llvm/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp

//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Vectorization transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Utils.h"

#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#include <type_traits>

usingnamespacemlir;
usingnamespacemlir::linalg;

#define DEBUG_TYPE

#define DBGS()
#define LDBG(X)

/// Try to vectorize `convOp` as a convolution.
static FailureOr<Operation *>
vectorizeConvolution(RewriterBase &rewriter, LinalgOp convOp,
                     ArrayRef<int64_t> inputVecSizes = {},
                     ArrayRef<bool> inputVecScalableFlags = {},
                     bool flatten1DDepthwiseConv = false);

/// Return the unique instance of OpType in `block` if it is indeed unique.
/// Return null if none or more than 1 instances exist.
template <typename OpType>
static OpType getSingleOpOfType(Block &block) {}

/// Helper function to extract the input slices after filter is unrolled along
/// kw.
static SmallVector<Value>
extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input,
                       int64_t nSize, int64_t wSize, int64_t cSize,
                       int64_t kwSize, int strideW, int dilationW,
                       int64_t wSizeStep, bool isSingleChanneled) {}

/// Helper function to extract the filter slices after filter is unrolled along
/// kw.
static SmallVector<Value> extractConvFilterSlices(RewriterBase &rewriter,
                                                  Location loc, Value filter,
                                                  int64_t kwSize) {}

/// Helper function to extract the result slices after filter is unrolled along
/// kw.
static SmallVector<Value>
extractConvResultSlices(RewriterBase &rewriter, Location loc, Value res,
                        int64_t nSize, int64_t wSize, int64_t fSize,
                        int64_t wSizeStep, bool isSingleChanneled) {}

/// Helper function to insert the computed result slices.
static Value insertConvResultSlices(RewriterBase &rewriter, Location loc,
                                    Value res, int64_t wSize, int64_t wSizeStep,
                                    SmallVectorImpl<Value> &resVals,
                                    bool isSingleChanneled) {}

/// Contains the vectorization state and related methods used across the
/// vectorization process of a given operation.
struct VectorizationState {};

LogicalResult
VectorizationState::precomputeIterSpaceValueSizes(RewriterBase &rewriter,
                                                  LinalgOp linalgOp) {}

/// Initializes the vectorization state, including the computation of the
/// canonical vector shape for vectorization.
// TODO: Move this to the constructor when we can remove the failure cases.
LogicalResult
VectorizationState::initState(RewriterBase &rewriter, LinalgOp linalgOp,
                              ArrayRef<int64_t> inputVectorSizes,
                              ArrayRef<bool> inputScalableVecDims) {}

/// Create or retrieve an existing mask value to mask `opToMask` in the
/// canonical vector iteration space. If `maybeMaskingMap` the mask is permuted
/// using that permutation map. If a new mask is created, it will be cached for
/// future users.
Value VectorizationState::getOrCreateMaskFor(
    RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp,
    std::optional<AffineMap> maybeMaskingMap) {}

/// Masks an operation with the canonical vector mask if the operation needs
/// masking. Returns the masked operation or the original operation if masking
/// is not needed. If provided, the canonical mask for this operation is
/// permuted using `maybeMaskingMap`.
Operation *
VectorizationState::maskOperation(RewriterBase &rewriter, Operation *opToMask,
                                  LinalgOp linalgOp,
                                  std::optional<AffineMap> maybeMaskingMap) {}

/// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
/// projectedPermutation, compress the unused dimensions to serve as a
/// permutation_map for a vector transfer operation.
/// For example, given a linalg op such as:
///
/// ```
///   %0 = linalg.generic {
///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
///      }
///     ins(%0 : tensor<2x3x4xf32>)
///    outs(%1 : tensor<5x6xf32>)
/// ```
///
/// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
/// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
/// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
static AffineMap reindexIndexingMap(AffineMap map) {}

/// Helper enum to represent conv1d input traversal order.
enum class Conv1DOpOrder {};

/// Helper data structure to represent the result of vectorization.
/// In certain specific cases, like terminators, we do not want to propagate/
enum VectorizationStatus {};
struct VectorizationResult {};

std::optional<vector::CombiningKind>
mlir::linalg::getCombinerOpKind(Operation *combinerOp) {}

