// RUN: %clang_cc1 -std=c++1z -verify=ref,both %s -fcxx-exceptions -triple=x86_64-linux-gnu
// RUN: %clang_cc1 -std=c++1z -verify=expected,both %s -fcxx-exceptions -triple=x86_64-linux-gnu -fexperimental-new-constant-interpreter
// both-no-diagnostics
namespace EvalOrder {
template<typename T> struct lvalue {
T t;
constexpr T &get() { return t; }
};
struct UserDefined {
int n = 0;
constexpr UserDefined &operator=(const UserDefined&) { return *this; }
constexpr UserDefined &operator+=(const UserDefined&) { return *this; }
constexpr void operator<<(const UserDefined&) const {}
constexpr void operator>>(const UserDefined&) const {}
constexpr void operator+(const UserDefined&) const {}
constexpr void operator[](int) const {}
};
constexpr UserDefined ud;
struct NonMember {};
constexpr void operator+=(NonMember, NonMember) {}
constexpr void operator<<(NonMember, NonMember) {}
constexpr void operator>>(NonMember, NonMember) {}
constexpr void operator+(NonMember, NonMember) {}
constexpr NonMember nm;
constexpr void f(...) {}
// Helper to ensure that 'a' is evaluated before 'b'.
struct seq_checker {
bool done_a = false;
bool done_b = false;
template <typename T> constexpr T &&a(T &&v) {
done_a = true;
return (T &&)v;
}
template <typename T> constexpr T &&b(T &&v) {
if (!done_a)
throw "wrong";
done_b = true;
return (T &&)v;
}
constexpr bool ok() { return done_a && done_b; }
};
// SEQ(expr), where part of the expression is tagged A(...) and part is
// tagged B(...), checks that A is evaluated before B.
#define A sc.a
#define B sc.b
#define SEQ(...) static_assert([](seq_checker sc) { void(__VA_ARGS__); return sc.ok(); }({}))
// Longstanding sequencing rules.
SEQ((A(1), B(2)));
SEQ((A(true) ? B(2) : throw "huh?"));
SEQ((A(false) ? throw "huh?" : B(2)));
SEQ(A(true) && B(true));
SEQ(A(false) || B(true));
// From P0145R3:
// Rules 1 and 2 have no effect ('b' is not an expression).
// Rule 3: a->*b
SEQ(A(ud).*B(&UserDefined::n));
SEQ(A(&ud)->*B(&UserDefined::n));
// Rule 4: a(b1, b2, b3)
SEQ(A(f)(B(1), B(2), B(3)));
// Rule 5: b = a, b @= a
SEQ(B(lvalue<int>().get()) = A(0));
SEQ(B(lvalue<UserDefined>().get()) = A(ud));
SEQ(B(lvalue<int>().get()) += A(0));
SEQ(B(lvalue<UserDefined>().get()) += A(ud));
SEQ(B(lvalue<NonMember>().get()) += A(nm));
// Rule 6: a[b]
constexpr int arr[3] = {};
SEQ(A(arr)[B(0)]);
SEQ(A(+arr)[B(0)]);
SEQ(A(0)[B(arr)]);
SEQ(A(0)[B(+arr)]);
SEQ(A(ud)[B(0)]);
// Rule 7: a << b
SEQ(A(1) << B(2));
SEQ(A(ud) << B(ud));
SEQ(A(nm) << B(nm));
// Rule 8: a >> b
SEQ(A(1) >> B(2));
SEQ(A(ud) >> B(ud));
SEQ(A(nm) >> B(nm));
// No particular order of evaluation is specified in other cases, but we in
// practice evaluate left-to-right.
// FIXME: Technically we're expected to check for undefined behavior due to
// unsequenced read and modification and treat it as non-constant due to UB.
SEQ(A(1) + B(2));
SEQ(A(ud) + B(ud));
SEQ(A(nm) + B(nm));
SEQ(f(A(1), B(2)));
#undef SEQ
#undef A
#undef B
}