llvm/llvm/include/llvm/ProfileData/SampleProfReader.h

//===- SampleProfReader.h - Read LLVM sample profile data -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions needed for reading sample profiles.
//
// NOTE: If you are making changes to this file format, please remember
//       to document them in the Clang documentation at
//       tools/clang/docs/UsersManual.rst.
//
// Text format
// -----------
//
// Sample profiles are written as ASCII text. The file is divided into
// sections, which correspond to each of the functions executed at runtime.
// Each section has the following format
//
//     function1:total_samples:total_head_samples
//      offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
//      offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
//      ...
//      offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
//      offsetA[.discriminator]: fnA:num_of_total_samples
//       offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ]
//       ...
//      !CFGChecksum: num
//      !Attribute: flags
//
// This is a nested tree in which the indentation represents the nesting level
// of the inline stack. There are no blank lines in the file. And the spacing
// within a single line is fixed. Additional spaces will result in an error
// while reading the file.
//
// Any line starting with the '#' character is completely ignored.
//
// Inlined calls are represented with indentation. The Inline stack is a
// stack of source locations in which the top of the stack represents the
// leaf function, and the bottom of the stack represents the actual
// symbol to which the instruction belongs.
//
// Function names must be mangled in order for the profile loader to
// match them in the current translation unit. The two numbers in the
// function header specify how many total samples were accumulated in the
// function (first number), and the total number of samples accumulated
// in the prologue of the function (second number). This head sample
// count provides an indicator of how frequently the function is invoked.
//
// There are three types of lines in the function body.
//
// * Sampled line represents the profile information of a source location.
// * Callsite line represents the profile information of a callsite.
// * Metadata line represents extra metadata of the function.
//
// Each sampled line may contain several items. Some are optional (marked
// below):
//
// a. Source line offset. This number represents the line number
//    in the function where the sample was collected. The line number is
//    always relative to the line where symbol of the function is
//    defined. So, if the function has its header at line 280, the offset
//    13 is at line 293 in the file.
//
//    Note that this offset should never be a negative number. This could
//    happen in cases like macros. The debug machinery will register the
//    line number at the point of macro expansion. So, if the macro was
//    expanded in a line before the start of the function, the profile
//    converter should emit a 0 as the offset (this means that the optimizers
//    will not be able to associate a meaningful weight to the instructions
//    in the macro).
//
// b. [OPTIONAL] Discriminator. This is used if the sampled program
//    was compiled with DWARF discriminator support
//    (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
//    DWARF discriminators are unsigned integer values that allow the
//    compiler to distinguish between multiple execution paths on the
//    same source line location.
//
//    For example, consider the line of code ``if (cond) foo(); else bar();``.
//    If the predicate ``cond`` is true 80% of the time, then the edge
//    into function ``foo`` should be considered to be taken most of the
//    time. But both calls to ``foo`` and ``bar`` are at the same source
//    line, so a sample count at that line is not sufficient. The
//    compiler needs to know which part of that line is taken more
//    frequently.
//
//    This is what discriminators provide. In this case, the calls to
//    ``foo`` and ``bar`` will be at the same line, but will have
//    different discriminator values. This allows the compiler to correctly
//    set edge weights into ``foo`` and ``bar``.
//
// c. Number of samples. This is an integer quantity representing the
//    number of samples collected by the profiler at this source
//    location.
//
// d. [OPTIONAL] Potential call targets and samples. If present, this
//    line contains a call instruction. This models both direct and
//    number of samples. For example,
//
//      130: 7  foo:3  bar:2  baz:7
//
//    The above means that at relative line offset 130 there is a call
//    instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
//    with ``baz()`` being the relatively more frequently called target.
//
// Each callsite line may contain several items. Some are optional.
//
// a. Source line offset. This number represents the line number of the
//    callsite that is inlined in the profiled binary.
//
// b. [OPTIONAL] Discriminator. Same as the discriminator for sampled line.
//
// c. Number of samples. This is an integer quantity representing the
//    total number of samples collected for the inlined instance at this
//    callsite
//
// Metadata line can occur in lines with one indent only, containing extra
// information for the top-level function. Furthermore, metadata can only
// occur after all the body samples and callsite samples.
// Each metadata line may contain a particular type of metadata, marked by
// the starting characters annotated with !. We process each metadata line
// independently, hence each metadata line has to form an independent piece
// of information that does not require cross-line reference.
// We support the following types of metadata:
//
// a. CFG Checksum (a.k.a. function hash):
//   !CFGChecksum: 12345
// b. CFG Checksum (see ContextAttributeMask):
//   !Atribute: 1
//
//
// Binary format
// -------------
//
// This is a more compact encoding. Numbers are encoded as ULEB128 values
// and all strings are encoded in a name table. The file is organized in
// the following sections:
//
// MAGIC (uint64_t)
//    File identifier computed by function SPMagic() (0x5350524f463432ff)
//
// VERSION (uint32_t)
//    File format version number computed by SPVersion()
//
// SUMMARY
//    TOTAL_COUNT (uint64_t)
//        Total number of samples in the profile.
//    MAX_COUNT (uint64_t)
//        Maximum value of samples on a line.
//    MAX_FUNCTION_COUNT (uint64_t)
//        Maximum number of samples at function entry (head samples).
//    NUM_COUNTS (uint64_t)
//        Number of lines with samples.
//    NUM_FUNCTIONS (uint64_t)
//        Number of functions with samples.
//    NUM_DETAILED_SUMMARY_ENTRIES (size_t)
//        Number of entries in detailed summary
//    DETAILED_SUMMARY
//        A list of detailed summary entry. Each entry consists of
//        CUTOFF (uint32_t)
//            Required percentile of total sample count expressed as a fraction
//            multiplied by 1000000.
//        MIN_COUNT (uint64_t)
//            The minimum number of samples required to reach the target
//            CUTOFF.
//        NUM_COUNTS (uint64_t)
//            Number of samples to get to the desrired percentile.
//
// NAME TABLE
//    SIZE (uint64_t)
//        Number of entries in the name table.
//    NAMES
//        A NUL-separated list of SIZE strings.
//
// FUNCTION BODY (one for each uninlined function body present in the profile)
//    HEAD_SAMPLES (uint64_t) [only for top-level functions]
//        Total number of samples collected at the head (prologue) of the
//        function.
//        NOTE: This field should only be present for top-level functions
//              (i.e., not inlined into any caller). Inlined function calls
//              have no prologue, so they don't need this.
//    NAME_IDX (uint64_t)
//        Index into the name table indicating the function name.
//    SAMPLES (uint64_t)
//        Total number of samples collected in this function.
//    NRECS (uint32_t)
//        Total number of sampling records this function's profile.
//    BODY RECORDS
//        A list of NRECS entries. Each entry contains:
//          OFFSET (uint32_t)
//            Line offset from the start of the function.
//          DISCRIMINATOR (uint32_t)
//            Discriminator value (see description of discriminators
//            in the text format documentation above).
//          SAMPLES (uint64_t)
//            Number of samples collected at this location.
//          NUM_CALLS (uint32_t)
//            Number of non-inlined function calls made at this location. In the
//            case of direct calls, this number will always be 1. For indirect
//            calls (virtual functions and function pointers) this will
//            represent all the actual functions called at runtime.
//          CALL_TARGETS
//            A list of NUM_CALLS entries for each called function:
//               NAME_IDX (uint64_t)
//                  Index into the name table with the callee name.
//               SAMPLES (uint64_t)
//                  Number of samples collected at the call site.
//    NUM_INLINED_FUNCTIONS (uint32_t)
//      Number of callees inlined into this function.
//    INLINED FUNCTION RECORDS
//      A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
//      callees.
//        OFFSET (uint32_t)
//          Line offset from the start of the function.
//        DISCRIMINATOR (uint32_t)
//          Discriminator value (see description of discriminators
//          in the text format documentation above).
//        FUNCTION BODY
//          A FUNCTION BODY entry describing the inlined function.
//===----------------------------------------------------------------------===//

