llvm/polly/lib/External/isl/isl_int_sioimath.h

/*
 * Copyright 2015 INRIA Paris-Rocquencourt
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Michael Kruse, INRIA Paris-Rocquencourt,
 * Domaine de Voluceau, Rocquenqourt, B.P. 105,
 * 78153 Le Chesnay Cedex France
 */
#ifndef ISL_INT_SIOIMATH_H
#define ISL_INT_SIOIMATH_H

#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>

#include <isl_imath.h>
#include <isl/hash.h>

#define ARRAY_SIZE(array)

/* Visual Studio before VS2015 does not support the inline keyword when
 * compiling in C mode because it was introduced in C99 which it does not
 * officially support.  Instead, it has a proprietary extension using __inline.
 */
#if defined(_MSC_VER) && (_MSC_VER < 1900)
#define inline __inline
#endif

/* The type to represent integers optimized for small values. It is either a
 * pointer to an mp_int ( = mpz_t*; big representation) or an int32_t (small
 * represenation) with a discriminator at the least significant bit. In big
 * representation it will be always zero because of heap alignment. It is set
 * to 1 for small representation and use the 32 most significant bits for the
 * int32_t.
 *
 * Structure on 64 bit machines, with 8-byte aligment (3 bits):
 *
 * Big representation:
 * MSB                                                          LSB
 * |------------------------------------------------------------000
 * |                            mpz_t*                            |
 * |                           != NULL                            |
 *
 * Small representation:
 * MSB                           32                             LSB
 * |------------------------------|00000000000000000000000000000001
 * |          int32_t             |
 * |  2147483647 ... -2147483647  |
 *                                                                ^
 *                                                                |
 *                                                        discriminator bit
 *
 * On 32 bit machines isl_sioimath type is blown up to 8 bytes, i.e.
 * isl_sioimath is guaranteed to be at least 8 bytes. This is to ensure the
 * int32_t can be hidden in that type without data loss. In the future we might
 * optimize this to use 31 hidden bits in a 32 bit pointer. We may also use 63
 * bits on 64 bit machines, but this comes with the cost of additional overflow
 * checks because there is no standardized 128 bit integer we could expand to.
 *
 * We use native integer types and avoid union structures to avoid assumptions
 * on the machine's endianness.
 *
 * This implementation makes the following assumptions:
 * - long can represent any int32_t
 * - mp_small is signed long
 * - mp_usmall is unsigned long
 * - adresses returned by malloc are aligned to 2-byte boundaries (leastmost
 *   bit is zero)
 */
#if UINT64_MAX > UINTPTR_MAX
typedef uint64_t isl_sioimath;
#else
isl_sioimath;
#endif

/* The negation of the smallest possible number in int32_t, INT32_MIN
 * (0x80000000u, -2147483648), cannot be represented in an int32_t, therefore
 * every operation that may produce this value needs to special-case it.
 * The operations are:
 * abs(INT32_MIN)
 * -INT32_MIN   (negation)
 * -1 * INT32_MIN (multiplication)
 * INT32_MIN/-1 (any division: divexact, fdiv, cdiv, tdiv)
 * To avoid checking these cases, we exclude INT32_MIN from small
 * representation.
 */
#define ISL_SIOIMATH_SMALL_MIN

/* Largest possible number in small representation */
#define ISL_SIOIMATH_SMALL_MAX

/* Used for function parameters the function modifies. */
isl_sioimath_ptr;

/* Used for function parameters that are read-only. */
isl_sioimath_src;

/* Return whether the argument is stored in small representation.
 */
inline int isl_sioimath_is_small(isl_sioimath val)
{}

/* Return whether the argument is stored in big representation.
 */
inline int isl_sioimath_is_big(isl_sioimath val)
{}

/* Get the number of an isl_int in small representation. Result is undefined if
 * val is not stored in that format.
 */
inline int32_t isl_sioimath_get_small(isl_sioimath val)
{}

