low 16 bits once, using the lowest active thread.
if (mapping::isLeaderInWarp()) {
uint32_t load = atomic::add(&namedBarrierTracker, 1,
atomic::relaxed); // commutative
// Record the number of times the barrier has been passed
uint32_t generation = load & 0xffff0000u;
if ((load & 0x0000ffffu) == (NumWaves - 1)) {
// Reached NumWaves in low bits so this is the last wave.
// Set low bits to zero and increment high bits
load += 0x00010000u; // wrap is safe
load &= 0xffff0000u; // because bits zeroed second
// Reset the wave counter and release the waiting waves
atomic::store(&namedBarrierTracker, load, atomic::relaxed);
} else {
// more waves still to go, spin until generation counter changes
do {
__builtin_amdgcn_s_sleep(0);
load = atomic::load(&namedBarrierTracker, atomic::relaxed);
} while ((load & 0xffff0000u) == generation);
}
}
fence::team(atomic::release);
}
// sema checking of amdgcn_fence is aggressive. Intention is to patch clang
// so that it is usable within a template environment and so that a runtime
// value of the memory order is expanded to this switch within clang/llvm.
void fenceTeam(atomic::OrderingTy Ordering) {
switch (Ordering) {
default:
__builtin_unreachable();
case atomic::aquire:
return __builtin_amdgcn_fence(atomic::aquire, "workgroup");
case atomic::release:
return __builtin_amdgcn_fence(atomic::release, "workgroup");
case atomic::acq_rel:
return __builtin_amdgcn_fence(atomic::acq_rel, "workgroup");
case atomic::seq_cst:
return __builtin_amdgcn_fence(atomic::seq_cst, "workgroup");
}
}
void fenceKernel(atomic::OrderingTy Ordering) {
switch (Ordering) {
default:
__builtin_unreachable();
case atomic::aquire:
return __builtin_amdgcn_fence(atomic::aquire, "agent");
case atomic::release:
return __builtin_amdgcn_fence(atomic::release, "agent");
case atomic::acq_rel:
return __builtin_amdgcn_fence(atomic::acq_rel, "agent");
case atomic::seq_cst:
return __builtin_amdgcn_fence(atomic::seq_cst, "agent");
}
}
void fenceSystem(atomic::OrderingTy Ordering) {
switch (Ordering) {
default:
__builtin_unreachable();
case atomic::aquire:
return __builtin_amdgcn_fence(atomic::aquire, "");
case atomic::release:
return __builtin_amdgcn_fence(atomic::release, "");
case atomic::acq_rel:
return __builtin_amdgcn_fence(atomic::acq_rel, "");
case atomic::seq_cst:
return __builtin_amdgcn_fence(atomic::seq_cst, "");
}
}
void syncWarp(__kmpc_impl_lanemask_t) {
// This is a no-op on current AMDGPU hardware but it is used by the optimizer
// to enforce convergent behaviour between control flow graphs.
__builtin_amdgcn_wave_barrier();
}
void syncThreads(atomic::OrderingTy Ordering) {
if (Ordering != atomic::relaxed)
fenceTeam(Ordering == atomic::acq_rel ? atomic::release : atomic::seq_cst);
__builtin_amdgcn_s_barrier();
if (Ordering != atomic::relaxed)
fenceTeam(Ordering == atomic::acq_rel ? atomic::aquire : atomic::seq_cst);
}
void syncThreadsAligned(atomic::OrderingTy Ordering) { syncThreads(Ordering); }
// TODO: Don't have wavefront lane locks. Possibly can't have them.
void unsetLock(omp_lock_t *) { __builtin_trap(); }
int testLock(omp_lock_t *) { __builtin_trap(); }
void initLock(omp_lock_t *) { __builtin_trap(); }
void destroyLock(omp_lock_t *) { __builtin_trap(); }
void setLock(omp_lock_t *) { __builtin_trap(); }
constexpr uint32_t UNSET = 0;
constexpr uint32_t SET = 1;
void unsetCriticalLock(omp_lock_t *Lock) {
(void)atomicExchange((uint32_t *)Lock, UNSET, atomic::acq_rel);
}
void setCriticalLock(omp_lock_t *Lock) {
uint64_t LowestActiveThread = utils::ffs(mapping::activemask()) - 1;
if (mapping::getThreadIdInWarp() == LowestActiveThread) {
fenceKernel(atomic::release);
while (!atomicCAS((uint32_t *)Lock, UNSET, SET, atomic::relaxed,
atomic::relaxed)) {
__builtin_amdgcn_s_sleep(32);
}
fenceKernel(atomic::aquire);
}
}
#pragma omp end declare variant
///}
/// NVPTX Implementation
///
///{
#pragma omp begin declare variant match( \
device = {arch(nvptx, nvptx64)}, \
implementation = {extension(match_any)})
uint32_t atomicInc(uint32_t *Address, uint32_t Val, atomic::OrderingTy Ordering,
atomic::MemScopeTy MemScope) {
return __nvvm_atom_inc_gen_ui(Address, Val);
}
void namedBarrierInit() {}
void namedBarrier() {
uint32_t NumThreads = omp_get_num_threads();
ASSERT(NumThreads % 32 == 0, nullptr);
// The named barrier for active parallel threads of a team in an L1 parallel
// region to synchronize with each other.