#ifndef LLVM_PROFILEDATA_SAMPLEPROFREADER_H
#define LLVM_PROFILEDATA_SAMPLEPROFREADER_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/GCOV.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/ProfileData/SymbolRemappingReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Discriminator.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cstdint>
#include <list>
#include <memory>
#include <optional>
#include <string>
#include <system_error>
#include <unordered_set>
#include <vector>

namespace llvm {

class raw_ostream;
class Twine;

namespace vfs {
class FileSystem;
} // namespace vfs

namespace sampleprof {

class SampleProfileReader;

/// SampleProfileReaderItaniumRemapper remaps the profile data from a
/// sample profile data reader, by applying a provided set of equivalences
/// between components of the symbol names in the profile.
class SampleProfileReaderItaniumRemapper {};

/// Sample-based profile reader.
///
/// Each profile contains sample counts for all the functions
/// executed. Inside each function, statements are annotated with the
/// collected samples on all the instructions associated with that
/// statement.
///
/// For this to produce meaningful data, the program needs to be
/// compiled with some debug information (at minimum, line numbers:
/// -gline-tables-only). Otherwise, it will be impossible to match IR
/// instructions to the line numbers collected by the profiler.
///
/// From the profile file, we are interested in collecting the
/// following information:
///
/// * A list of functions included in the profile (mangled names).
///
/// * For each function F:
///   1. The total number of samples collected in F.
///
///   2. The samples collected at each line in F. To provide some
///      protection against source code shuffling, line numbers should
///      be relative to the start of the function.
///
/// The reader supports two file formats: text and binary. The text format
/// is useful for debugging and testing, while the binary format is more
/// compact and I/O efficient. They can both be used interchangeably.
class SampleProfileReader {};

class SampleProfileReaderText : public SampleProfileReader {};

class SampleProfileReaderBinary : public SampleProfileReader {};

class SampleProfileReaderRawBinary : public SampleProfileReaderBinary {};

/// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase defines
/// the basic structure of the extensible binary format.
/// The format is organized in sections except the magic and version number
/// at the beginning. There is a section table before all the sections, and
/// each entry in the table describes the entry type, start, size and
/// attributes. The format in each section is defined by the section itself.
///
/// It is easy to add a new section while maintaining the backward
/// compatibility of the profile. Nothing extra needs to be done. If we want
/// to extend an existing section, like add cache misses information in
/// addition to the sample count in the profile body, we can add a new section
/// with the extension and retire the existing section, and we could choose
/// to keep the parser of the old section if we want the reader to be able
/// to read both new and old format profile.
///
/// SampleProfileReaderExtBinary/SampleProfileWriterExtBinary define the
/// commonly used sections of a profile in extensible binary format. It is
/// possible to define other types of profile inherited from
/// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase.
class SampleProfileReaderExtBinaryBase : public SampleProfileReaderBinary {};

class SampleProfileReaderExtBinary : public SampleProfileReaderExtBinaryBase {};

InlineCallStack;

// Supported histogram types in GCC.  Currently, we only need support for
// call target histograms.
enum HistType {};

class SampleProfileReaderGCC : public SampleProfileReader {};

} // end namespace sampleprof

} // end namespace llvm

#endif // LLVM_PROFILEDATA_SAMPLEPROFREADER_H