llvm/mlir/lib/Dialect/Affine/Utils/Utils.cpp

//===- Utils.cpp ---- Utilities for affine dialect transformation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous transformation utilities for the Affine
// dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Affine/Utils.h"

#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>

#define DEBUG_TYPE

usingnamespacemlir;
usingnamespaceaffine;
usingnamespacepresburger;

namespace {
/// Visit affine expressions recursively and build the sequence of operations
/// that correspond to it.  Visitation functions return an Value of the
/// expression subtree they visited or `nullptr` on error.
class AffineApplyExpander
    : public AffineExprVisitor<AffineApplyExpander, Value> {};
} // namespace

/// Create a sequence of operations that implement the `expr` applied to the
/// given dimension and symbol values.
mlir::Value mlir::affine::expandAffineExpr(OpBuilder &builder, Location loc,
                                           AffineExpr expr,
                                           ValueRange dimValues,
                                           ValueRange symbolValues) {}

/// Create a sequence of operations that implement the `affineMap` applied to
/// the given `operands` (as it it were an AffineApplyOp).
std::optional<SmallVector<Value, 8>>
mlir::affine::expandAffineMap(OpBuilder &builder, Location loc,
                              AffineMap affineMap, ValueRange operands) {}

/// Promotes the `then` or the `else` block of `ifOp` (depending on whether
/// `elseBlock` is false or true) into `ifOp`'s containing block, and discards
/// the rest of the op.
static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock) {}

/// Returns the outermost affine.for/parallel op that the `ifOp` is invariant
/// on. The `ifOp` could be hoisted and placed right before such an operation.
/// This method assumes that the ifOp has been canonicalized (to be correct and
/// effective).
static Operation *getOutermostInvariantForOp(AffineIfOp ifOp) {}

/// A helper for the mechanics of mlir::hoistAffineIfOp. Hoists `ifOp` just over
/// `hoistOverOp`. Returns the new hoisted op if any hoisting happened,
/// otherwise the same `ifOp`.
static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp) {}

LogicalResult
mlir::affine::affineParallelize(AffineForOp forOp,
                                ArrayRef<LoopReduction> parallelReductions,
                                AffineParallelOp *resOp) {}

// Returns success if any hoisting happened.
LogicalResult mlir::affine::hoistAffineIfOp(AffineIfOp ifOp, bool *folded) {}

// Return the min expr after replacing the given dim.
AffineExpr mlir::affine::substWithMin(AffineExpr e, AffineExpr dim,
                                      AffineExpr min, AffineExpr max,
                                      bool positivePath) {}

void mlir::affine::normalizeAffineParallel(AffineParallelOp op) {}

LogicalResult mlir::affine::normalizeAffineFor(AffineForOp op,
                                               bool promoteSingleIter) {}

/// Returns true if the memory operation of `destAccess` depends on `srcAccess`
/// inside of the innermost common surrounding affine loop between the two
/// accesses.
static bool mustReachAtInnermost(const MemRefAccess &srcAccess,
                                 const MemRefAccess &destAccess) {}

/// Returns true if `srcMemOp` may have an effect on `destMemOp` within the
/// scope of the outermost `minSurroundingLoops` loops that surround them.
/// `srcMemOp` and `destMemOp` are expected to be affine read/write ops.
static bool mayHaveEffect(Operation *srcMemOp, Operation *destMemOp,
                          unsigned minSurroundingLoops) {}

template <typename EffectType, typename T>
bool mlir::affine::hasNoInterveningEffect(
    Operation *start, T memOp,
    llvm::function_ref<bool(Value, Value)> mayAlias) {}

/// Attempt to eliminate loadOp by replacing it with a value stored into memory
/// which the load is guaranteed to retrieve. This check involves three
/// components: 1) The store and load must be on the same location 2) The store
/// must dominate (and therefore must always occur prior to) the load 3) No
/// other operations will overwrite the memory loaded between the given load
/// and store.  If such a value exists, the replaced `loadOp` will be added to
/// `loadOpsToErase` and its memref will be added to `memrefsToErase`.
static void forwardStoreToLoad(
    AffineReadOpInterface loadOp, SmallVectorImpl<Operation *> &loadOpsToErase,
    SmallPtrSetImpl<Value> &memrefsToErase, DominanceInfo &domInfo,
    llvm::function_ref<bool(Value, Value)> mayAlias) {}

template bool
mlir::affine::hasNoInterveningEffect<mlir::MemoryEffects::Read,
                                     affine::AffineReadOpInterface>(
    mlir::Operation *, affine::AffineReadOpInterface,
    llvm::function_ref<bool(Value, Value)>);