/// Check whether `outputOperand` is a reduction with a single combiner
/// operation. Return the combiner operation of the reduction. Return
/// nullptr otherwise. Multiple reduction operations would impose an
/// ordering between reduction dimensions and is currently unsupported in
/// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
/// max(min(X))
// TODO: use in LinalgOp verification, there is a circular dependency atm.
static Operation *matchLinalgReduction(OpOperand *outputOperand) {}

/// Broadcast `value` to a vector of `shape` if possible. Return value
/// otherwise.
static Value broadcastIfNeeded(OpBuilder &b, Value value, Type dstType) {}

/// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
/// assumes that `reductionOp` has two operands and one of them is the reduction
/// initial value.buildMultiDimReduce
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
                                      Value valueToReduce, Value acc,
                                      ArrayRef<bool> dimsToMask) {}

static SmallVector<bool> getDimsToReduce(LinalgOp linalgOp) {}

/// Check if `op` is a linalg.reduce or a linalg.generic that has at least one
/// reduction iterator.
static bool hasReductionIterator(LinalgOp &op) {}

/// Build a vector.transfer_write of `value` into `outputOperand` at indices set
/// to all `0`; where `outputOperand` is an output operand of the LinalgOp
/// currently being vectorized. If `dest` has null rank, build an memref.store.
/// Return the produced value or null if no value is produced.
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Value buildVectorWrite(RewriterBase &rewriter, Value value,
                              OpOperand *outputOperand,
                              VectorizationState &state) {}

// Custom vectorization precondition function type. This is intented to be used
// with CustomVectorizationHook. Returns success if the corresponding custom
// hook can vectorize the op.
CustomVectorizationPrecondition;

// Custom vectorization function type. Produce a vector form of Operation*
// assuming all its vectorized operands are already in the IRMapping.
// Return nullptr if the Operation cannot be vectorized.
CustomVectorizationHook;

/// Helper function to vectorize the terminator of a `linalgOp`. New result
/// vector values are appended to `newResults`. Return
/// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
/// should not try to map produced operations and instead return the results
/// using the `newResults` vector making them available to the vectorization
/// algorithm for RAUW. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult
vectorizeLinalgYield(RewriterBase &rewriter, Operation *op,
                     const IRMapping &bvm, VectorizationState &state,
                     LinalgOp linalgOp, SmallVectorImpl<Value> &newResults) {}

/// Helper function to vectorize the index operations of a `linalgOp`. Return
/// VectorizationStatus::NewOp to signal the vectorization algorithm that it
/// should map the produced operations. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter,
                                                VectorizationState &state,
                                                Operation *op,
                                                LinalgOp linalgOp) {}

/// Helper function to check if the tensor.extract can be vectorized by the
/// custom hook vectorizeTensorExtract.
static LogicalResult
tensorExtractVectorizationPrecondition(Operation *op, bool vectorizeNDExtract) {}

/// Calculates the offsets (`$index_vec`) for `vector.gather` operations
/// generated from `tensor.extract`. The offset is calculated as follows
/// (example using scalar values):
///
///    offset = extractOp.indices[0]
///    for (i = 1; i < numIndices; i++)
///      offset = extractOp.dimSize[i] * offset + extractOp.indices[i];
///
/// For tensor<45 x 80 x 15 x f32> and index [1, 2, 3], this leads to:
///  offset = ( ( 1 ) * 80 +  2 ) * 15  + 3
static Value calculateGatherOffset(RewriterBase &rewriter,
                                   VectorizationState &state,
                                   tensor::ExtractOp extractOp,
                                   const IRMapping &bvm) {}

enum VectorMemoryAccessKind {};

/// Checks whether /p val can be used for calculating a loop invariant index.
static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val) {}