constexpr int BarrierNo = 7;
__nvvm_barrier_sync_cnt(BarrierNo, NumThreads);
}
void fenceTeam(atomic::OrderingTy) { __nvvm_membar_cta(); }
void fenceKernel(atomic::OrderingTy) { __nvvm_membar_gl(); }
void fenceSystem(atomic::OrderingTy) { __nvvm_membar_sys(); }
void syncWarp(__kmpc_impl_lanemask_t Mask) { __nvvm_bar_warp_sync(Mask); }
void syncThreads(atomic::OrderingTy Ordering) {
constexpr int BarrierNo = 8;
__nvvm_barrier_sync(BarrierNo);
}
void syncThreadsAligned(atomic::OrderingTy Ordering) { __syncthreads(); }
constexpr uint32_t OMP_SPIN = 1000;
constexpr uint32_t UNSET = 0;
constexpr uint32_t SET = 1;
// TODO: This seems to hide a bug in the declare variant handling. If it is
// called before it is defined
// here the overload won't happen. Investigate lalter!
void unsetLock(omp_lock_t *Lock) {
(void)atomicExchange((uint32_t *)Lock, UNSET, atomic::seq_cst);
}
int testLock(omp_lock_t *Lock) {
return atomicAdd((uint32_t *)Lock, 0u, atomic::seq_cst);
}
void initLock(omp_lock_t *Lock) { unsetLock(Lock); }
void destroyLock(omp_lock_t *Lock) { unsetLock(Lock); }
void setLock(omp_lock_t *Lock) {
// TODO: not sure spinning is a good idea here..
while (atomicCAS((uint32_t *)Lock, UNSET, SET, atomic::seq_cst,
atomic::seq_cst) != UNSET) {
int32_t start = __nvvm_read_ptx_sreg_clock();
int32_t now;
for (;;) {
now = __nvvm_read_ptx_sreg_clock();
int32_t cycles = now > start ? now - start : now + (0xffffffff - start);
if (cycles >= OMP_SPIN * mapping::getBlockIdInKernel()) {
break;
}
}
} // wait for 0 to be the read value
}
#pragma omp end declare variant
///}
} // namespace impl
void synchronize::init(bool IsSPMD) {
if (!IsSPMD)
impl::namedBarrierInit();
}
void synchronize::warp(LaneMaskTy Mask) { impl::syncWarp(Mask); }
void synchronize::threads(atomic::OrderingTy Ordering) {
impl::syncThreads(Ordering);
}
void synchronize::threadsAligned(atomic::OrderingTy Ordering) {
impl::syncThreadsAligned(Ordering);
}
void fence::team(atomic::OrderingTy Ordering) { impl::fenceTeam(Ordering); }
void fence::kernel(atomic::OrderingTy Ordering) { impl::fenceKernel(Ordering); }
void fence::system(atomic::OrderingTy Ordering) { impl::fenceSystem(Ordering); }
#define ATOMIC_COMMON_OP(TY) \
TY atomic::add(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicAdd(Addr, V, Ordering); \
} \
TY atomic::mul(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicMul(Addr, V, Ordering); \
} \
TY atomic::load(TY *Addr, atomic::OrderingTy Ordering) { \
return impl::atomicLoad(Addr, Ordering); \
} \
bool atomic::cas(TY *Addr, TY ExpectedV, TY DesiredV, \
atomic::OrderingTy OrderingSucc, \
atomic::OrderingTy OrderingFail) { \
return impl::atomicCAS(Addr, ExpectedV, DesiredV, OrderingSucc, \
OrderingFail); \
}
#define ATOMIC_FP_ONLY_OP(TY, STY, UTY) \
TY atomic::min(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicMinFP<TY, STY, UTY>(Addr, V, Ordering); \
} \
TY atomic::max(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicMaxFP<TY, STY, UTY>(Addr, V, Ordering); \
} \
void atomic::store(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
impl::atomicStore(reinterpret_cast<UTY *>(Addr), \
utils::convertViaPun<UTY>(V), Ordering); \
}
#define ATOMIC_INT_ONLY_OP(TY) \
TY atomic::min(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicMin<TY>(Addr, V, Ordering); \
} \
TY atomic::max(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicMax<TY>(Addr, V, Ordering); \
} \
TY atomic::bit_or(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicOr(Addr, V, Ordering); \
} \
TY atomic::bit_and(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicAnd(Addr, V, Ordering); \
} \
TY atomic::bit_xor(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
return impl::atomicXOr(Addr, V, Ordering); \
} \
void atomic::store(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
impl::atomicStore(Addr, V, Ordering); \
}
#define ATOMIC_FP_OP(TY, STY, UTY) \
ATOMIC_FP_ONLY_OP(TY, STY, UTY) \
ATOMIC_COMMON_OP(TY)
#define ATOMIC_INT_OP(TY) \
ATOMIC_INT_ONLY_OP(TY) \
ATOMIC_COMMON_OP(TY)
// This needs to be kept in sync with the header. Also the reason we don't use
// templates here.
