llvm/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp

//===- LinalgOps.cpp - Implementation of the linalg operations ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Linalg operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/IR/Linalg.h"

#include "mlir/AsmParser/AsmParser.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>

usingnamespacemlir;
usingnamespacemlir::linalg;

/// Return a `memref.dim` or `tensor.dim` for the shape of `v` at `dim`.
static OpFoldResult getDimValue(OpBuilder &builder, Location loc, Value v,
                                int64_t dim) {}

/// Returns a memref.subview or a tensor.extract_slice based on the type of the
/// `source`.
static Value getSlice(OpBuilder &b, Location loc, Value source,
                      ArrayRef<OpFoldResult> offsets,
                      ArrayRef<OpFoldResult> sizes,
                      ArrayRef<OpFoldResult> strides) {}

//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//

Value linalg::createOrFoldDimOp(OpBuilder &b, Location loc, Value source,
                                int64_t dim) {}

OpFoldResult linalg::createFoldedDimOp(OpBuilder &b, Location loc, Value source,
                                       int64_t dim) {}

//===----------------------------------------------------------------------===//
// Support for named Linalg ops defined in ods-gen.
//===----------------------------------------------------------------------===//

RegionBuilderFn;

/// Fills the region of a structured operation using the provided
/// `regionBuilder`. The method is used by both named structured ops created by
/// ods-gen and by manually defined C++ ops. It is called by both builders and
/// parsers and creates a block with arguments corresponding to the elemental
/// types of `inputTypes` and `outputTypes`. All output types are asserted to be
/// ShapedType.
static void fillStructuredOpRegion(OpBuilder &opBuilder, Region &region,
                                   TypeRange inputTypes, TypeRange outputTypes,
                                   ArrayRef<NamedAttribute> attrs,
                                   RegionBuilderFn regionBuilder) {}

/// Creates a structured operation given `inputs`, `outputs`, and `attributes`.
/// The result types are derived automatically if `resultTensorTypes` is none.
/// The body of the operation is filled using `regionBuilder`. All ods-gen
/// created structured operations use the method to implement their builders.
static void buildStructuredOp(OpBuilder &b, OperationState &state,
                              std::optional<TypeRange> resultTensorTypes,
                              ValueRange inputs, ValueRange outputs,
                              ArrayRef<NamedAttribute> attributes,
                              RegionBuilderFn regionBuilder) {}

/// Common parsing used for both named structured ops created by ods-gen and by
/// manually defined C++ ops. Does not handle regions.
static ParseResult
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
                             SmallVectorImpl<Type> &inputTypes,
                             SmallVectorImpl<Type> &outputTypes,
                             bool addOperandSegmentSizes = true) {}

static void printCommonStructuredOpParts(OpAsmPrinter &p, ValueRange inputs,
                                         ValueRange outputs) {}

//===----------------------------------------------------------------------===//
// Specific parsing and printing for named structured ops created by ods-gen.
//===----------------------------------------------------------------------===//

static ParseResult parseNamedStructuredOpRegion(
    OpAsmParser &parser, Region &region, unsigned numRegionArgs,
    TypeRange inputTypes, TypeRange outputTypes, ArrayRef<NamedAttribute> attrs,
    RegionBuilderFn regionBuilder) {}

static ParseResult
parseNamedStructuredOpResults(OpAsmParser &parser,
                              SmallVectorImpl<Type> &resultTypes) {}

static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
                                          OperationState &result,
                                          unsigned numRegionArgs,
                                          RegionBuilderFn regionBuilder) {}

static void printNamedStructuredOpResults(OpAsmPrinter &p,
                                          TypeRange resultTypes) {}

static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op,
                                   ValueRange inputs, ValueRange outputs) {}