/* Get the number of an in isl_int in big representation. Result is undefined if
 * val is not stored in that format.
 */
inline mp_int isl_sioimath_get_big(isl_sioimath val)
{}

/* Return 1 if val is stored in small representation and store its value to
 * small. We rely on the compiler to optimize the isl_sioimath_get_small such
 * that the shift is moved into the branch that executes in case of small
 * representation. If there is no such branch, then a single shift is still
 * cheaper than introducing branching code.
 */
inline int isl_sioimath_decode_small(isl_sioimath val, int32_t *small)
{}

/* Return 1 if val is stored in big representation and store its value to big.
 */
inline int isl_sioimath_decode_big(isl_sioimath val, mp_int *big)
{}

/* Encode a small representation into an isl_int.
 */
inline isl_sioimath isl_sioimath_encode_small(int32_t val)
{}

/* Encode a big representation.
 */
inline isl_sioimath isl_sioimath_encode_big(mp_int val)
{}

/* A common situation is to call an IMath function with at least one argument
 * that is currently in small representation or an integer parameter, i.e. a big
 * representation of the same number is required. Promoting the original
 * argument comes with multiple problems, such as modifying a read-only
 * argument, the responsibility of deallocation and the execution cost. Instead,
 * we make a copy by 'faking' the IMath internal structure.
 *
 * We reserve the maximum number of required digits on the stack to avoid heap
 * allocations.
 *
 * mp_digit can be uint32_t or uint16_t. This code must work for little and big
 * endian digits. The structure for an uint64_t argument and 32-bit mp_digits is
 * sketched below.
 *
 * |----------------------------|
 *            uint64_t
 *
 * |-------------||-------------|
 *    mp_digit        mp_digit
 *    digits[1]       digits[0]
 * Most sig digit  Least sig digit
 */
isl_sioimath_scratchspace_t;

/* Convert a native integer to IMath's digit representation. A native integer
 * might be big- or little endian, but IMath always stores the least significant
 * digit in the lowest array indices.  memcpy therefore is not possible.
 *
 * We also have to consider that long and mp_digit can be of different sizes,
 * depending on the compiler (LP64, LLP64) and IMath's USE_64BIT_WORDS. This
 * macro should work for all of them.
 *
 * "used" is set to the number of written digits. It must be minimal (IMath
 * checks zeroness using the used field), but always at least one.  Also note
 * that the result of num>>(sizeof(num)*CHAR_BIT) is undefined.
 */
#define ISL_SIOIMATH_TO_DIGITS(num, digits, used)

inline void isl_siomath_uint32_to_digits(uint32_t num, mp_digit *digits,
	mp_size *used)
{}

inline void isl_siomath_ulong_to_digits(unsigned long num, mp_digit *digits,
	mp_size *used)
{}

inline void isl_siomath_uint64_to_digits(uint64_t num, mp_digit *digits,
	mp_size *used)
{}

/* Get the IMath representation of an isl_int without modifying it.
 * For the case it is not in big representation yet, pass some scratch space we
 * can use to store the big representation in.
 * In order to avoid requiring init and free on the scratch space, we directly
 * modify the internal representation.
 *
 * The name derives from its indented use: getting the big representation of an
 * input (src) argument.
 */
inline mp_int isl_sioimath_bigarg_src(isl_sioimath arg,
	isl_sioimath_scratchspace_t *scratch)
{}

/* Create a temporary IMath mp_int for a signed long.
 */
inline mp_int isl_sioimath_siarg_src(signed long arg,
	isl_sioimath_scratchspace_t *scratch)
{}

/* Create a temporary IMath mp_int for an int64_t.
 */
inline mp_int isl_sioimath_si64arg_src(int64_t arg,
	isl_sioimath_scratchspace_t *scratch)
{}

/* Create a temporary IMath mp_int for an unsigned long.
 */
inline mp_int isl_sioimath_uiarg_src(unsigned long arg,
	isl_sioimath_scratchspace_t *scratch)
{}