/// Check whether \p val could be used for calculating the trailing index for a
/// contiguous load operation.
///
/// There are currently 3 types of values that are allowed here:
///   1. loop-invariant values,
///   2. values that increment by 1 with every loop iteration,
///   3. results of basic arithmetic operations (linear and continuous)
///      involving 1., 2. and 3.
/// This method returns True if indeed only such values are used in calculating
/// \p val.
///
/// Additionally, the trailing index for a contiguous load operation should
/// increment by 1 with every loop iteration, i.e. be based on:
///   * `linalg.index <dim>` ,
/// where <dim> is the trailing dim of the iteration space. \p foundIndexOp is
/// updated to `true` when such an op is found.
static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val,
                                bool &foundIndexOp) {}

/// Infer the memory access pattern for the input ExtractOp
///
/// Based on the operation shapes and indices (usually based on the iteration
/// space of the parent `linalgOp` operation), decides whether the input
/// ExtractOp is a contiguous load (including a broadcast of a scalar) or a
/// gather load.
///
/// Note that it is always safe to use gather load operations for contiguous
/// loads (albeit slow), but not vice-versa. When in doubt, bail out and assume
/// that `extractOp` is a gather load.
static VectorMemoryAccessKind
getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
                                    LinalgOp &linalgOp) {}

/// Helper function to vectorize the tensor.extract operations. Returns
/// VectorizationStatus::NewOp to signal the vectorization algorithm that it
/// should map the produced operations. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult
vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
                       Operation *op, LinalgOp linalgOp, const IRMapping &bvm) {}

/// Emit reduction operations if the shapes of the value to reduce is different
/// that the result shape.
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
                                 Value reduceValue, Value initialValue,
                                 const IRMapping &bvm) {}

/// Generic vectorization for a single operation `op`, given already vectorized
/// operands carried by `bvm`. Vectorization occurs as follows:
///   1. Try to apply any of the `customVectorizationHooks` and return its
///   result on success.
///   2. Clone any constant in the current scope without vectorization: each
///   consumer of the constant will later determine the shape to which the
///   constant needs to be broadcast to.
///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
///   of the `customVectorizationHooks` to cover such cases.
///   4. Clone `op` in vector form to a vector of shape prescribed by the first
///   operand of maximal rank. Other operands have smaller rank and are
///   broadcast accordingly. It is assumed this broadcast is always legal,
///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
///
/// This function assumes all operands of `op` have been vectorized and are in
/// the `bvm` mapping. As a consequence, this function is meant to be called  on
/// a topologically-sorted list of ops.
/// This function does not update `bvm` but returns a VectorizationStatus that
/// instructs the caller what `bvm` update needs to occur.
static VectorizationResult
vectorizeOneOp(RewriterBase &rewriter, VectorizationState &state,
               LinalgOp linalgOp, Operation *op, const IRMapping &bvm,
               ArrayRef<CustomVectorizationHook> customVectorizationHooks) {}

/// Generic vectorization function that rewrites the body of a `linalgOp` into
/// vector form. Generic vectorization proceeds as follows:
///   1. Verify the `linalgOp` has one non-empty region.
///   2. Values defined above the region are mapped to themselves and will be
///   broadcasted on a per-need basis by their consumers.
///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
///   load).
///   TODO: Reuse opportunities for RAR dependencies.
///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
///   4rewriter. Register CustomVectorizationHook for IndexOp to access the
///   iteration indices.
///   5. Iteratively call vectorizeOneOp on the region operations.
///
/// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
/// performed to the maximal common vector size implied by the `linalgOp`
/// iteration space. This eager broadcasting is introduced in the
/// permutation_map of the vector.transfer_read operations. The eager
/// broadcasting makes it trivial to detrmine where broadcast, transposes and
/// reductions should occur, without any bookkeeping. The tradeoff is that, in
/// the absence of good canonicalizations, the amount of work increases.
/// This is not deemed a problem as we expect canonicalizations and foldings to
/// aggressively clean up the useless work.
static LogicalResult
vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
                         LinalgOp linalgOp,
                         SmallVectorImpl<Value> &newResults) {}

/// Given a tensor::PackOp, return the `dest` shape before any packing
/// permutations.
static SmallVector<int64_t> getTiledPackShape(tensor::PackOp packOp,
                                              ArrayRef<int64_t> destShape) {}