//===----------------------------------------------------------------------===//
// Region builder helper.
// TODO: Move this to a utility library.
// The public methods on this class are referenced directly from generated code.
// Helper build the unary, binary, and type conversion functions defined by the
// DSL. See LinalgNamedStructuredOps.yamlgen.cpp.inc for the code that uses this
// class.
//
// Implementations of the math functions must be polymorphic over numeric types,
// internally performing necessary casts. If the function application makes no
// sense, then the only recourse is to assert and return nullptr. This can be
// extended later if it becomes possible to fail construction of the region. The
// invariant should be enforced at a higher level.
//
// TODO: These helpers are currently type polymorphic over the class of integer
// and floating point types, but they will not internally cast within bit
// widths of a class (mixed precision such as i8->i32) or across classes
// (i.e. mixed float and integer). Many such combinations are ambiguous or need
// to be handled with care and work is being considered to extend the op
// language to make such cases explicit. In the mean-time, violating this will
// fail verification, which is deemed acceptable.
//===----------------------------------------------------------------------===//

namespace {

class RegionBuilderHelper {};

} // namespace

//===----------------------------------------------------------------------===//
// CopyOp
//===----------------------------------------------------------------------===//

namespace {

struct EraseSelfCopy : OpRewritePattern<CopyOp> {};

} // namespace

void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                         MLIRContext *context) {}

//===----------------------------------------------------------------------===//
// FillOp
//===----------------------------------------------------------------------===//

namespace {

/// Fold linalg.fill -> tensor.expand/collapse_shape chain.
///
/// For such op chains, we can create new linalg.fill ops with the result
/// type of the tensor.expand/collapse_shape op.
template <typename TensorReshapeOp>
struct FoldFillWithTensorReshape : OpRewritePattern<TensorReshapeOp> {};

/// Fold tensor.pad(linalg.fill) into linalg.fill if the padding value and the
/// filling value are the same.
struct FoldFillWithPad final : public OpRewritePattern<tensor::PadOp> {};

/// Fold tensor.insert_slice(tensor.pad(<input>), linalg.fill) into
/// tensor.insert_slice(<input>, linalg.fill) if the padding value and the
/// filling value are the same.
struct FoldInsertPadIntoFill : public OpRewritePattern<tensor::InsertSliceOp> {};

/// Fold tensor.extract(linalg.fill(<input>)) into <input>
struct FoldFillWithTensorExtract : public OpRewritePattern<tensor::ExtractOp> {};

/// Folds pack(fill) into a single fill op if
///   1. The pack op does not have padding value, or
///   2. The filled value and padding value are the same.
static FailureOr<FillOp> foldFillPackIntoFillOp(RewriterBase &rewriter,
                                                tensor::PackOp packOp) {}

/// Wrapper pattern that applies foldFillPackIntoFillOp method.
struct FoldFillWithPack : public OpRewritePattern<tensor::PackOp> {};

/// Fold fill with copy.
struct FoldFillWithCopy : OpRewritePattern<linalg::CopyOp> {};

/// Fold fill with transpose.
struct FoldFillWithTranspose : OpRewritePattern<linalg::TransposeOp> {};

/// Fold a concat with all elements being fills of the same value
/// into a fill of the concat result shape.
struct FoldConcatsOfFill : public OpRewritePattern<tensor::ConcatOp> {};

} // namespace

void FillOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                         MLIRContext *context) {}

//===----------------------------------------------------------------------===//
// GenericOp
//===----------------------------------------------------------------------===//

static void buildGenericRegion(
    OpBuilder &builder, Location loc, Region &region, ValueRange inputs,
    ValueRange outputs,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {}

void GenericOp::getAsmBlockArgumentNames(Region &region,
                                         OpAsmSetValueNameFn setNameFn) {}

void GenericOp::build(
    OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
    ValueRange inputs, ValueRange outputs, ArrayAttr indexingMaps,
    ArrayAttr iteratorTypes, StringAttr doc, StringAttr libraryCall,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
    ArrayRef<NamedAttribute> attributes) {}

void GenericOp::build(
    OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
    ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
    ArrayRef<utils::IteratorType> iteratorTypes, StringRef doc,
    StringRef libraryCall,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
    ArrayRef<NamedAttribute> attributes) {}

void GenericOp::build(
    OpBuilder &builder, OperationState &result, ValueRange inputs,
    ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
    ArrayRef<utils::IteratorType> iteratorTypes, StringRef doc,
    StringRef libraryCall,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
    ArrayRef<NamedAttribute> attributes) {}

void GenericOp::build(
    OpBuilder &builder, OperationState &result, ValueRange inputs,
    ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
    ArrayRef<utils::IteratorType> iteratorTypes,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
    ArrayRef<NamedAttribute> attributes) {}

void GenericOp::build(
    OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
    ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
    ArrayRef<utils::IteratorType> iteratorTypes,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
    ArrayRef<NamedAttribute> attributes) {}

void GenericOp::print(OpAsmPrinter &p) {}

ParseResult GenericOp::parse(OpAsmParser &parser, OperationState &result) {}

static void getGenericEffectsImpl(
    SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
        &effects,
    LinalgOp linalgOp) {}

void GenericOp::getEffects(
    SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
        &effects) {}

