// RUN: %clang_cc1 -fexperimental-new-constant-interpreter -verify=expected,both %s
// RUN: %clang_cc1 -std=c++20 -fexperimental-new-constant-interpreter -verify=expected,both %s
// RUN: %clang_cc1 -verify=ref,both %s
// RUN: %clang_cc1 -std=c++20 -verify=ref,both %s
union U {
int a;
int b;
};
constexpr U a = {12};
static_assert(a.a == 12, "");
static_assert(a.b == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of member 'b' of union with active member 'a'}}
union U1 {
int i;
float f = 3.0f;
};
constexpr U1 u1{};
static_assert(u1.f == 3.0, "");
static_assert(u1.i == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of member 'i' of union with active member 'f'}}
union A {
int a;
double d;
};
constexpr A aa = {1, 2.0}; // both-error {{excess elements in union initializer}}
constexpr A ab = {.d = 1.0};
static_assert(ab.d == 1.0, "");
static_assert(ab.a == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of member 'a' of union with active member 'd'}}
namespace Empty {
union E {};
constexpr E e{};
}
namespace SimpleStore {
union A {
int a;
int b;
};
constexpr int foo() {
A a{.b = 4};
a.b = 10;
return a.b;
}
static_assert(foo() == 10, "");
constexpr int empty() {
A a{}; /// Just test that this works.
return 10;
}
static_assert(empty() == 10, "");
}
namespace ZeroInit {
struct S { int m; };
union Z {
float f;
};
constexpr Z z{};
static_assert(z.f == 0.0, "");
}
namespace DefaultInit {
union U1 {
constexpr U1() {}
int a, b = 42;
};
constexpr U1 u1; /// OK.
constexpr int foo() {
U1 u;
return u.a; // both-note {{read of member 'a' of union with active member 'b'}}
}
static_assert(foo() == 42); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
}
#if __cplusplus >= 202002L
namespace SimpleActivate {
constexpr int foo() { // both-error {{never produces a constant expression}}
union {
int a;
int b;
} Z;
Z.a = 10;
Z.b = 20;
return Z.a; // both-note 2{{read of member 'a' of union with active member 'b'}}
}
static_assert(foo() == 20); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int foo2() {
union {
int a;
int b;
} Z;
Z.a = 10;
Z.b = 20;
return Z.b;
}
static_assert(foo2() == 20);
constexpr int foo3() {
union {
struct {
float x,y;
} a;
int b;
} Z;
Z.a.y = 10;
return Z.a.x; // both-note {{read of uninitialized object}}
}
static_assert(foo3() == 10); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int foo4() {
union {
struct {
float x,y;
} a;
int b;
} Z;
Z.a.x = 100;
Z.a.y = 10;
return Z.a.x;
}
static_assert(foo4() == 100);
}
namespace IndirectFieldDecl {
struct C {
union { int a, b = 2, c; };
union { int d, e = 5, f; };
constexpr C() : a(1) {}
};
static_assert(C().a == 1, "");
}
namespace UnionDtor {
union U {
int *I;
constexpr U(int *I) : I(I) {}
constexpr ~U() {
*I = 10;
}
};
constexpr int foo() {
int a = 100;
{
U u(&a);
}
return a;
}
static_assert(foo() == 10);
}
namespace UnionMemberDtor {
class UM {
public:
int &I;
constexpr UM(int &I) : I(I) {}
constexpr ~UM() { I = 200; }
};
union U {
UM um;
constexpr U(int &I) : um(I) {}
constexpr ~U() {
}
};
constexpr int foo() {
int a = 100;
{
U u(a);
}
return a;
}
static_assert(foo() == 100);
}
namespace Nested {
union U {
int a;
int b;
};
union U2 {
U u;
U u2;
int x;
int y;
};
constexpr int foo() { // both-error {{constexpr function never produces a constant expression}}
U2 u;
u.u.a = 10;
int a = u.y; // both-note 2{{read of member 'y' of union with active member 'u' is not allowed in a constant expression}}
return 1;
}
static_assert(foo() == 1); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int foo2() {
U2 u;
u.u.a = 10;
return u.u.a;
}
static_assert(foo2() == 10);
constexpr int foo3() { // both-error {{constexpr function never produces a constant expression}}
U2 u;
u.u.a = 10;
int a = u.u.b; // both-note 2{{read of member 'b' of union with active member 'a' is not allowed in a constant expression}}
return 1;
}
static_assert(foo3() == 1); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int foo4() { // both-error {{constexpr function never produces a constant expression}}
U2 u;
u.x = 10;
