//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), // cast_if_present<X>(), and dyn_cast_if_present<X>() templates. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CASTING_H #define LLVM_SUPPORT_CASTING_H #include "llvm/Support/Compiler.h" #include "llvm/Support/type_traits.h" #include <cassert> #include <memory> #include <optional> #include <type_traits> namespace llvm { //===----------------------------------------------------------------------===// // simplify_type //===----------------------------------------------------------------------===// /// Define a template that can be specialized by smart pointers to reflect the /// fact that they are automatically dereferenced, and are not involved with the /// template selection process... the default implementation is a noop. // TODO: rename this and/or replace it with other cast traits. template <typename From> struct simplify_type { … }; simplify_type<const From>; // TODO: add this namespace once everyone is switched to using the new // interface. // namespace detail { //===----------------------------------------------------------------------===// // isa_impl //===----------------------------------------------------------------------===// // The core of the implementation of isa<X> is here; To and From should be // the names of classes. This template can be specialized to customize the // implementation of isa<> without rewriting it from scratch. template <typename To, typename From, typename Enabler = void> struct isa_impl { … }; // Always allow upcasts, and perform no dynamic check for them. isa_impl<To, From, std::enable_if_t<std::is_base_of_v<To, From>>>; template <typename To, typename From> struct isa_impl_cl { … }; isa_impl_cl<To, const From>; isa_impl_cl<To, const std::unique_ptr<From>>; isa_impl_cl<To, From *>; isa_impl_cl<To, From *const>; isa_impl_cl<To, const From *>; isa_impl_cl<To, const From *const>; template <typename To, typename From, typename SimpleFrom> struct isa_impl_wrap { … }; isa_impl_wrap<To, FromTy, FromTy>; //===----------------------------------------------------------------------===// // cast_retty + cast_retty_impl //===----------------------------------------------------------------------===// template <class To, class From> struct cast_retty; // Calculate what type the 'cast' function should return, based on a requested // type of To and a source type of From. template <class To, class From> struct cast_retty_impl { … }; cast_retty_impl<To, const From>; cast_retty_impl<To, From *>; cast_retty_impl<To, const From *>; cast_retty_impl<To, const From *const>; cast_retty_impl<To, std::unique_ptr<From>>; template <class To, class From, class SimpleFrom> struct cast_retty_wrap { … }; cast_retty_wrap<To, FromTy, FromTy>; template <class To, class From> struct cast_retty { … }; //===----------------------------------------------------------------------===// // cast_convert_val //===----------------------------------------------------------------------===// // Ensure the non-simple values are converted using the simplify_type template // that may be specialized by smart pointers... // template <class To, class From, class SimpleFrom> struct cast_convert_val { … }; cast_convert_val<To, FromTy, FromTy>; cast_convert_val<To, FromTy *, FromTy *>; //===----------------------------------------------------------------------===// // is_simple_type //===----------------------------------------------------------------------===// template <class X> struct is_simple_type { … }; // } // namespace detail //===----------------------------------------------------------------------===// // CastIsPossible //===----------------------------------------------------------------------===// /// This struct provides a way to check if a given cast is possible. It provides /// a static function called isPossible that is used to check if a cast can be /// performed. It should be overridden like this: /// /// template<> struct CastIsPossible<foo, bar> { /// static inline bool isPossible(const bar &b) { /// return bar.isFoo(); /// } /// }; template <typename To, typename From, typename Enable = void> struct CastIsPossible { … }; // Needed for optional unwrapping. This could be implemented with isa_impl, but // we want to implement things in the new method and move old implementations // over. In fact, some of the isa_impl templates should be moved over to // CastIsPossible. CastIsPossible<To, std::optional<From>>; /// Upcasting (from derived to base) and casting from a type to itself should /// always be possible. CastIsPossible<To, From, std::enable_if_t<std::is_base_of_v<To, From>>>; //===----------------------------------------------------------------------===// // Cast traits //===----------------------------------------------------------------------===// /// All of these cast traits are meant to be implementations for useful casts /// that users may want to use that are outside the standard behavior. An /// example of how to use a special cast called `CastTrait` is: /// /// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {}; /// /// Essentially, if your use case falls directly into one of the use cases /// supported by a given cast trait, simply inherit your special CastInfo /// directly from one of these to avoid having to reimplement the boilerplate /// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also /// provide a subset of those functions. /// This cast trait just provides castFailed for the specified `To` type to make /// CastInfo specializations more declarative. In order to use this, the target /// result type must be `To` and `To` must be constructible from `nullptr`. template <typename To> struct NullableValueCastFailed { … }; /// This cast trait just provides the default implementation of doCastIfPossible /// to make CastInfo specializations more declarative. The `Derived` template /// parameter *must* be provided for forwarding castFailed and doCast. template <typename To, typename From, typename Derived> struct DefaultDoCastIfPossible { … }; namespace detail { /// A helper to derive the type to use with `Self` for cast traits, when the /// provided CRTP derived type is allowed to be void. SelfType; } // namespace detail /// This cast trait provides casting for the specific case of casting to a /// value-typed object from a pointer-typed object. Note that `To` must be /// nullable/constructible from a pointer to `From` to use this cast. template <typename To, typename From, typename Derived = void> struct ValueFromPointerCast : public CastIsPossible<To, From *>, public NullableValueCastFailed<To>, public DefaultDoCastIfPossible< To, From *, detail::SelfType<Derived, ValueFromPointerCast<To, From>>> { … }; /// This cast trait provides std::unique_ptr casting. It has the semantics of /// moving the contents of the input unique_ptr into the output unique_ptr /// during the cast. It's also a good example of how to implement a move-only /// cast. template <typename To, typename From, typename Derived = void> struct UniquePtrCast : public CastIsPossible<To, From *> { … }; /// This cast trait provides std::optional<T> casting. This means that if you /// have a value type, you can cast it to another value type and have dyn_cast /// return an std::optional<T>. template <typename To, typename From, typename Derived = void> struct OptionalValueCast : public CastIsPossible<To, From>, public DefaultDoCastIfPossible< std::optional<To>, From, detail::SelfType<Derived, OptionalValueCast<To, From>>> { … }; /// Provides a cast trait that strips `const` from types to make it easier to /// implement a const-version of a non-const cast. It just removes boilerplate /// and reduces the amount of code you as the user need to implement. You can /// use it like this: /// /// template<> struct CastInfo<foo, bar> { /// ...verbose implementation... /// }; /// /// template<> struct CastInfo<foo, const bar> : public /// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {}; /// template <typename To, typename From, typename ForwardTo> struct ConstStrippingForwardingCast { … }; /// Provides a cast trait that uses a defined pointer to pointer cast as a base /// for reference-to-reference casts. Note that it does not provide castFailed /// and doCastIfPossible because a pointer-to-pointer cast would likely just /// return `nullptr` which could cause nullptr dereference. You can use it like /// this: /// /// template <> struct CastInfo<foo, bar *> { ... verbose implementation... }; /// /// template <> /// struct CastInfo<foo, bar> /// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {}; /// template <typename To, typename From, typename ForwardTo> struct ForwardToPointerCast { … }; //===----------------------------------------------------------------------===// // CastInfo //===----------------------------------------------------------------------===// /// This struct provides a method for customizing the way a cast is performed. /// It inherits from CastIsPossible, to support the case of declaring many /// CastIsPossible specializations without having to specialize the full /// CastInfo. /// /// In order to specialize different behaviors, specify different functions in /// your CastInfo specialization. /// For isa<> customization, provide: /// /// `static bool isPossible(const From &f)` /// /// For cast<> customization, provide: /// /// `static To doCast(const From &f)` /// /// For dyn_cast<> and the *_if_present<> variants' customization, provide: /// /// `static To castFailed()` and `static To doCastIfPossible(const From &f)` /// /// Your specialization might look something like this: /// /// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> { /// static inline foo doCast(const bar &b) { /// return foo(const_cast<bar &>(b)); /// } /// static inline foo castFailed() { return foo(); } /// static inline foo doCastIfPossible(const bar &b) { /// if (!CastInfo<foo, bar>::isPossible(b)) /// return castFailed(); /// return doCast(b); /// } /// }; // The default implementations of CastInfo don't use cast traits for now because // we need to specify types all over the place due to the current expected // casting behavior and the way cast_retty works. New use cases can and should // take advantage of the cast traits whenever possible! template <typename To, typename From, typename Enable = void> struct CastInfo : public CastIsPossible<To, From> { … }; /// This struct provides an overload for CastInfo where From has simplify_type /// defined. This simply forwards to the appropriate CastInfo with the /// simplified type/value, so you don't have to implement both. CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>>; //===----------------------------------------------------------------------===// // Pre-specialized CastInfo //===----------------------------------------------------------------------===// /// Provide a CastInfo specialized for std::unique_ptr. CastInfo<To, std::unique_ptr<From>>; /// Provide a CastInfo specialized for std::optional<From>. It's assumed that if /// the input is std::optional<From> that the output can be std::optional<To>. /// If that's not the case, specialize CastInfo for your use case. CastInfo<To, std::optional<From>>; /// isa<X> - Return true if the parameter to the template is an instance of one /// of the template type arguments. Used like this: /// /// if (isa<Type>(myVal)) { ... } /// if (isa<Type0, Type1, Type2>(myVal)) { ... } template <typename To, typename From> [[nodiscard]] inline bool isa(const From &Val) { … } template <typename First, typename Second, typename... Rest, typename From> [[nodiscard]] inline bool isa(const From &Val) { … } /// cast<X> - Return the argument parameter cast to the specified type. This /// casting operator asserts that the type is correct, so it does not return /// null on failure. It does not allow a null argument (use cast_if_present for /// that). It is typically used like this: /// /// cast<Instruction>(myVal)->getParent() template <typename To, typename From> [[nodiscard]] inline decltype(auto) cast(const From &Val) { … } template <typename To, typename From> [[nodiscard]] inline decltype(auto) cast(From &Val) { … } template <typename To, typename From> [[nodiscard]] inline decltype(auto) cast(From *Val) { … } template <typename To, typename From> [[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) { … } //===----------------------------------------------------------------------===// // ValueIsPresent //===----------------------------------------------------------------------===// IsNullable; /// ValueIsPresent provides a way to check if a value is, well, present. For /// pointers, this is the equivalent of checking against nullptr, for Optionals /// this is the equivalent of checking hasValue(). It also provides a method for /// unwrapping a value (think calling .value() on an optional). // Generic values can't *not* be present. template <typename T, typename Enable = void> struct ValueIsPresent { … }; // Optional provides its own way to check if something is present. ValueIsPresent<std::optional<T>>; // If something is "nullable" then we just compare it to nullptr to see if it // exists. ValueIsPresent<T, std::enable_if_t<IsNullable<T>>>; namespace detail { // Convenience function we can use to check if a value is present. Because of // simplify_type, we have to call it on the simplified type for now. template <typename T> inline bool isPresent(const T &t) { … } // Convenience function we can use to unwrap a value. template <typename T> inline decltype(auto) unwrapValue(T &t) { … } } // namespace detail /// dyn_cast<X> - Return the argument parameter cast to the specified type. This /// casting operator returns null if the argument is of the wrong type, so it /// can be used to test for a type as well as cast if successful. The value /// passed in must be present, if not, use dyn_cast_if_present. This should be /// used in the context of an if statement like this: /// /// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... } template <typename To, typename From> [[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) { … } template <typename To, typename From> [[nodiscard]] inline decltype(auto) dyn_cast(From &Val) { … } template <typename To, typename From> [[nodiscard]] inline decltype(auto) dyn_cast(From *Val) { … } template <typename To, typename From> [[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &Val) { … } /// isa_and_present<X> - Functionally identical to isa, except that a null value /// is accepted. template <typename... X, class Y> [[nodiscard]] inline bool isa_and_present(const Y &Val) { … } template <typename... X, class Y> [[nodiscard]] inline bool isa_and_nonnull(const Y &Val) { … } /// cast_if_present<X> - Functionally identical to cast, except that a null /// value is accepted. template <class X, class Y> [[nodiscard]] inline auto cast_if_present(const Y &Val) { … } template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) { … } template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) { … } template <class X, class Y> [[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) { … } // Provide a forwarding from cast_or_null to cast_if_present for current // users. This is deprecated and will be removed in a future patch, use // cast_if_present instead. template <class X, class Y> auto cast_or_null(const Y &Val) { … } template <class X, class Y> auto cast_or_null(Y &Val) { … } template <class X, class Y> auto cast_or_null(Y *Val) { … } template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) { … } /// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a /// null (or none in the case of optionals) value is accepted. template <class X, class Y> auto dyn_cast_if_present(const Y &Val) { … } template <class X, class Y> auto dyn_cast_if_present(Y &Val) { … } template <class X, class Y> auto dyn_cast_if_present(Y *Val) { … } // Forwards to dyn_cast_if_present to avoid breaking current users. This is // deprecated and will be removed in a future patch, use // cast_if_present instead. template <class X, class Y> auto dyn_cast_or_null(const Y &Val) { … } template <class X, class Y> auto dyn_cast_or_null(Y &Val) { … } template <class X, class Y> auto dyn_cast_or_null(Y *Val) { … } /// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>, /// taking ownership of the input pointer iff isa<X>(Val) is true. If the /// cast is successful, From refers to nullptr on exit and the casted value /// is returned. If the cast is unsuccessful, the function returns nullptr /// and From is unchanged. template <class X, class Y> [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType unique_dyn_cast(std::unique_ptr<Y> &Val) { … } template <class X, class Y> [[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) { … } // unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, // except that a null value is accepted. template <class X, class Y> [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) { … } template <class X, class Y> [[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) { … } //===----------------------------------------------------------------------===// // Isa Predicates //===----------------------------------------------------------------------===// /// These are wrappers over isa* function that allow them to be used in generic /// algorithms such as `llvm:all_of`, `llvm::none_of`, etc. This is accomplished /// by exposing the isa* functions through function objects with a generic /// function call operator. namespace detail { template <typename... Types> struct IsaCheckPredicate { … }; template <typename... Types> struct IsaAndPresentCheckPredicate { … }; } // namespace detail /// Function object wrapper for the `llvm::isa` type check. The function call /// operator returns true when the value can be cast to any type in `Types`. /// Example: /// ``` /// SmallVector<Type> myTypes = ...; /// if (llvm::all_of(myTypes, llvm::IsaPred<VectorType>)) /// ... /// ``` IsaPred; /// Function object wrapper for the `llvm::isa_and_present` type check. The /// function call operator returns true when the value can be cast to any type /// in `Types`, or if the value is not present (e.g., nullptr). Example: /// ``` /// SmallVector<Type> myTypes = ...; /// if (llvm::all_of(myTypes, llvm::IsaAndPresentPred<VectorType>)) /// ... /// ``` IsaAndPresentPred; } // end namespace llvm #endif // LLVM_SUPPORT_CASTING_H