//===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS /// algorithm. /// /// The SCC iterator has the important property that if a node in SCC S1 has an /// edge to a node in SCC S2, then it visits S1 *after* S2. /// /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE: /// This requires some simple wrappers and is not supported yet.) /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SCCITERATOR_H #define LLVM_ADT_SCCITERATOR_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator.h" #include <cassert> #include <cstddef> #include <iterator> #include <queue> #include <set> #include <unordered_map> #include <unordered_set> #include <vector> namespace llvm { /// Enumerate the SCCs of a directed graph in reverse topological order /// of the SCC DAG. /// /// This is implemented using Tarjan's DFS algorithm using an internal stack to /// build up a vector of nodes in a particular SCC. Note that it is a forward /// iterator and thus you cannot backtrack or re-visit nodes. template <class GraphT, class GT = GraphTraits<GraphT>> class scc_iterator : public iterator_facade_base< scc_iterator<GraphT, GT>, std::forward_iterator_tag, const std::vector<typename GT::NodeRef>, ptrdiff_t> { using NodeRef = typename GT::NodeRef; using ChildItTy = typename GT::ChildIteratorType; using SccTy = std::vector<NodeRef>; using reference = typename scc_iterator::reference; /// Element of VisitStack during DFS. struct StackElement { NodeRef Node; ///< The current node pointer. ChildItTy NextChild; ///< The next child, modified inplace during DFS. unsigned MinVisited; ///< Minimum uplink value of all children of Node. StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min) : Node(Node), NextChild(Child), MinVisited(Min) {} bool operator==(const StackElement &Other) const { return Node == Other.Node && NextChild == Other.NextChild && MinVisited == Other.MinVisited; } }; /// The visit counters used to detect when a complete SCC is on the stack. /// visitNum is the global counter. /// /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags. unsigned visitNum; DenseMap<NodeRef, unsigned> nodeVisitNumbers; /// Stack holding nodes of the SCC. std::vector<NodeRef> SCCNodeStack; /// The current SCC, retrieved using operator*(). SccTy CurrentSCC; /// DFS stack, Used to maintain the ordering. The top contains the current /// node, the next child to visit, and the minimum uplink value of all child std::vector<StackElement> VisitStack; /// A single "visit" within the non-recursive DFS traversal. void DFSVisitOne(NodeRef N); /// The stack-based DFS traversal; defined below. void DFSVisitChildren(); /// Compute the next SCC using the DFS traversal. void GetNextSCC(); scc_iterator(NodeRef entryN) : … { … } /// End is when the DFS stack is empty. scc_iterator() = default; public: static scc_iterator begin(const GraphT &G) { … } static scc_iterator end(const GraphT &) { … } /// Direct loop termination test which is more efficient than /// comparison with \c end(). bool isAtEnd() const { … } bool operator==(const scc_iterator &x) const { … } scc_iterator &operator++() { … } reference operator*() const { … } /// Test if the current SCC has a cycle. /// /// If the SCC has more than one node, this is trivially true. If not, it may /// still contain a cycle if the node has an edge back to itself. bool hasCycle() const; /// This informs the \c scc_iterator that the specified \c Old node /// has been deleted, and \c New is to be used in its place. void ReplaceNode(NodeRef Old, NodeRef New) { … } }; template <class GraphT, class GT> void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) { … } template <class GraphT, class GT> void scc_iterator<GraphT, GT>::DFSVisitChildren() { … } template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() { … } template <class GraphT, class GT> bool scc_iterator<GraphT, GT>::hasCycle() const { … } /// Construct the begin iterator for a deduced graph type T. template <class T> scc_iterator<T> scc_begin(const T &G) { … } /// Construct the end iterator for a deduced graph type T. template <class T> scc_iterator<T> scc_end(const T &G) { … } /// Sort the nodes of a directed SCC in the decreasing order of the edge /// weights. The instantiating GraphT type should have weighted edge type /// declared in its graph traits in order to use this iterator. /// /// This is implemented using Kruskal's minimal spanning tree algorithm followed /// by Kahn's algorithm to compute a topological order on the MST. First a /// maximum spanning tree (forest) is built based on all edges within the SCC /// collection. Then a topological walk is initiated on tree nodes that do not /// have a predecessor and then applied to all nodes of the SCC. Such order /// ensures that high-weighted edges are visited first during the traversal. template <class GraphT, class GT = GraphTraits<GraphT>> class scc_member_iterator { using NodeType = typename GT::NodeType; using EdgeType = typename GT::EdgeType; using NodesType = std::vector<NodeType *>; // Auxilary node information used during the MST calculation. struct NodeInfo { NodeInfo *Group = this; uint32_t Rank = 0; bool Visited = false; DenseSet<const EdgeType *> IncomingMSTEdges; }; // Find the root group of the node and compress the path from node to the // root. NodeInfo *find(NodeInfo *Node) { … } // Union the source and target node into the same group and return true. // Returns false if they are already in the same group. bool unionGroups(const EdgeType *Edge) { … } std::unordered_map<NodeType *, NodeInfo> NodeInfoMap; NodesType Nodes; public: scc_member_iterator(const NodesType &InputNodes); NodesType &operator*() { … } }; template <class GraphT, class GT> scc_member_iterator<GraphT, GT>::scc_member_iterator( const NodesType &InputNodes) { … } } // end namespace llvm #endif // LLVM_ADT_SCCITERATOR_H