/// Given an input, the mixed destSizes, and the vector sizes for vectorization,
/// create an empty destination tensor and create a TransferWriteOp from the
/// input to the empty tensor. If the destination shape is not the same as the
/// inputVectorSizes for the first rank(inputVectorSizes) dims, then create a
/// mask for the write. If `useInBoundsInsteadOfMasking` is set, then update the
/// inBounds attribute of the transfer write op instead of masking.
static Operation *createWriteOrMaskedWrite(OpBuilder &builder, Location loc,
                                           Value input,
                                           SmallVector<OpFoldResult> destSizes,
                                           ArrayRef<int64_t> inputVectorSizes,
                                           bool useInBoundsInsteadOfMasking) {}

/// Vectorize tensor::PackOp with (1) static innerTiles (2) constant
/// padding value and (3) input vector sizes into:
/// masked_transfer_read->shape_cast->transpose->transfer_write_in_bounds
/// As in the following example:
/// %pack = tensor.pack %src inner_dims_pos = [2, 1] inner_tiles = [16, 2]
///     into %dst : tensor<32x8x16xf32> -> tensor<32x4x1x16x2xf32>
///
/// This pack would be vectorized to:
///
/// %load = vector.mask %mask {
///     vector.transfer_read %arg0[%c0, %c0, %c0], %cst
///         {in_bounds = [true, true, true]} :
///         tensor<32x7x16xf32>, vector<32x8x16xf32>
/// } : vector<32x8x16xi1> -> vector<32x8x16xf32>
/// %shape_cast = vector.shape_cast %load : vector<32x8x16xf32>
///                                         to vector<32x4x2x1x16xf32>
/// %transpose = vector.transpose %shape_cast, [0, 1, 3, 4, 2]
///     : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32>
/// %write = vector.transfer_write %transpose,
///     %empty[%c0_0, %c0_0, %c0_0, %c0_0, %c0_0]
///     {in_bounds = [true, true, true, true, true]}
///     : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32>
///
/// If the (3) input vector sizes are not provided, the vector sizes are
/// determined by the result tensor shape. Also, we update the inBounds
/// attribute instead of masking.
static LogicalResult
vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
                        ArrayRef<int64_t> inputVectorSizes,
                        SmallVectorImpl<Value> &newResults) {}

/// Vectorize a `tensor::UnPackOp` to these 4 Ops:
///   Vector::TransferReadOp - Reads a vector from the source tensor
///   vector::TransposeOp - Transpose the Source tensor
///   ShapeCastOp - Reshape the data based on the target.
///   vector::TransferWriteOp. - Write the result vector back to the destination
///   tensor.
///   If the vector sizes are not provided:
///   * the vector sizes are determined by the input operand and attributes,
///   * update the inBounds attribute instead of masking.
static LogicalResult
vectorizeAsTensorUnpackOp(RewriterBase &rewriter, tensor::UnPackOp unpackOp,
                          ArrayRef<int64_t> inputVectorSizes,
                          SmallVectorImpl<Value> &newResults) {}

/// Vectorize a `padOp` with (1) static result type, (2) constant padding value
/// and (3) all-zero lowPad to
///   `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`.
static LogicalResult
vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp,
                       ArrayRef<int64_t> inputVectorSizes,
                       SmallVectorImpl<Value> &newResults) {}

// TODO: probably need some extra checks for reduction followed by consumer
// ops that may not commute (e.g. linear reduction + non-linear instructions).
static LogicalResult reductionPreconditions(LinalgOp op) {}

static LogicalResult
vectorizeDynamicConvOpPrecondition(linalg::LinalgOp conv,
                                   bool flatten1DDepthwiseConv) {}

static LogicalResult
vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op,
                                     bool flatten1DDepthwiseConv) {}

