//===------ Support/ScopHelper.h -- Some Helper Functions for Scop. -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Small functions that help with LLVM-IR. // //===----------------------------------------------------------------------===// #ifndef POLLY_SUPPORT_IRHELPER_H #define POLLY_SUPPORT_IRHELPER_H #include "llvm/ADT/SetVector.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/ValueHandle.h" #include "isl/isl-noexceptions.h" #include <optional> namespace llvm { class LoopInfo; class Loop; class ScalarEvolution; class SCEV; class Region; class Pass; class DominatorTree; class RegionInfo; class RegionNode; } // namespace llvm namespace polly { class Scop; class ScopStmt; /// Same as llvm/Analysis/ScalarEvolutionExpressions.h LoopToScevMapT; /// Enumeration of assumptions Polly can take. enum AssumptionKind { … }; /// Enum to distinguish between assumptions and restrictions. enum AssumptionSign { … }; /// Helper struct to remember assumptions. struct Assumption { … }; RecordedAssumptionsTy; /// Record an assumption for later addition to the assumed context. /// /// This function will add the assumption to the RecordedAssumptions. This /// collection will be added (@see addAssumption) to the assumed context once /// all paramaters are known and the context is fully built. /// /// @param RecordedAssumption container which keeps all recorded assumptions. /// @param Kind The assumption kind describing the underlying cause. /// @param Set The relations between parameters that are assumed to hold. /// @param Loc The location in the source that caused this assumption. /// @param Sign Enum to indicate if the assumptions in @p Set are positive /// (needed/assumptions) or negative (invalid/restrictions). /// @param BB The block in which this assumption was taken. If it is /// set, the domain of that block will be used to simplify the /// actual assumption in @p Set once it is added. This is useful /// if the assumption was created prior to the domain. /// @param RTC Does the assumption require a runtime check? void recordAssumption(RecordedAssumptionsTy *RecordedAssumptions, AssumptionKind Kind, isl::set Set, llvm::DebugLoc Loc, AssumptionSign Sign, llvm::BasicBlock *BB = nullptr, bool RTC = true); /// Type to remap values. ValueMapT; /// Type for a set of invariant loads. InvariantLoadsSetTy; /// Set type for parameters. ParameterSetTy; /// Set of loops (used to remember loops in non-affine subregions). BoxedLoopsSetTy; /// Utility proxy to wrap the common members of LoadInst and StoreInst. /// /// This works like the LLVM utility class CallSite, ie. it forwards all calls /// to either a LoadInst, StoreInst, MemIntrinsic or MemTransferInst. /// It is similar to LLVM's utility classes IntrinsicInst, MemIntrinsic, /// MemTransferInst, etc. in that it offers a common interface, but does not act /// as a fake base class. /// It is similar to StringRef and ArrayRef in that it holds a pointer to the /// referenced object and should be passed by-value as it is small enough. /// /// This proxy can either represent a LoadInst instance, a StoreInst instance, /// a MemIntrinsic instance (memset, memmove, memcpy), a CallInst instance or a /// nullptr (only creatable using the default constructor); never an Instruction /// that is neither of the above mentioned. When representing a nullptr, only /// the following methods are defined: /// isNull(), isInstruction(), isLoad(), isStore(), ..., isMemTransferInst(), /// operator bool(), operator!() /// /// The functions isa, cast, cast_or_null, dyn_cast are modeled te resemble /// those from llvm/Support/Casting.h. Partial template function specialization /// is currently not supported in C++ such that those cannot be used directly. /// (llvm::isa could, but then llvm:cast etc. would not have the expected /// behavior) class MemAccInst final { … }; } // namespace polly namespace llvm { /// Specialize simplify_type for MemAccInst to enable dyn_cast and cast /// from a MemAccInst object. template <> struct simplify_type<polly::MemAccInst> { … }; } // namespace llvm namespace polly { /// Simplify the region to have a single unconditional entry edge and a /// single exit edge. /// /// Although this function allows DT and RI to be null, regions only work /// properly if the DominatorTree (for Region::contains) and RegionInfo are kept /// up-to-date. /// /// @param R The region to be simplified /// @param DT DominatorTree to be updated. /// @param LI LoopInfo to be updated. /// @param