LogicalResult GenericOp::verify() {}

namespace {

/// Remove any linalg operation (on tensors) that are just copying
/// the values from inputs to the results. Requirements are
/// 1) All iterator types are parallel
/// 2) The body contains just a yield operation with the yielded values being
///    the arguments corresponding to the operands.
template <typename OpTy>
struct EraseIdentityLinalgOp : public OpRewritePattern<OpTy> {};

} // namespace

void GenericOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                            MLIRContext *context) {}

LogicalResult GenericOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) {}

//===----------------------------------------------------------------------===//
// MapOp
//===----------------------------------------------------------------------===//

static ParseResult parseDstStyleOp(
    OpAsmParser &parser, OperationState &result,
    function_ref<ParseResult(OpAsmParser &, NamedAttrList &)> parseAttrsFn =
        nullptr) {}

void MapOp::getAsmBlockArgumentNames(Region &region,
                                     OpAsmSetValueNameFn setNameFn) {}

void MapOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {}

void MapOp::build(
    OpBuilder &builder, OperationState &result, ValueRange inputs, Value init,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
    ArrayRef<NamedAttribute> attributes) {}

static void addBodyWithPayloadOp(OpAsmParser &parser, OperationState &result,
                                 const OperationName &payloadOpName,
                                 const NamedAttrList &payloadOpAttrs,
                                 ArrayRef<Value> operands,
                                 bool initFirst = false) {}

ParseResult MapOp::parse(OpAsmParser &parser, OperationState &result) {}

// Retrieve the operation from the body, if it is the only one (except
// yield) and if it gets the same amount of arguments as the body does.
// If initFirst flag is enabled, we check that init takes the first position in
// operands of payload.
static Operation *findPayloadOp(Block *body, bool initFirst = false) {}

void printShortForm(OpAsmPrinter &p, Operation *payloadOp) {}

void MapOp::print(OpAsmPrinter &p) {}

LogicalResult MapOp::verify() {}

SmallVector<utils::IteratorType> MapOp::getIteratorTypesArray() {}

ArrayAttr MapOp::getIndexingMaps() {}

void MapOp::getEffects(
    SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
        &effects) {}

//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//

void ReduceOp::getAsmBlockArgumentNames(Region &region,
                                        OpAsmSetValueNameFn setNameFn) {}

void ReduceOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {}

void ReduceOp::build(
    OpBuilder &builder, OperationState &result, ValueRange inputs,
    ValueRange inits, ArrayRef<int64_t> dimensions,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
    ArrayRef<NamedAttribute> attributes) {}

SmallVector<utils::IteratorType> ReduceOp::getIteratorTypesArray() {}

ArrayAttr ReduceOp::getIndexingMaps() {}

void ReduceOp::getEffects(
    SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
        &effects) {}

static ParseResult parseDenseI64ArrayAttr(OpAsmParser &parser,
                                          NamedAttrList &attributes,
                                          StringRef attributeName) {}

ParseResult ReduceOp::parse(OpAsmParser &parser, OperationState &result) {}

static void printDenseI64ArrayAttr(OpAsmPrinter &p, StringRef attributeName,
                                   ArrayRef<int64_t> attributeValue) {}

void ReduceOp::print(OpAsmPrinter &p) {}

LogicalResult ReduceOp::verify() {}

//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//

static void buildIdentityRegion(OpBuilder &builder, Location loc,
                                Region &region, ValueRange inputs,
                                ValueRange outputs) {}

void TransposeOp::build(::mlir::OpBuilder &builder,
                        ::mlir::OperationState &result, Value input, Value init,
                        DenseI64ArrayAttr permutation,
                        ArrayRef<NamedAttribute> attributes) {}

void TransposeOp::build(::mlir::OpBuilder &builder,
                        ::mlir::OperationState &result, Value input, Value init,
                        ArrayRef<int64_t> permutation,
                        ArrayRef<NamedAttribute> attributes) {}