/// Need to check if the inner-tiles are static/constant.
static LogicalResult
vectorizeUnPackOpPrecondition(tensor::UnPackOp unpackOp,
                              ArrayRef<int64_t> inputVectorSizes) {}

static LogicalResult vectorizeLinalgOpPrecondition(
    LinalgOp linalgOp, ArrayRef<int64_t> inputVectorSizes,
    bool vectorizeNDExtract, bool flatten1DDepthwiseConv) {}

static LogicalResult
vectorizePackOpPrecondition(tensor::PackOp packOp,
                            ArrayRef<int64_t> inputVectorSizes) {}

static LogicalResult
vectorizePadOpPrecondition(tensor::PadOp padOp,
                           ArrayRef<int64_t> inputVectorSizes) {}

/// Preconditions for scalable vectors. This is quite restrictive - it models
/// the fact that in practice we would only make selected dimensions scalable.
static LogicalResult
vectorizeScalableVectorPrecondition(Operation *op,
                                    ArrayRef<int64_t> inputVectorSizes,
                                    ArrayRef<bool> inputScalableVecDims) {}

LogicalResult mlir::linalg::vectorizeOpPrecondition(
    Operation *op, ArrayRef<int64_t> inputVectorSizes,
    ArrayRef<bool> inputScalableVecDims, bool vectorizeNDExtract,
    bool flatten1DDepthwiseConv) {}

/// Converts affine.apply Ops to arithmetic operations.
static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) {}

/// Emit a suitable vector form for an operation. If provided,
/// `inputVectorSizes` are used to vectorize this operation.
/// `inputVectorSizes` must match the rank of the iteration space of the
/// operation and the input vector sizes must be greater than or equal to
/// their counterpart iteration space sizes, if static. `inputVectorShapes`
/// also allows the vectorization of operations with dynamic shapes.
LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op,
                                      ArrayRef<int64_t> inputVectorSizes,
                                      ArrayRef<bool> inputScalableVecDims,
                                      bool vectorizeNDExtract,
                                      bool flatten1DDepthwiseConv) {}

LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter,
                                          memref::CopyOp copyOp) {}

//----------------------------------------------------------------------------//
// Misc. vectorization patterns.
//----------------------------------------------------------------------------//

/// Helper function that retrieves the value of an IntegerAttr.
static int64_t getIntFromAttr(Attribute attr) {}

/// Given an ArrayRef of OpFoldResults, return a vector of Values.
/// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are
/// not supported.
static SmallVector<Value> ofrToIndexValues(RewriterBase &rewriter, Location loc,
                                           ArrayRef<OpFoldResult> ofrs) {}

/// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and
/// InsertSliceOp. For now, only constant padding values are supported.
/// If there is enough static type information, TransferReadOps and
/// TransferWriteOps may be generated instead of InsertSliceOps.
struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern {};

/// Base pattern for rewriting tensor::PadOps whose result is consumed by a
/// given operation type OpTy.
template <typename OpTy>
struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> {};

/// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.:
/// ```
/// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %r = vector.transfer_read %0[%c0, %c0], %cst
///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
/// ```
/// is rewritten to:
/// ```
/// %r = vector.transfer_read %src[%c0, %c0], %padding
///     {in_bounds = [true, true]}
///     : tensor<?x?xf32>, vector<17x5xf32>
/// ```
/// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
/// sure that the original padding value %cst was never used.
///
/// This rewrite is possible if:
/// - `xferOp` has no out-of-bounds dims or mask.
/// - Low padding is static 0.
/// - Single, scalar padding value.
struct PadOpVectorizationWithTransferReadPattern
    : public VectorizePadOpUserPattern<vector::TransferReadOp> {};