return u.u.a; // both-note 2{{read of member 'u' of union with active member 'x' is not allowed in a constant expression}}
}
static_assert(foo4() == 1); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
}
namespace Zeroing {
struct non_trivial_constructor {
constexpr non_trivial_constructor() : x(100) {}
int x;
};
union U2 {
int a{1000};
non_trivial_constructor b;
};
static_assert(U2().b.x == 100, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of member 'b' of union with active member 'a'}}
union { int a; int b; } constexpr u1{};
static_assert(u1.a == 0, "");
static_assert(u1.b == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of member 'b' of union with active member 'a'}}
union U { int a; int b; } constexpr u2 = U();
static_assert(u2.a == 0, "");
static_assert(u2.b == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of member 'b' of union with active member 'a'}}
struct F {int x; int y; };
union { F a; int b; } constexpr u3{};
static_assert(u3.a.x == 0, "");
union U4 { F a; int b; } constexpr u4 = U4();
static_assert(u4.a.x == 0, "");
union { int a[5]; int b; } constexpr u5{};
static_assert(u5.a[0] == 0, "");
static_assert(u5.a[4] == 0, "");
static_assert(u5.b == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of member 'b' of union with active member 'a'}}
union U6 { int a[5]; int b; } constexpr u6 = U6();
static_assert(u6.a[0] == 0, "");
static_assert(u6.a[4] == 0, "");
static_assert(u6.b == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of member 'b' of union with active member 'a'}}
union UnionWithUnnamedBitfield {
int : 3;
int n;
};
static_assert(UnionWithUnnamedBitfield().n == 0, "");
static_assert(UnionWithUnnamedBitfield{}.n == 0, "");
static_assert(UnionWithUnnamedBitfield{1}.n == 1, "");
}
namespace IndirectField {
struct S {
struct {
union {
struct {
int a;
int b;
};
int c;
};
int d;
};
union {
int e;
int f;
};
constexpr S(int a, int b, int d, int e) : a(a), b(b), d(d), e(e) {}
constexpr S(int c, int d, int f) : c(c), d(d), f(f) {}
};
constexpr S s1(1,2,3,4);
constexpr S s2(5, 6, 7);
static_assert(s1.a == 1, "");
static_assert(s1.b == 2, "");
static_assert(s1.c == 0, ""); // both-error {{constant expression}} both-note {{union with active member}}
static_assert(s1.d == 3, "");
static_assert(s1.e == 4, "");
static_assert(s1.f == 0, ""); // both-error {{constant expression}} both-note {{union with active member}}
static_assert(s2.a == 0, ""); // both-error {{constant expression}} both-note {{union with active member}}
static_assert(s2.b == 0, ""); // both-error {{constant expression}} both-note {{union with active member}}
static_assert(s2.c == 5, "");
static_assert(s2.d == 6, "");
static_assert(s2.e == 0, ""); // both-error {{constant expression}} both-note {{union with active member}}
static_assert(s2.f == 7, "");
}
namespace CopyCtor {
union U {
int a;
int b;
};
constexpr U x = {42};
constexpr U y = x;
static_assert(y.a == 42, "");
static_assert(y.b == 42, ""); // both-error {{constant expression}} \
// both-note {{'b' of union with active member 'a'}}
}
namespace UnionInBase {
struct Base {
int y; // both-note {{subobject declared here}}
};
struct A : Base {
int x;
int arr[3];
union { int p, q; };
};
union B {
A a;
int b;
};
constexpr int read_wrong_member_indirect() { // both-error {{never produces a constant}}
B b = {.b = 1};
int *p = &b.a.y;
return *p; // both-note 2{{read of member 'a' of union with active member 'b'}}
}
static_assert(read_wrong_member_indirect() == 1); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int read_uninitialized() {
B b = {.b = 1};
int *p = &b.a.y;
b.a.x = 1;
return *p; // both-note {{read of uninitialized object}}
}
static_assert(read_uninitialized() == 0); // both-error {{constant}} \
// both-note {{in call}}
constexpr int write_uninitialized() {
B b = {.b = 1};
int *p = &b.a.y;
b.a.x = 1;
*p = 1;
return *p;
}
constexpr B return_uninit() {
B b = {.b = 1};
b.a.x = 2;
return b;
}
constexpr B uninit = return_uninit(); // both-error {{constant expression}} \
// both-note {{subobject 'y' is not initialized}}
static_assert(return_uninit().a.x == 2);
}
#endif