ATOMIC_INT_OP(int8_t)
ATOMIC_INT_OP(int16_t)
ATOMIC_INT_OP(int32_t)
ATOMIC_INT_OP(int64_t)
ATOMIC_INT_OP(uint8_t)
ATOMIC_INT_OP(uint16_t)
ATOMIC_INT_OP(uint32_t)
ATOMIC_INT_OP(uint64_t)
ATOMIC_FP_OP(float, int32_t, uint32_t)
ATOMIC_FP_OP(double, int64_t, uint64_t)
#undef ATOMIC_INT_ONLY_OP
#undef ATOMIC_FP_ONLY_OP
#undef ATOMIC_COMMON_OP
#undef ATOMIC_INT_OP
#undef ATOMIC_FP_OP
uint32_t atomic::inc(uint32_t *Addr, uint32_t V, atomic::OrderingTy Ordering,
atomic::MemScopeTy MemScope) {
return impl::atomicInc(Addr, V, Ordering, MemScope);
}
void unsetCriticalLock(omp_lock_t *Lock) { impl::unsetLock(Lock); }
void setCriticalLock(omp_lock_t *Lock) { impl::setLock(Lock); }
extern "C" {
void __kmpc_ordered(IdentTy *Loc, int32_t TId) {}
void __kmpc_end_ordered(IdentTy *Loc, int32_t TId) {}
int32_t __kmpc_cancel_barrier(IdentTy *Loc, int32_t TId) {
__kmpc_barrier(Loc, TId);
return 0;
}
void __kmpc_barrier(IdentTy *Loc, int32_t TId) {
if (mapping::isMainThreadInGenericMode())
return __kmpc_flush(Loc);
if (mapping::isSPMDMode())
return __kmpc_barrier_simple_spmd(Loc, TId);
impl::namedBarrier();
}
[[clang::noinline]] void __kmpc_barrier_simple_spmd(IdentTy *Loc, int32_t TId) {
synchronize::threadsAligned(atomic::OrderingTy::seq_cst);
}
[[clang::noinline]] void __kmpc_barrier_simple_generic(IdentTy *Loc,
int32_t TId) {
synchronize::threads(atomic::OrderingTy::seq_cst);
}
int32_t __kmpc_master(IdentTy *Loc, int32_t TId) {
return omp_get_thread_num() == 0;
}
void __kmpc_end_master(IdentTy *Loc, int32_t TId) {}
int32_t __kmpc_masked(IdentTy *Loc, int32_t TId, int32_t Filter) {
return omp_get_thread_num() == Filter;
}
void __kmpc_end_masked(IdentTy *Loc, int32_t TId) {}
int32_t __kmpc_single(IdentTy *Loc, int32_t TId) {
return __kmpc_master(Loc, TId);
}
void __kmpc_end_single(IdentTy *Loc, int32_t TId) {
// The barrier is explicitly called.
}
void __kmpc_flush(IdentTy *Loc) { fence::kernel(atomic::seq_cst); }
uint64_t __kmpc_warp_active_thread_mask(void) { return mapping::activemask(); }
void __kmpc_syncwarp(uint64_t Mask) { synchronize::warp(Mask); }
void __kmpc_critical(IdentTy *Loc, int32_t TId, CriticalNameTy *Name) {
impl::setCriticalLock(reinterpret_cast<omp_lock_t *>(Name));
}
void __kmpc_end_critical(IdentTy *Loc, int32_t TId, CriticalNameTy *Name) {
impl::unsetCriticalLock(reinterpret_cast<omp_lock_t *>(Name));
}
void omp_init_lock(omp_lock_t *Lock) { impl::initLock(Lock); }
void omp_destroy_lock(omp_lock_t *Lock) { impl::destroyLock(Lock); }
void omp_set_lock(omp_lock_t *Lock) { impl::setLock(Lock); }
void omp_unset_lock(omp_lock_t *Lock) { impl::unsetLock(Lock); }
int omp_test_lock(omp_lock_t *Lock) { return impl::testLock(Lock); }
void ompx_sync_block(int Ordering) {
impl::syncThreadsAligned(atomic::OrderingTy(Ordering));
}
void ompx_sync_block_acq_rel() {
impl::syncThreadsAligned(atomic::OrderingTy::acq_rel);
}
void ompx_sync_block_divergent(int Ordering) {
impl::syncThreads(atomic::OrderingTy(Ordering));
}
} // extern "C"
#pragma omp end declare target