ParseResult TransposeOp::parse(OpAsmParser &parser, OperationState &result) {}

void TransposeOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {}

void TransposeOp::print(OpAsmPrinter &p) {}

LogicalResult TransposeOp::verify() {}

SmallVector<utils::IteratorType> TransposeOp::getIteratorTypesArray() {}

ArrayAttr TransposeOp::getIndexingMaps() {}

void TransposeOp::getEffects(
    SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
        &effects) {}

LogicalResult TransposeOp::fold(FoldAdaptor adaptor,
                                SmallVectorImpl<OpFoldResult> &result) {}

/// Fold transpose with transpose.
struct FoldTransposeWithTranspose : OpRewritePattern<linalg::TransposeOp> {};

/// This pattern canonicalize transpose by swapping the order of
/// broadcast and transpose:
///   transpose(broadcast(input)) -> broadcast(transpose(input))
struct SwapTransposeWithBroadcast : OpRewritePattern<linalg::TransposeOp> {};

void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                              MLIRContext *context) {}

//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//

void BroadcastOp::build(::mlir::OpBuilder &builder,
                        ::mlir::OperationState &result, Value input, Value init,
                        DenseI64ArrayAttr dimensions,
                        ArrayRef<NamedAttribute> attributes) {}

void BroadcastOp::build(::mlir::OpBuilder &builder,
                        ::mlir::OperationState &result, Value input, Value init,
                        ArrayRef<int64_t> dimensions,
                        ArrayRef<NamedAttribute> attributes) {}

ParseResult BroadcastOp::parse(OpAsmParser &parser, OperationState &result) {}

void BroadcastOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {}

void BroadcastOp::print(OpAsmPrinter &p) {}

LogicalResult BroadcastOp::verify() {}

SmallVector<utils::IteratorType> BroadcastOp::getIteratorTypesArray() {}

ArrayAttr BroadcastOp::getIndexingMaps() {}

void BroadcastOp::getEffects(
    SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
        &effects) {}

void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                              MLIRContext *context) {}

//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//

void linalg::YieldOp::print(OpAsmPrinter &p) {}

ParseResult YieldOp::parse(OpAsmParser &parser, OperationState &result) {}

// Check the operand number and types must match the element types of the
// LinalgOp interface's shaped operands.
static LogicalResult verifyYield(linalg::YieldOp op, LinalgOp linalgOp) {}

LogicalResult linalg::YieldOp::verify() {}

//===----------------------------------------------------------------------===//
// IndexOp
//===----------------------------------------------------------------------===//

LogicalResult IndexOp::verify() {}

/////// Operations corresponding to library calls defined with Tablegen ////////

#include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yamlgen.cpp.inc"

#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgOps.cpp.inc"

#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"

AffineMap mlir::linalg::extractOrIdentityMap(std::optional<AffineMap> maybeMap,
                                             unsigned rank,
                                             MLIRContext *context) {}

SmallVector<AffineExpr, 4>
mlir::linalg::makeAffineDimExprs(unsigned num, unsigned &startIdx,
                                 MLIRContext *context) {}

SmallVector<AffineExpr, 4> mlir::linalg::concat(ArrayRef<AffineExpr> a,
                                                ArrayRef<AffineExpr> b) {}

static LogicalResult appendMangledType(llvm::raw_string_ostream &ss, Type t) {}

std::string mlir::linalg::generateLibraryCallName(Operation *op) {}

//===----------------------------------------------------------------------===//
// Canonicalizers and Folders.
//===----------------------------------------------------------------------===//

namespace {
struct EraseDeadLinalgOp : public OpInterfaceRewritePattern<LinalgOp> {};

/// Fold LinalgOps with `tensor.cast` consumer if the `tensor.cast` has
/// result that is more static than the linalg op.
struct FoldTensorCastConsumerOp : public OpRewritePattern<tensor::CastOp> {};

/// For each of the operand in `operands` this function maps the static sizes of
/// dimensions to their affine dim expressions.
static void populateMap(LinalgOp linalgOp, MutableArrayRef<OpOperand> operands,
                        llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize) {}