// This attempts to find stores which have no impact on the final result.
// A writing op writeA will be eliminated if there exists an op writeB if
// 1) writeA and writeB have mathematically equivalent affine access functions.
// 2) writeB postdominates writeA.
// 3) There is no potential read between writeA and writeB.
static void findUnusedStore(AffineWriteOpInterface writeA,
                            SmallVectorImpl<Operation *> &opsToErase,
                            PostDominanceInfo &postDominanceInfo,
                            llvm::function_ref<bool(Value, Value)> mayAlias) {}

// The load to load forwarding / redundant load elimination is similar to the
// store to load forwarding.
// loadA will be be replaced with loadB if:
// 1) loadA and loadB have mathematically equivalent affine access functions.
// 2) loadB dominates loadA.
// 3) There is no write between loadA and loadB.
static void loadCSE(AffineReadOpInterface loadA,
                    SmallVectorImpl<Operation *> &loadOpsToErase,
                    DominanceInfo &domInfo,
                    llvm::function_ref<bool(Value, Value)> mayAlias) {}

// The store to load forwarding and load CSE rely on three conditions:
//
// 1) store/load providing a replacement value and load being replaced need to
// have mathematically equivalent affine access functions (checked after full
// composition of load/store operands); this implies that they access the same
// single memref element for all iterations of the common surrounding loop,
//
// 2) the store/load op should dominate the load op,
//
// 3) no operation that may write to memory read by the load being replaced can
// occur after executing the instruction (load or store) providing the
// replacement value and before the load being replaced (thus potentially
// allowing overwriting the memory read by the load).
//
// The above conditions are simple to check, sufficient, and powerful for most
// cases in practice - they are sufficient, but not necessary --- since they
// don't reason about loops that are guaranteed to execute at least once or
// multiple sources to forward from.
//
// TODO: more forwarding can be done when support for
// loop/conditional live-out SSA values is available.
// TODO: do general dead store elimination for memref's. This pass
// currently only eliminates the stores only if no other loads/uses (other
// than dealloc) remain.
//
void mlir::affine::affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo,
                                       PostDominanceInfo &postDomInfo,
                                       AliasAnalysis &aliasAnalysis) {}

// Perform the replacement in `op`.
LogicalResult mlir::affine::replaceAllMemRefUsesWith(
    Value oldMemRef, Value newMemRef, Operation *op,
    ArrayRef<Value> extraIndices, AffineMap indexRemap,
    ArrayRef<Value> extraOperands, ArrayRef<Value> symbolOperands,
    bool allowNonDereferencingOps) {}

LogicalResult mlir::affine::replaceAllMemRefUsesWith(
    Value oldMemRef, Value newMemRef, ArrayRef<Value> extraIndices,
    AffineMap indexRemap, ArrayRef<Value> extraOperands,
    ArrayRef<Value> symbolOperands, Operation *domOpFilter,
    Operation *postDomOpFilter, bool allowNonDereferencingOps,
    bool replaceInDeallocOp) {}

/// Given an operation, inserts one or more single result affine
/// apply operations, results of which are exclusively used by this operation
/// operation. The operands of these newly created affine apply ops are
/// guaranteed to be loop iterators or terminal symbols of a function.
///
/// Before
///
/// affine.for %i = 0 to #map(%N)
///   %idx = affine.apply (d0) -> (d0 mod 2) (%i)
///   "send"(%idx, %A, ...)
///   "compute"(%idx)
///
/// After
///
/// affine.for %i = 0 to #map(%N)
///   %idx = affine.apply (d0) -> (d0 mod 2) (%i)
///   "send"(%idx, %A, ...)
///   %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
///   "compute"(%idx_)
///
/// This allows applying different transformations on send and compute (for eg.
/// different shifts/delays).
///
/// Returns nullptr either if none of opInst's operands were the result of an
/// affine.apply and thus there was no affine computation slice to create, or if
/// all the affine.apply op's supplying operands to this opInst did not have any
/// uses besides this opInst; otherwise returns the list of affine.apply
/// operations created in output argument `sliceOps`.
void mlir::affine::createAffineComputationSlice(
    Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) {}