RI RegionInfo to be updated. void simplifyRegion(llvm::Region *R, llvm::DominatorTree *DT, llvm::LoopInfo *LI, llvm::RegionInfo *RI); /// Split the entry block of a function to store the newly inserted /// allocations outside of all Scops. /// /// @param EntryBlock The entry block of the current function. /// @param P The pass that currently running. /// void splitEntryBlockForAlloca(llvm::BasicBlock *EntryBlock, llvm::Pass *P); /// Split the entry block of a function to store the newly inserted /// allocations outside of all Scops. /// /// @param DT DominatorTree to be updated. /// @param LI LoopInfo to be updated. /// @param RI RegionInfo to be updated. void splitEntryBlockForAlloca(llvm::BasicBlock *EntryBlock, llvm::DominatorTree *DT, llvm::LoopInfo *LI, llvm::RegionInfo *RI); /// Wrapper for SCEVExpander extended to all Polly features. /// /// This wrapper will internally call the SCEVExpander but also makes sure that /// all additional features not represented in SCEV (e.g., SDiv/SRem are not /// black boxes but can be part of the function) will be expanded correctly. /// /// The parameters are the same as for the creation of a SCEVExpander as well /// as the call to SCEVExpander::expandCodeFor: /// /// @param S The current Scop. /// @param SE The Scalar Evolution pass used by @p S. /// @param GenFn The function to generate code in. Can be the same as @p SE. /// @param GenSE The Scalar Evolution pass for @p GenFn. /// @param DL The module data layout. /// @param Name The suffix added to the new instruction names. /// @param E The expression for which code is actually generated. /// @param Ty The type of the resulting code. /// @param IP The insertion point for the new code. /// @param VMap A remapping of values used in @p E. /// @param LoopMap A remapping of loops used in @p E. /// @param RTCBB The last block of the RTC. Used to insert loop-invariant /// instructions in rare cases. llvm::Value *expandCodeFor(Scop &S, llvm::ScalarEvolution &SE, llvm::Function *GenFn, llvm::ScalarEvolution &GenSE, const llvm::DataLayout &DL, const char *Name, const llvm::SCEV *E, llvm::Type *Ty, llvm::Instruction *IP, ValueMapT *VMap, LoopToScevMapT *LoopMap, llvm::BasicBlock *RTCBB); /// Return the condition for the terminator @p TI. /// /// For unconditional branches the "i1 true" condition will be returned. /// /// @param TI The terminator to get the condition from. /// /// @return The condition of @p TI and nullptr if none could be extracted. llvm::Value *getConditionFromTerminator(llvm::Instruction *TI); /// Get the smallest loop that contains @p S but is not in @p S. llvm::Loop *getLoopSurroundingScop(Scop &S, llvm::LoopInfo &LI); /// Get the number of blocks in @p L. /// /// The number of blocks in a loop are the number of basic blocks actually /// belonging to the loop, as well as all single basic blocks that the loop /// exits to and which terminate in an unreachable instruction. We do not /// allow such basic blocks in the exit of a scop, hence they belong to the /// scop and represent run-time conditions which we want to model and /// subsequently speculate away. /// /// @see getRegionNodeLoop for additional details. unsigned getNumBlocksInLoop(llvm::Loop *L); /// Get the number of blocks in @p RN. unsigned getNumBlocksInRegionNode(llvm::RegionNode *RN); /// Return the smallest loop surrounding @p RN. llvm::Loop *getRegionNodeLoop(llvm::RegionNode *RN, llvm::LoopInfo &LI); /// Check if @p LInst can be hoisted in @p R. /// /// @param LInst The load to check. /// @param R The analyzed region. /// @param LI The loop info. /// @param SE The scalar evolution analysis. /// @param DT The dominator tree of the function. /// @param KnownInvariantLoads The invariant load set. /// /// @return True if @p LInst can be hoisted in @p R. bool isHoistableLoad(llvm::LoadInst *LInst, llvm::Region &R, llvm::LoopInfo &LI, llvm::ScalarEvolution &SE, const llvm::DominatorTree &DT, const InvariantLoadsSetTy &KnownInvariantLoads); /// Return true iff @p V is an intrinsic that we ignore during code /// generation. bool isIgnoredIntrinsic(const llvm::Value *V); /// Check whether a value an be synthesized by the code generator. /// /// Some value will be recalculated only from information that is code generated /// from the polyhedral representation. For such instructions we do not need to /// ensure that their operands are available during code generation. /// /// @param V The value to check. /// @param S The current SCoP. /// @param