/// Creates new operand w.r.t 'opOperand' of `linalgOp` with static sizes
/// mapped in `affineExprToSize`. New operands are created in `newOperands` and
/// their result types is stored in `resultTypes`. If `opOperand` requires no
/// change then `changeNeeded` is false and same operand is added in the
/// `newOperands` list.
static void createNewOperandWithStaticSizes(
    Location loc, PatternRewriter &rewriter, OpOperand *opOperand,
    llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize, LinalgOp linalgOp,
    SmallVector<Value> &newOperands, SmallVector<Type> &resultTypes,
    bool &changeNeeded) {}

/// Static shapes for the operands can be inferred if any one of the operands
/// have a static shape. This can be done by referring to the affine dim
/// expressions for the operand.
struct InferStaticShapeOfOperands : public OpInterfaceRewritePattern<LinalgOp> {};

} // namespace

// All named ops canonicalizers and folders are auto-generated in the
// .cpp.inc.

//===----------------------------------------------------------------------===//
// SoftmaxOp
//===----------------------------------------------------------------------===//

LogicalResult SoftmaxOp::verify() {}

SmallVector<Range> SoftmaxOp::getIterationDomain(OpBuilder &builder) {}

SmallVector<utils::IteratorType> SoftmaxOp::getLoopIteratorTypes() {}

FailureOr<TilingResult>
SoftmaxOp::getTiledImplementation(OpBuilder &builder,
                                  ArrayRef<OpFoldResult> offsets,
                                  ArrayRef<OpFoldResult> sizes) {}

LogicalResult SoftmaxOp::getResultTilePosition(
    OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets,
    ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets,
    SmallVector<OpFoldResult> &resultSizes) {}

// cast(dynamic) -> static.
LogicalResult SoftmaxOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) {}

LogicalResult
SoftmaxOp::reifyResultShapes(OpBuilder &b,
                             ReifiedRankedShapedTypeDims &reifiedReturnShapes) {}

void SoftmaxOp::getEffects(
    SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
        &effects) {}

// Helper functions for softmax decomposition.
// @{

// Helper function to produce the iterator types (reduction or parallel) and
// affine maps for the iterators used in the decomposition of softmax.
// This method creates:
// If allParallel == true:
// - iterator type: {parallel, ..., parallel}
// - affine maps:
// -- identity with inputRank dimensions.
// -- (d0, ..., dN) -> (d0, ..., d_dim-1, d_dim+1, ..., dN),
//    where N == inputRank.
//
// If allParallel == false:
// - iterator type at dim(i) == parallel for i != \p dim and
//   dim(dim) == reduction.
// - affine map:
// -- identity with inputRank dimensions.
// -- (d0, ..., dN) -> (d0, ..., d_dim-1, d_dim+1, ..., dN),
//    where N == inputRank.
static std::tuple<SmallVector<utils::IteratorType>, SmallVector<AffineMap>>
computeIteratorTypesAndIndexingMaps(OpBuilder &builder, int64_t inputRank,
                                    int64_t dim, bool allParallel = false) {}

// Helper function to produce a linalg.generic that computes a reduction on
// dimension \p dim with the operation type \p T.
template <typename T>
static Value reduce(OpBuilder &builder, Location loc, Value input, Value output,
                    int64_t dim) {}

/// Produce a linalg generic that computes the second step of the softmax
/// decomposition: res = exp(input - max), where \p max is the max of \p input
/// on dimension \p dim.
static Value buildSubAndExpOp(OpBuilder &builder, Location loc, Value input,
                              Value max, Value output, int64_t dim) {}

/// Produce a linalg generic that computes the final step of the softmax
/// decomposition.
/// \returns  linalg.generic ins(\p numerator, \p denominator) outs(\p output) {
///   yield  n / d
/// }
static Value buildDivOp(OpBuilder &builder, Location loc, Value numerator,
                        Value denominator, Value output, int64_t dim) {}
// @} End helper functions for softmax decomposition.