/// Rewrite use of tensor::PadOp result in TransferWriteOp.
/// This pattern rewrites TransferWriteOps that write to a padded tensor
/// value, where the same amount of padding is immediately removed again after
/// the write. In such cases, the TransferWriteOp can write to the non-padded
/// tensor value and apply out-of-bounds masking. E.g.:
/// ```
/// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
///     : tensor<...> to tensor<?x?xf32>
/// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %2 = vector.transfer_write %vec, %1[...]
///     : vector<17x5xf32>, tensor<17x5xf32>
/// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
///     : tensor<17x5xf32> to tensor<?x?xf32>
/// ```
/// is rewritten to:
/// ```
/// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
///     : tensor<...> to tensor<?x?xf32>
/// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>,
/// tensor<?x?xf32>
/// ```
/// Note: It is important that the ExtractSliceOp %r resizes the result of the
/// TransferWriteOp to the same size as the input of the TensorPadOp (or an
/// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ
/// from %r's old dimensions.
///
/// This rewrite is possible if:
/// - Low padding is static 0.
/// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
///   ExtractSliceOp trims the same amount of padding that was added
///   beforehand.
/// - Single, scalar padding value.
struct PadOpVectorizationWithTransferWritePattern
    : public VectorizePadOpUserPattern<vector::TransferWriteOp> {};

/// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.:
/// ```
/// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %r = tensor.insert_slice %0
///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
/// ```
/// is rewritten to:
/// ```
/// %0 = vector.transfer_read %src[%c0, %c0], %padding
///     : tensor<?x?xf32>, vector<17x5xf32>
/// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
/// ```
///
/// This rewrite is possible if:
/// - Low padding is static 0.
/// - `padOp` result shape is static.
/// - The entire padded tensor is inserted.
///   (Implies that sizes of `insertOp` are all static.)
/// - Only unit strides in `insertOp`.
/// - Single, scalar padding value.
/// - `padOp` result not used as destination.
struct PadOpVectorizationWithInsertSlicePattern
    : public VectorizePadOpUserPattern<tensor::InsertSliceOp> {};

void mlir::linalg::populatePadOpVectorizationPatterns(
    RewritePatternSet &patterns, PatternBenefit baseBenefit) {}

//----------------------------------------------------------------------------//
// Forwarding patterns
//----------------------------------------------------------------------------//

/// Check whether there is any interleaved use of any `values` between
/// `firstOp` and `secondOp`. Conservatively return `true` if any op or value
/// is in a different block.
static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
                                    ValueRange values) {}

/// Return the unique subview use of `v` if it is indeed unique, null
/// otherwise.
static memref::SubViewOp getSubViewUseIfUnique(Value v) {}

/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
    vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {}

/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
    vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {}

//===----------------------------------------------------------------------===//
// Convolution vectorization patterns
//===----------------------------------------------------------------------===//

template <int N>
static void bindShapeDims(ShapedType shapedType) {}

template <int N, typename IntTy, typename... IntTy2>
static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) {}

/// Bind a pack of int& to the leading dimensions of shapedType.getShape().
template <typename... IntTy>
static void bindShapeDims(ShapedType shapedType, IntTy &...vals) {}

namespace {
bool isCastOfBlockArgument(Operation *op) {}

bool isSupportedPoolKind(vector::CombiningKind kind) {}

/// Generate a vector implementation for either:
/// ```
///   Op def: (     w,     kw  )
///    Iters: ({Par(), Red()})
///   Layout: {{w + kw}, {kw}, {w}}
/// ```
/// kw is unrolled.
///
/// or
///
/// ```
///   Op def: (     n,     w,     c,    kw,    f  )
///    Iters: ({Par(), Par(), Par(), Red(), Red()})
///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
///
/// or
///
/// ```
///   Op def: (     n,     c,     w,    f,    kw )
///    Iters: ({Par(), Par(), Par(), Red(), Red()})
///   Layout: {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
///
/// or
///
/// ```
///   Op def: (     n,     w,     c,    kw )
///    Iters: ({Par(), Par(), Par(), Red()})
///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
struct Conv1DGenerator
    : public StructuredGenerator<LinalgOp, utils::IteratorType> {};
} // namespace

/// Helper function to vectorize a LinalgOp with convolution semantics.
// TODO: extend the generic vectorization to support windows and drop this.
static FailureOr<Operation *> vectorizeConvolution(
    RewriterBase &rewriter, LinalgOp op, ArrayRef<int64_t> inputVecSizes,
    ArrayRef<bool> inputScalableVecDims, bool flatten1DDepthwiseConv) {}

struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> {};

void mlir::linalg::populateConvolutionVectorizationPatterns(
    RewritePatternSet &patterns, PatternBenefit benefit) {}