/* Ensure big representation. Does not preserve the current number.
 * Callers may use the fact that the value _is_ preserved if the presentation
 * was big before.
 */
inline mp_int isl_sioimath_reinit_big(isl_sioimath_ptr ptr)
{}

/* Set ptr to a number in small representation.
 */
inline void isl_sioimath_set_small(isl_sioimath_ptr ptr, int32_t val)
{}

/* Set ptr to val, choosing small representation if possible.
 */
inline void isl_sioimath_set_int32(isl_sioimath_ptr ptr, int32_t val)
{}

/* Assign an int64_t number using small representation if possible.
 */
inline void isl_sioimath_set_int64(isl_sioimath_ptr ptr, int64_t val)
{}

/* Convert to big representation while preserving the current number.
 */
inline void isl_sioimath_promote(isl_sioimath_ptr dst)
{}

/* Convert to small representation while preserving the current number. Does
 * nothing if dst doesn't fit small representation.
 */
inline void isl_sioimath_try_demote(isl_sioimath_ptr dst)
{}

/* Initialize an isl_int. The implicit value is 0 in small representation.
 */
inline void isl_sioimath_init(isl_sioimath_ptr dst)
{}

/* Free the resources taken by an isl_int.
 */
inline void isl_sioimath_clear(isl_sioimath_ptr dst)
{}

/* Copy the value of one isl_int to another.
 */
inline void isl_sioimath_set(isl_sioimath_ptr dst, isl_sioimath_src val)
{}

/* Store a signed long into an isl_int.
 */
inline void isl_sioimath_set_si(isl_sioimath_ptr dst, long val)
{}

/* Store an unsigned long into an isl_int.
 */
inline void isl_sioimath_set_ui(isl_sioimath_ptr dst, unsigned long val)
{}

/* Return whether a number can be represented by a signed long.
 */
inline int isl_sioimath_fits_slong(isl_sioimath_src val)
{}

/* Return a number as signed long. Result is undefined if the number cannot be
 * represented as long.
 */
inline long isl_sioimath_get_si(isl_sioimath_src val)
{}

/* Return whether a number can be represented as unsigned long.
 */
inline int isl_sioimath_fits_ulong(isl_sioimath_src val)
{}

/* Return a number as unsigned long. Result is undefined if the number cannot be
 * represented as unsigned long.
 */
inline unsigned long isl_sioimath_get_ui(isl_sioimath_src val)
{}

/* Return a number as floating point value.
 */
inline double isl_sioimath_get_d(isl_sioimath_src val)
{}

/* Format a number as decimal string.
 *
 * The largest possible string from small representation is 12 characters
 * ("-2147483647").
 */
inline char *isl_sioimath_get_str(isl_sioimath_src val)
{}

/* Return the absolute value.
 */
inline void isl_sioimath_abs(isl_sioimath_ptr dst, isl_sioimath_src arg)
{}

/* Return the negation of a number.
 */
inline void isl_sioimath_neg(isl_sioimath_ptr dst, isl_sioimath_src arg)
{}

/* Swap two isl_ints.
 *
 * isl_sioimath can be copied bytewise; nothing depends on its address. It can
 * also be stored in a CPU register.
 */
inline void isl_sioimath_swap(isl_sioimath_ptr lhs, isl_sioimath_ptr rhs)
{}

/* Add an unsigned long to the number.
 *
 * On LP64 unsigned long exceeds the range of an int64_t, therefore we check in
 * advance whether small representation possibly overflows.
 */
inline void isl_sioimath_add_ui(isl_sioimath_ptr dst, isl_sioimath lhs,
	unsigned long rhs)
{}

/* Subtract an unsigned long.
 *
 * On LP64 unsigned long exceeds the range of an int64_t.  If
 * ISL_SIOIMATH_SMALL_MIN-rhs>=INT64_MIN we can do the calculation using int64_t
 * without risking an overflow.
 */
inline void isl_sioimath_sub_ui(isl_sioimath_ptr dst, isl_sioimath lhs,
				unsigned long rhs)
{}