/// Given an N-dimensional tensor x, this method converts
/// softmax(x) to the following sequence of operations:
///
/// 1. Compute the max of x along dimension d. This results
///    in a N-1 dimensional tensor m.
///    m = max(x, dim = d)
///
/// 2. Subtract a broadcasted m from x and exponentiate. This results in
///    a N dimensional tensor z.
///    z = exp(x - m)
///
/// 3. Compute the sum of z along dimension d. This results in
///    a N-1 dimensional tensor l.
///    l = sum(z, dim = d)
///
/// 4. Divide z and l. This gives the N-dimensional softmax.
///    softmax = z / l
///
FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) {}

//===----------------------------------------------------------------------===//
// WinogradFilterTransformOp
//===----------------------------------------------------------------------===//

LogicalResult WinogradFilterTransformOp::verify() {}

SmallVector<Range>
WinogradFilterTransformOp::getIterationDomain(OpBuilder &builder) {}

SmallVector<utils::IteratorType>
WinogradFilterTransformOp::getLoopIteratorTypes() {}

LogicalResult WinogradFilterTransformOp::getResultTilePosition(
    OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets,
    ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets,
    SmallVector<OpFoldResult> &resultSizes) {}

/// Implement tiling for winograd_filter_transform
/// The input of winograd_filter_transform is (F, KH, KW, C).
/// The output of winograd_filter_transform is (alphaH, alphaW, C, F)
/// Users can specify the tile sizes of F and C.
/// `offsets` are the values for the offsets of F, KH, KW, C for one tile.
/// `sizes` are the values for the sizes of F, KH, KW, C for one tile.
FailureOr<TilingResult> WinogradFilterTransformOp::getTiledImplementation(
    OpBuilder &builder, ArrayRef<OpFoldResult> offsets,
    ArrayRef<OpFoldResult> sizes) {}

//===----------------------------------------------------------------------===//
// WinogradInputTransformOp
//===----------------------------------------------------------------------===//

LogicalResult WinogradInputTransformOp::verify() {}

SmallVector<Range>
WinogradInputTransformOp::getIterationDomain(OpBuilder &builder) {}

SmallVector<utils::IteratorType>
WinogradInputTransformOp::getLoopIteratorTypes() {}

LogicalResult WinogradInputTransformOp::getResultTilePosition(
    OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets,
    ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets,
    SmallVector<OpFoldResult> &resultSizes) {}

/// Implement tiling for winograd_input_transform
/// The input of winograd_input_transform is (N, H, W, C).
/// The output of winograd_input_transform is (alphaH, alphaW, tileH, tileW, N,
/// C) Users can specify the tile sizes of tileH, tileW, N, and C. `offsets` are
/// the values for the offsets of tileH, tileW, N, C for one tile. `sizes` are
/// the values for the sizes of tileH, tileW, N, C for one tile.
FailureOr<TilingResult>
WinogradInputTransformOp::getTiledImplementation(OpBuilder &builder,
                                                 ArrayRef<OpFoldResult> offsets,
                                                 ArrayRef<OpFoldResult> sizes) {}

//===----------------------------------------------------------------------===//
// WinogradOutputTransformOp
//===----------------------------------------------------------------------===//

LogicalResult WinogradOutputTransformOp::verify() {}

SmallVector<Range>
WinogradOutputTransformOp::getIterationDomain(OpBuilder &builder) {}

SmallVector<utils::IteratorType>
WinogradOutputTransformOp::getLoopIteratorTypes() {}

LogicalResult WinogradOutputTransformOp::getResultTilePosition(
    OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets,
    ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets,
    SmallVector<OpFoldResult> &resultSizes) {}

/// Implement tiling for winograd_output_transform
/// The input of winograd_output_transform is (alphaH, alphaW, tileH, tileW, N,
/// F). The output of winograd_output_transform is (N, H, W, F) Users can
/// specify the tile sizes of tileH, tileW, N, and F. `offsets` are the values
/// for the offsets of tileH, tileW, N, F for one tile. `sizes` are the values
/// for the sizes of tileH, tileW, N, F for one tile.
FailureOr<TilingResult> WinogradOutputTransformOp::getTiledImplementation(
    OpBuilder &builder, ArrayRef<OpFoldResult> offsets,
    ArrayRef<OpFoldResult> sizes) {}

//===----------------------------------------------------------------------===//
// LinalgDialect
//===----------------------------------------------------------------------===//

void LinalgDialect::getCanonicalizationPatterns(
    RewritePatternSet &results) const {}

Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
                                              Attribute value, Type type,
                                              Location loc) {}