/// Enum to set patterns of affine expr in tiled-layout map.
/// TileFloorDiv: <dim expr> div <tile size>
/// TileMod: <dim expr> mod <tile size>
/// TileNone: None of the above
/// Example:
/// #tiled_2d_128x256 = affine_map<(d0, d1)
///            -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
/// "d0 div 128" and "d1 div 256" ==> TileFloorDiv
/// "d0 mod 128" and "d1 mod 256" ==> TileMod
enum TileExprPattern {};

/// Check if `map` is a tiled layout. In the tiled layout, specific k dimensions
/// being floordiv'ed by respective tile sizes appeare in a mod with the same
/// tile sizes, and no other expression involves those k dimensions. This
/// function stores a vector of tuples (`tileSizePos`) including AffineExpr for
/// tile size, positions of corresponding `floordiv` and `mod`. If it is not a
/// tiled layout, an empty vector is returned.
static LogicalResult getTileSizePos(
    AffineMap map,
    SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) {}

/// Check if `dim` dimension of memrefType with `layoutMap` becomes dynamic
/// after normalization. Dimensions that include dynamic dimensions in the map
/// output will become dynamic dimensions. Return true if `dim` is dynamic
/// dimension.
///
/// Example:
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
///
/// If d1 is dynamic dimension, 2nd and 3rd dimension of map output are dynamic.
/// memref<4x?xf32, #map0>  ==>  memref<4x?x?xf32>
static bool
isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap,
                             SmallVectorImpl<unsigned> &inMemrefTypeDynDims) {}

/// Create affine expr to calculate dimension size for a tiled-layout map.
static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput,
                                                  TileExprPattern pat) {}

/// Create new maps to calculate each dimension size of `newMemRefType`, and
/// create `newDynamicSizes` from them by using AffineApplyOp.
///
/// Steps for normalizing dynamic memrefs for a tiled layout map
/// Example:
///    #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
///    %0 = dim %arg0, %c1 :memref<4x?xf32>
///    %1 = alloc(%0) : memref<4x?xf32, #map0>
///
/// (Before this function)
/// 1. Check if `map`(#map0) is a tiled layout using `getTileSizePos()`. Only
/// single layout map is supported.
///
/// 2. Create normalized memrefType using `isNormalizedMemRefDynamicDim()`. It
/// is memref<4x?x?xf32> in the above example.
///
/// (In this function)
/// 3. Create new maps to calculate each dimension of the normalized memrefType
/// using `createDimSizeExprForTiledLayout()`. In the tiled layout, the
/// dimension size can be calculated by replacing "floordiv <tile size>" with
/// "ceildiv <tile size>" and "mod <tile size>" with "<tile size>".
/// - New map in the above example
///   #map0 = affine_map<(d0, d1) -> (d0)>
///   #map1 = affine_map<(d0, d1) -> (d1 ceildiv 32)>
///   #map2 = affine_map<(d0, d1) -> (32)>
///
/// 4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp
/// is used in dynamicSizes of new AllocOp.
///   %0 = dim %arg0, %c1 : memref<4x?xf32>
///   %c4 = arith.constant 4 : index
///   %1 = affine.apply #map1(%c4, %0)
///   %2 = affine.apply #map2(%c4, %0)
static void createNewDynamicSizes(MemRefType oldMemRefType,
                                  MemRefType newMemRefType, AffineMap map,
                                  memref::AllocOp *allocOp, OpBuilder b,
                                  SmallVectorImpl<Value> &newDynamicSizes) {}

// TODO: Currently works for static memrefs with a single layout map.
LogicalResult mlir::affine::normalizeMemRef(memref::AllocOp *allocOp) {}

MemRefType mlir::affine::normalizeMemRefType(MemRefType memrefType) {}

DivModValue mlir::affine::getDivMod(OpBuilder &b, Location loc, Value lhs,
                                    Value rhs) {}

/// Create IR that computes the product of all elements in the set.
static FailureOr<OpFoldResult> getIndexProduct(OpBuilder &b, Location loc,
                                               ArrayRef<Value> set) {}

FailureOr<SmallVector<Value>>
mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex,
                               ArrayRef<Value> basis) {}

OpFoldResult mlir::affine::linearizeIndex(ArrayRef<OpFoldResult> multiIndex,
                                          ArrayRef<OpFoldResult> basis,
                                          ImplicitLocOpBuilder &builder) {}