/* Sum of two isl_ints.
 */
inline void isl_sioimath_add(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

/* Subtract two isl_ints.
 */
inline void isl_sioimath_sub(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

/* Multiply two isl_ints.
 */
inline void isl_sioimath_mul(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

/* Shift lhs by rhs bits to the left and store the result in dst. Effectively,
 * this operation computes 'lhs * 2^rhs'.
 */
inline void isl_sioimath_mul_2exp(isl_sioimath_ptr dst, isl_sioimath lhs,
	unsigned long rhs)
{}

/* Multiply an isl_int and a signed long.
 */
inline void isl_sioimath_mul_si(isl_sioimath_ptr dst, isl_sioimath lhs,
	signed long rhs)
{}

/* Multiply an isl_int and an unsigned long.
 */
inline void isl_sioimath_mul_ui(isl_sioimath_ptr dst, isl_sioimath lhs,
	unsigned long rhs)
{}

/* Compute the power of an isl_int to an unsigned long.
 * Always let IMath do it; the result is unlikely to be small except in some
 * special cases.
 * Note: 0^0 == 1
 */
inline void isl_sioimath_pow_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	unsigned long rhs)
{}

/* Fused multiply-add.
 */
inline void isl_sioimath_addmul(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

/* Fused multiply-add with an unsigned long.
 */
inline void isl_sioimath_addmul_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	unsigned long rhs)
{}

/* Fused multiply-subtract.
 */
inline void isl_sioimath_submul(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

/* Fused multiply-add with an unsigned long.
 */
inline void isl_sioimath_submul_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	unsigned long rhs)
{}

void isl_sioimath_gcd(isl_sioimath_ptr dst, isl_sioimath_src lhs,
		      isl_sioimath_src rhs);
void isl_sioimath_lcm(isl_sioimath_ptr dst, isl_sioimath_src lhs,
		      isl_sioimath_src rhs);

/* Divide lhs by rhs, rounding to zero (Truncate).
 */
inline void isl_sioimath_tdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

/* Divide lhs by an unsigned long rhs, rounding to zero (Truncate).
 */
inline void isl_sioimath_tdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	unsigned long rhs)
{}

/* Divide lhs by rhs, rounding to positive infinity (Ceil).
 */
inline void isl_sioimath_cdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

/* Compute the division of lhs by a rhs of type unsigned long, rounding towards
 * positive infinity (Ceil).
 */
inline void isl_sioimath_cdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	unsigned long rhs)
{}

/* Divide lhs by rhs, rounding to negative infinity (Floor).
 */
inline void isl_sioimath_fdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

/* Compute the division of lhs by a rhs of type unsigned long, rounding towards
 * negative infinity (Floor).
 */
inline void isl_sioimath_fdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	unsigned long rhs)
{}

/* Get the remainder of: lhs divided by rhs rounded towards negative infinite
 * (Floor).
 */
inline void isl_sioimath_fdiv_r(isl_sioimath_ptr dst, isl_sioimath_src lhs,
	isl_sioimath_src rhs)
{}

void isl_sioimath_read(isl_sioimath_ptr dst, const char *str);

/* Return:
 *   +1 for a positive number
 *   -1 for a negative number
 *    0 if the number is zero
 */
inline int isl_sioimath_sgn(isl_sioimath_src arg)
{}

/* Return:
 *   +1 if lhs > rhs
 *   -1 if lhs < rhs
 *    0 if lhs = rhs
 */
inline int isl_sioimath_cmp(isl_sioimath_src lhs, isl_sioimath_src rhs)
{}

/* As isl_sioimath_cmp, but with signed long rhs.
 */
inline int isl_sioimath_cmp_si(isl_sioimath_src lhs, signed long rhs)
{}