SE The scalar evolution database. /// @param Scope Location where the value would by synthesized. /// @return If the instruction I can be regenerated from its /// scalar evolution representation, return true, /// otherwise return false. bool canSynthesize(const llvm::Value *V, const Scop &S, llvm::ScalarEvolution *SE, llvm::Loop *Scope); /// Return the block in which a value is used. /// /// For normal instructions, this is the instruction's parent block. For PHI /// nodes, this is the incoming block of that use, because this is where the /// operand must be defined (i.e. its definition dominates this block). /// Non-instructions do not use operands at a specific point such that in this /// case this function returns nullptr. llvm::BasicBlock *getUseBlock(const llvm::Use &U); // If the loop is nonaffine/boxed, return the first non-boxed surrounding loop // for Polly. If the loop is affine, return the loop itself. // // @param L Pointer to the Loop object to analyze. // @param LI Reference to the LoopInfo. // @param BoxedLoops Set of Boxed Loops we get from the SCoP. llvm::Loop *getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, const BoxedLoopsSetTy &BoxedLoops); // If the Basic Block belongs to a loop that is nonaffine/boxed, return the // first non-boxed surrounding loop for Polly. If the loop is affine, return // the loop itself. // // @param BB Pointer to the Basic Block to analyze. // @param LI Reference to the LoopInfo. // @param BoxedLoops Set of Boxed Loops we get from the SCoP. llvm::Loop *getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, llvm::LoopInfo &LI, const BoxedLoopsSetTy &BoxedLoops); /// Is the given instruction a call to a debug function? /// /// A debug function can be used to insert output in Polly-optimized code which /// normally does not allow function calls with side-effects. For instance, a /// printf can be inserted to check whether a value still has the expected value /// after Polly generated code: /// /// int sum = 0; /// for (int i = 0; i < 16; i+=1) { /// sum += i; /// printf("The value of sum at i=%d is %d\n", sum, i); /// } bool isDebugCall(llvm::Instruction *Inst); /// Does the statement contain a call to a debug function? /// /// Such a statement must not be removed, even if has no side-effects. bool hasDebugCall(ScopStmt *Stmt); /// Find a property value in a LoopID. /// /// Generally, a property MDNode has the format /// /// !{ !"Name", value } /// /// In which case the value is returned. /// /// If the property is just /// /// !{ !"Name" } /// /// Then `nullptr` is set to mark the property is existing, but does not carry /// any value. If the property does not exist, `std::nullopt` is returned. std::optional<llvm::Metadata *> findMetadataOperand(llvm::MDNode *LoopMD, llvm::StringRef Name); /// Find a boolean property value in a LoopID. The value not being defined is /// interpreted as a false value. bool getBooleanLoopAttribute(llvm::MDNode *LoopID, llvm::StringRef Name); /// Find an integers property value in a LoopID. std::optional<int> getOptionalIntLoopAttribute(llvm::MDNode *LoopID, llvm::StringRef Name); /// Does the loop's LoopID contain a 'llvm.loop.disable_heuristics' property? /// /// This is equivalent to llvm::hasDisableAllTransformsHint(Loop*), but /// including the LoopUtils.h header indirectly also declares llvm::MemoryAccess /// which clashes with polly::MemoryAccess. Declaring this alias here avoid /// having to include LoopUtils.h in other files. bool hasDisableAllTransformsHint(llvm::Loop *L); bool hasDisableAllTransformsHint(llvm::MDNode *LoopID); /// Represent the attributes of a loop. struct BandAttr { … }; /// Get an isl::id representing a loop. /// /// This takes the ownership of the BandAttr and will be free'd when the /// returned isl::Id is free'd. isl::id getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr); /// Create an isl::id that identifies an original loop. /// /// Return nullptr if the loop does not need a BandAttr (i.e. has no /// properties); /// /// This creates a BandAttr which must be unique per loop and therefore this /// must not be called multiple times on the same loop as their id would be /// different. isl::id createIslLoopAttr(isl::ctx Ctx, llvm::Loop *L); /// Is @p Id representing a loop? /// /// Such ids contain a polly::BandAttr as its user pointer. bool isLoopAttr(const isl::id &Id); /// Return the BandAttr of a loop's isl::id. BandAttr *getLoopAttr(const isl::id &Id); } // namespace polly #endif