llvm/polly/lib/External/isl/imath/gmp_compat.c

/*
  Name:     gmp_compat.c
  Purpose:  Provide GMP compatiable routines for imath library
  Author:   David Peixotto

  Copyright (c) 2012 Qualcomm Innovation Center, Inc. All rights reserved.

  Permission is hereby granted, free of charge, to any person obtaining a copy
  of this software and associated documentation files (the "Software"), to deal
  in the Software without restriction, including without limitation the rights
  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  copies of the Software, and to permit persons to whom the Software is
  furnished to do so, subject to the following conditions:

  The above copyright notice and this permission notice shall be included in
  all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  SOFTWARE.
 */
#include "gmp_compat.h"
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#else
#include <sys/types.h>
#endif

#ifdef NDEBUG
#define CHECK(res)
#else
#define CHECK
#endif

/* *(signed char *)&endian_test will thus either be:
 *     0b00000001 =  1 on big-endian
 *     0b11111111 = -1 on little-endian */
static const uint16_t endian_test =;
#define HOST_ENDIAN

/*************************************************************************
 *
 * Functions with direct translations
 *
 *************************************************************************/
/* gmp: mpq_clear */
void GMPQAPI(clear)(mp_rat x) {}

/* gmp: mpq_cmp */
int GMPQAPI(cmp)(mp_rat op1, mp_rat op2) {}

/* gmp: mpq_init */
void GMPQAPI(init)(mp_rat x) {}

/* gmp: mpq_mul */
void GMPQAPI(mul)(mp_rat product, mp_rat multiplier, mp_rat multiplicand) {}

/* gmp: mpq_set */
void GMPQAPI(set)(mp_rat rop, mp_rat op) {}

/* gmp: mpz_abs */
void GMPZAPI(abs)(mp_int rop, mp_int op) {}

/* gmp: mpz_add */
void GMPZAPI(add)(mp_int rop, mp_int op1, mp_int op2) {}

/* gmp: mpz_clear */
void GMPZAPI(clear)(mp_int x) {}

/* gmp: mpz_cmp_si */
int GMPZAPI(cmp_si)(mp_int op1, long op2) {}

/* gmp: mpz_cmpabs */
int GMPZAPI(cmpabs)(mp_int op1, mp_int op2) {}

/* gmp: mpz_cmp */
int GMPZAPI(cmp)(mp_int op1, mp_int op2) {}

/* gmp: mpz_init */
void GMPZAPI(init)(mp_int x) {}

/* gmp: mpz_mul */
void GMPZAPI(mul)(mp_int rop, mp_int op1, mp_int op2) {}

/* gmp: mpz_neg */
void GMPZAPI(neg)(mp_int rop, mp_int op) {}

/* gmp: mpz_set_si */
void GMPZAPI(set_si)(mp_int rop, long op) {}

/* gmp: mpz_set */
void GMPZAPI(set)(mp_int rop, mp_int op) {}

/* gmp: mpz_sub */
void GMPZAPI(sub)(mp_int rop, mp_int op1, mp_int op2) {}

/* gmp: mpz_swap */
void GMPZAPI(swap)(mp_int rop1, mp_int rop2) {}

/* gmp: mpq_sgn */
int GMPQAPI(sgn)(mp_rat op) {}

/* gmp: mpz_sgn */
int GMPZAPI(sgn)(mp_int op) {}

/* gmp: mpq_set_ui */
void GMPQAPI(set_ui)(mp_rat rop, unsigned long op1, unsigned long op2) {}

/* gmp: mpz_set_ui */
void GMPZAPI(set_ui)(mp_int rop, unsigned long op) {}

/* gmp: mpq_den_ref */
mp_int GMPQAPI(denref)(mp_rat op) {}

/* gmp: mpq_num_ref */
mp_int GMPQAPI(numref)(mp_rat op) {}

/* gmp: mpq_canonicalize */
void GMPQAPI(canonicalize)(mp_rat op) {}

/*
 * Functions that can be implemented as a combination of imath functions
 */

/* gmp: mpz_addmul */
/* gmp: rop = rop + (op1 * op2) */
void GMPZAPI(addmul)(mp_int rop, mp_int op1, mp_int op2) {}

/* gmp: mpz_divexact */
/* gmp: only produces correct results when d divides n */
void GMPZAPI(divexact)(mp_int q, mp_int n, mp_int d) {}

/* gmp: mpz_divisible_p */
/* gmp: return 1 if d divides n, 0 otherwise */
/* gmp: 0 is considered to divide only 0 */
int GMPZAPI(divisible_p)(mp_int n, mp_int d) {}

/* gmp: mpz_submul */
/* gmp: rop = rop - (op1 * op2) */
void GMPZAPI(submul)(mp_int rop, mp_int op1, mp_int op2) {}