/* Return:
 *   +1 if |lhs| > |rhs|
 *   -1 if |lhs| < |rhs|
 *    0 if |lhs| = |rhs|
 */
inline int isl_sioimath_abs_cmp(isl_sioimath_src lhs, isl_sioimath_src rhs)
{}

/* Return whether lhs is divisible by rhs.
 * In particular, can rhs be multiplied by some integer to result in lhs?
 * If rhs is zero, then this means lhs has to be zero too.
 */
inline int isl_sioimath_is_divisible_by(isl_sioimath_src lhs,
					isl_sioimath_src rhs)
{}

/* Return a hash code of an isl_sioimath.
 * The hash code for a number in small and big representation must be identical
 * on the same machine because small representation if not obligatory if fits.
 */
inline uint32_t isl_sioimath_hash(isl_sioimath_src arg, uint32_t hash)
{}

/* Return the number of digits in a number of the given base or more, i.e. the
 * string length without sign and null terminator.
 *
 * Current implementation for small representation returns the maximal number
 * of binary digits in that representation, which can be much larger than the
 * smallest possible solution.
 */
inline size_t isl_sioimath_sizeinbase(isl_sioimath_src arg, int base)
{}

void isl_sioimath_print(FILE *out, isl_sioimath_src i, int width);
void isl_sioimath_dump(isl_sioimath_src arg);

isl_int;
#define isl_int_init(i)
#define isl_int_clear(i)

#define isl_int_set(r, i)
#define isl_int_set_si(r, i)
#define isl_int_set_ui(r, i)
#define isl_int_fits_slong(r)
#define isl_int_get_si(r)
#define isl_int_fits_ulong(r)
#define isl_int_get_ui(r)
#define isl_int_get_d(r)
#define isl_int_get_str(r)
#define isl_int_abs(r, i)
#define isl_int_neg(r, i)
#define isl_int_swap(i, j)
#define isl_int_swap_or_set(i, j)
#define isl_int_add_ui(r, i, j)
#define isl_int_sub_ui(r, i, j)

#define isl_int_add(r, i, j)
#define isl_int_sub(r, i, j)
#define isl_int_mul(r, i, j)
#define isl_int_mul_2exp(r, i, j)
#define isl_int_mul_si(r, i, j)
#define isl_int_mul_ui(r, i, j)
#define isl_int_pow_ui(r, i, j)
#define isl_int_addmul(r, i, j)
#define isl_int_addmul_ui(r, i, j)
#define isl_int_submul(r, i, j)
#define isl_int_submul_ui(r, i, j)

#define isl_int_gcd(r, i, j)
#define isl_int_lcm(r, i, j)
#define isl_int_divexact(r, i, j)
#define isl_int_divexact_ui(r, i, j)
#define isl_int_tdiv_q(r, i, j)
#define isl_int_cdiv_q(r, i, j)
#define isl_int_cdiv_q_ui(r, i, j)
#define isl_int_fdiv_q(r, i, j)
#define isl_int_fdiv_r(r, i, j)
#define isl_int_fdiv_q_ui(r, i, j)

#define isl_int_read(r, s)
#define isl_int_sgn(i)
#define isl_int_cmp(i, j)
#define isl_int_cmp_si(i, si)
#define isl_int_eq(i, j)
#define isl_int_ne(i, j)
#define isl_int_lt(i, j)
#define isl_int_le(i, j)
#define isl_int_gt(i, j)
#define isl_int_ge(i, j)
#define isl_int_abs_cmp(i, j)
#define isl_int_abs_eq(i, j)
#define isl_int_abs_ne(i, j)
#define isl_int_abs_lt(i, j)
#define isl_int_abs_gt(i, j)
#define isl_int_abs_ge(i, j)
#define isl_int_is_divisible_by(i, j)

#define isl_int_hash(v, h)
#define isl_int_free_str(s)
#define isl_int_print(out, i, width)

#endif /* ISL_INT_SIOIMATH_H */