//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains instruction defs that are common to all hw codegen
// targets.
//
//===----------------------------------------------------------------------===//
class AddressSpacesImpl {
int Flat = 0;
int Global = 1;
int Region = 2;
int Local = 3;
int Constant = 4;
int Private = 5;
int Constant32Bit = 6;
}
def AddrSpaces : AddressSpacesImpl;
class AMDGPUInst <dag outs, dag ins, string asm = "",
list<dag> pattern = []> : Instruction {
field bit isRegisterLoad = 0;
field bit isRegisterStore = 0;
let Namespace = "AMDGPU";
let OutOperandList = outs;
let InOperandList = ins;
let AsmString = asm;
let Pattern = pattern;
let Itinerary = NullALU;
// SoftFail is a field the disassembler can use to provide a way for
// instructions to not match without killing the whole decode process. It is
// mainly used for ARM, but Tablegen expects this field to exist or it fails
// to build the decode table.
field bits<96> SoftFail = 0;
let DecoderNamespace = Namespace;
let TSFlags{63} = isRegisterLoad;
let TSFlags{62} = isRegisterStore;
}
class AMDGPUShaderInst <dag outs, dag ins, string asm = "",
list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern> {
field bits<32> Inst = 0xffffffff;
}
//===---------------------------------------------------------------------===//
// Return instruction
//===---------------------------------------------------------------------===//
class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern>
: Instruction {
let Namespace = "AMDGPU";
dag OutOperandList = outs;
dag InOperandList = ins;
let Pattern = pattern;
let AsmString = !strconcat(asmstr, "\n");
let isPseudo = 1;
let Itinerary = NullALU;
bit hasIEEEFlag = 0;
bit hasZeroOpFlag = 0;
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let isCodeGenOnly = 1;
}
// Get the union of two Register lists
class RegListUnion<list<Register> lstA, list<Register> lstB> {
list<Register> ret = !listconcat(lstA, !listremove(lstB, lstA));
}
class AMDGPUPat<dag pattern, dag result> : Pat<pattern, result>,
PredicateControl, GISelFlags;
let GIIgnoreCopies = 1 in
class AMDGPUPatIgnoreCopies<dag pattern, dag result> : AMDGPUPat<pattern, result>;
let RecomputePerFunction = 1 in {
def FP16Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP64FP16Denormals != DenormalMode::getPreserveSign()">;
def FP32Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP32Denormals != DenormalMode::getPreserveSign()">;
def FP64Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP64FP16Denormals != DenormalMode::getPreserveSign()">;
def NoFP16Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign()">;
def NoFP32Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP32Denormals == DenormalMode::getPreserveSign()">;
def NoFP64Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign()">;
def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">;
}
def FMA : Predicate<"Subtarget->hasFMA()">;
def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>;
def i1imm_0 : OperandWithDefaultOps<i1, (ops (i1 0))>;
class CustomOperandClass<string name, bit optional, string predicateMethod,
string parserMethod, string defaultMethod>
: AsmOperandClass {
let Name = name;
let PredicateMethod = predicateMethod;
let ParserMethod = parserMethod;
let RenderMethod = "addImmOperands";
let IsOptional = optional;
let DefaultMethod = defaultMethod;
}
class CustomOperandProps<bit optional = 0, string name = NAME> {
string ImmTy = "ImmTy"#name;
string PredicateMethod = "is"#name;
string ParserMethod = "parse"#name;
string DefaultValue = "0";
string DefaultMethod = "[this]() { return "#
"AMDGPUOperand::CreateImm(this, "#DefaultValue#", SMLoc(), "#
"AMDGPUOperand::"#ImmTy#"); }";
string PrintMethod = "print"#name;
AsmOperandClass ParserMatchClass =
CustomOperandClass<name, optional, PredicateMethod, ParserMethod,
DefaultMethod>;
string OperandType = "OPERAND_IMMEDIATE";