/* gmp: mpz_add_ui */
void GMPZAPI(add_ui)(mp_int rop, mp_int op1, unsigned long op2) {}

/* gmp: mpz_divexact_ui */
/* gmp: only produces correct results when d divides n */
void GMPZAPI(divexact_ui)(mp_int q, mp_int n, unsigned long d) {}

/* gmp: mpz_mul_ui */
void GMPZAPI(mul_ui)(mp_int rop, mp_int op1, unsigned long op2) {}

/* gmp: mpz_pow_ui */
/* gmp: 0^0 = 1 */
void GMPZAPI(pow_ui)(mp_int rop, mp_int base, unsigned long exp) {}

/* gmp: mpz_sub_ui */
void GMPZAPI(sub_ui)(mp_int rop, mp_int op1, unsigned long op2) {}

/*************************************************************************
 *
 * Functions with different behavior in corner cases
 *
 *************************************************************************/

/* gmp: mpz_gcd */
void GMPZAPI(gcd)(mp_int rop, mp_int op1, mp_int op2) {}

/* gmp: mpz_get_str */
char *GMPZAPI(get_str)(char *str, int radix, mp_int op) {}

/* gmp: mpq_get_str */
char *GMPQAPI(get_str)(char *str, int radix, mp_rat op) {}

/* gmp: mpz_set_str */
int GMPZAPI(set_str)(mp_int rop, char *str, int base) {}

/* gmp: mpq_set_str */
int GMPQAPI(set_str)(mp_rat rop, char *s, int base) {}

static unsigned long get_long_bits(mp_int op) {}

/* gmp: mpz_get_ui */
unsigned long GMPZAPI(get_ui)(mp_int op) {}

/* gmp: mpz_get_si */
long GMPZAPI(get_si)(mp_int op) {}

/* gmp: mpz_lcm */
void GMPZAPI(lcm)(mp_int rop, mp_int op1, mp_int op2) {}

/* gmp: mpz_mul_2exp */
/* gmp: allow big values for op2 when op1 == 0 */
void GMPZAPI(mul_2exp)(mp_int rop, mp_int op1, unsigned long op2) {}

/*
 * Functions needing expanded functionality
 */
/* [Note]Overview of division implementation

    All division operations (N / D) compute q and r such that

      N = q * D + r, with 0 <= abs(r) < abs(d)

    The q and r values are not uniquely specified by N and D. To specify which q
    and r values should be used, GMP implements three different rounding modes
    for integer division:

      ceiling  - round q twords +infinity, r has opposite sign as d
      floor    - round q twords -infinity, r has same sign as d
      truncate - round q twords zero,      r has same sign as n

    The imath library only supports truncate as a rounding mode. We need to
    implement the other rounding modes in terms of truncating division. We first
    perform the division in trucate mode and then adjust q accordingly. Once we
    know q, we can easily compute the correct r according the the formula above
    by computing:

      r = N - q * D

    The main task is to compute q. We can compute the correct q from a trucated
    version as follows.

    For ceiling rounding mode, if q is less than 0 then the truncated rounding
    mode is the same as the ceiling rounding mode.  If q is greater than zero
    then we need to round q up by one because the truncated version was rounded
    down to zero. If q equals zero then check to see if the result of the
    divison is positive. A positive result needs to increment q to one.

    For floor rounding mode, if q is greater than 0 then the trucated rounding
    mode is the same as the floor rounding mode. If q is less than zero then we
    need to round q down by one because the trucated mode rounded q up by one
    twords zero. If q is zero then we need to check to see if the result of the
    division is negative. A negative result needs to decrement q to negative
    one.
 */

/* gmp: mpz_cdiv_q */
void GMPZAPI(cdiv_q)(mp_int q, mp_int n, mp_int d) {}

/* gmp: mpz_fdiv_q */
void GMPZAPI(fdiv_q)(mp_int q, mp_int n, mp_int d) {}

/* gmp: mpz_fdiv_r */
void GMPZAPI(fdiv_r)(mp_int r, mp_int n, mp_int d) {}

/* gmp: mpz_tdiv_q */
void GMPZAPI(tdiv_q)(mp_int q, mp_int n, mp_int d) {}

/* gmp: mpz_fdiv_q_ui */
unsigned long GMPZAPI(fdiv_q_ui)(mp_int q, mp_int n, unsigned long d) {}

/* gmp: mpz_export */
void *GMPZAPI(export)(void *rop, size_t *countp, int order, size_t size,
                      int endian, size_t nails, mp_int op) {}

/* gmp: mpz_import */
void GMPZAPI(import)(mp_int rop, size_t count, int order, size_t size,
                     int endian, size_t nails, const void *op) {}

/* gmp: mpz_sizeinbase */
size_t GMPZAPI(sizeinbase)(mp_int op, int base) {}