llvm/lld/MachO/ConcatOutputSection.cpp

//===- ConcatOutputSection.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ConcatOutputSection.h"
#include "Config.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/CommonLinkerContext.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/TimeProfiler.h"

usingnamespacellvm;
usingnamespacellvm::MachO;
usingnamespacelld;
usingnamespacelld::macho;

MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections;

void ConcatOutputSection::addInput(ConcatInputSection *input) {}

// Branch-range extension can be implemented in two ways, either through ...
//
// (1) Branch islands: Single branch instructions (also of limited range),
//     that might be chained in multiple hops to reach the desired
//     destination. On ARM64, as 16 branch islands are needed to hop between
//     opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
//     even when it needs excessive hops.
//
// (2) Thunks: Instruction(s) to load the destination address into a scratch
//     register, followed by a register-indirect branch. Thunks are
//     constructed to reach any arbitrary address, so need not be
//     chained. Although thunks need not be chained, a program might need
//     multiple thunks to the same destination distributed throughout a large
//     program so that all call sites can have one within range.
//
// The optimal approach is to mix islands for destinations within two hops,
// and use thunks for destinations at greater distance. For now, we only
// implement thunks. TODO: Adding support for branch islands!
//
// Internally -- as expressed in LLD's data structures -- a
// branch-range-extension thunk consists of:
//
// (1) new Defined symbol for the thunk named
//     <FUNCTION>.thunk.<SEQUENCE>, which references ...
// (2) new InputSection, which contains ...
// (3.1) new data for the instructions to load & branch to the far address +
// (3.2) new Relocs on instructions to load the far address, which reference ...
// (4.1) existing Defined symbol for the real function in __text, or
// (4.2) existing DylibSymbol for the real function in a dylib
//
// Nearly-optimal thunk-placement algorithm features:
//
// * Single pass: O(n) on the number of call sites.
//
// * Accounts for the exact space overhead of thunks - no heuristics
//
// * Exploits the full range of call instructions - forward & backward
//
// Data:
//
// * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
//   to its thunk bookkeeper.
//
// * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
//   distant call sites might be unable to reach the same thunk, so multiple
//   thunks are necessary to serve all call sites in a very large program. A
//   thunkInfo stores state for all thunks associated with a particular
//   function:
//     (a) thunk symbol
//     (b) input section containing stub code, and
//     (c) sequence number for the active thunk incarnation.
//   When an old thunk goes out of range, we increment the sequence number and
//   create a new thunk named <FUNCTION>.thunk.<SEQUENCE>.
//
// * A thunk consists of
//     (a) a Defined symbol pointing to
//     (b) an InputSection holding machine code (similar to a MachO stub), and
//     (c) relocs referencing the real function for fixing up the stub code.
//
// * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
//   to the inputs vector. We store new thunks via cheap vector append, rather
//   than costly insertion into the inputs vector.
//
// Control Flow:
//
// * During address assignment, MergedInputSection::finalize() examines call
//   sites by ascending address and creates thunks.  When a function is beyond
//   the range of a call site, we need a thunk. Place it at the largest
//   available forward address from the call site. Call sites increase
//   monotonically and thunks are always placed as far forward as possible;
//   thus, we place thunks at monotonically increasing addresses. Once a thunk
//   is placed, it and all previous input-section addresses are final.
//
// * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge
//   the inputs and thunks vectors (both ordered by ascending address), which
//   is simple and cheap.

DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;

// Determine whether we need thunks, which depends on the target arch -- RISC
// (i.e., ARM) generally does because it has limited-range branch/call
// instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
// thunks for programs so large that branch source & destination addresses
// might differ more than the range of branch instruction(s).
bool TextOutputSection::needsThunks() const {}

// Since __stubs is placed after __text, we must estimate the address
// beyond which stubs are within range of a simple forward branch.
// This is called exactly once, when the last input section has been finalized.
uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx) const {}

void ConcatOutputSection::finalizeOne(ConcatInputSection *isec) {}

void ConcatOutputSection::finalizeContents() {}

void TextOutputSection::finalize() {}

void ConcatOutputSection::writeTo(uint8_t *buf) const {}

void TextOutputSection::writeTo(uint8_t *buf) const {}

void ConcatOutputSection::finalizeFlags(InputSection *input) {}

ConcatOutputSection *
ConcatOutputSection::getOrCreateForInput(const InputSection *isec) {}

NamePair macho::maybeRenameSection(NamePair key) {}