}
class CustomOperand<ValueType type, bit optional = 0, string name = NAME>
: Operand<type>, CustomOperandProps<optional, name>;
class ImmOperand<ValueType type, string name = NAME, bit optional = 0,
string printer = "print"#name>
: CustomOperand<type, optional, name> {
let ImmTy = "ImmTyNone";
let ParserMethod = "";
let PrintMethod = printer;
}
class S16ImmOperand : ImmOperand<i16, "S16Imm", 0, "printU16ImmOperand">;
def s16imm : S16ImmOperand;
def u16imm : ImmOperand<i16, "U16Imm", 0, "printU16ImmOperand">;
class ValuePredicatedOperand<CustomOperand op, string valuePredicate,
bit optional = 0>
: CustomOperand<op.Type, optional> {
let ImmTy = op.ImmTy;
defvar OpPredicate = op.ParserMatchClass.PredicateMethod;
let PredicateMethod =
"getPredicate([](const AMDGPUOperand &Op) -> bool { "#
"return Op."#OpPredicate#"() && "#valuePredicate#"; })";
let ParserMethod = op.ParserMatchClass.ParserMethod;
let DefaultValue = op.DefaultValue;
let DefaultMethod = op.DefaultMethod;
let PrintMethod = op.PrintMethod;
}
//===--------------------------------------------------------------------===//
// Custom Operands
//===--------------------------------------------------------------------===//
def brtarget : Operand<OtherVT>;
//===----------------------------------------------------------------------===//
// Misc. PatFrags
//===----------------------------------------------------------------------===//
class HasOneUseUnaryOp<SDPatternOperator op> : PatFrag<
(ops node:$src0),
(op $src0)> {
let HasOneUse = 1;
}
class HasOneUseBinOp<SDPatternOperator op> : PatFrag<
(ops node:$src0, node:$src1),
(op $src0, $src1)> {
let HasOneUse = 1;
}
class HasOneUseTernaryOp<SDPatternOperator op> : PatFrag<
(ops node:$src0, node:$src1, node:$src2),
(op $src0, $src1, $src2)> {
let HasOneUse = 1;
}
class is_canonicalized_1<SDPatternOperator op> : PatFrag<
(ops node:$src0),
(op $src0),
[{
const SITargetLowering &Lowering =
*static_cast<const SITargetLowering *>(getTargetLowering());
return Lowering.isCanonicalized(*CurDAG, N->getOperand(0));
}]> {
let GISelPredicateCode = [{
const SITargetLowering *TLI = static_cast<const SITargetLowering *>(
MF.getSubtarget().getTargetLowering());
return TLI->isCanonicalized(MI.getOperand(1).getReg(), MF);
}];
}
class is_canonicalized_2<SDPatternOperator op> : PatFrag<
(ops node:$src0, node:$src1),
(op $src0, $src1),
[{
const SITargetLowering &Lowering =
*static_cast<const SITargetLowering *>(getTargetLowering());
return Lowering.isCanonicalized(*CurDAG, N->getOperand(0)) &&
Lowering.isCanonicalized(*CurDAG, N->getOperand(1));
}]> {
// TODO: Improve the Legalizer for g_build_vector in Global Isel to match this class
let GISelPredicateCode = [{
const SITargetLowering *TLI = static_cast<const SITargetLowering *>(
MF.getSubtarget().getTargetLowering());
return TLI->isCanonicalized(MI.getOperand(1).getReg(), MF) &&
TLI->isCanonicalized(MI.getOperand(2).getReg(), MF);
}];
}
class FoldTernaryOpPat<SDPatternOperator op1, SDPatternOperator op2> : PatFrag<
(ops node:$src0, node:$src1, node:$src2),
(op2 (op1 node:$src0, node:$src1), node:$src2)
>;
def imad : FoldTernaryOpPat<mul, add>;
let Properties = [SDNPCommutative, SDNPAssociative] in {
def smax_oneuse : HasOneUseBinOp<smax>;
def smin_oneuse : HasOneUseBinOp<smin>;
def umax_oneuse : HasOneUseBinOp<umax>;
def umin_oneuse : HasOneUseBinOp<umin>;
def fminnum_oneuse : HasOneUseBinOp<fminnum>;
def fmaxnum_oneuse : HasOneUseBinOp<fmaxnum>;
def fminimum_oneuse : HasOneUseBinOp<fminimum>;
def fmaximum_oneuse : HasOneUseBinOp<fmaximum>;
def fminnum_ieee_oneuse : HasOneUseBinOp<fminnum_ieee>;
def fmaxnum_ieee_oneuse : HasOneUseBinOp<fmaxnum_ieee>;
def and_oneuse : HasOneUseBinOp<and>;
def or_oneuse : HasOneUseBinOp<or>;
def xor_oneuse : HasOneUseBinOp<xor>;
} // Properties = [SDNPCommutative, SDNPAssociative]
def not_oneuse : HasOneUseUnaryOp<not>;
def add_oneuse : HasOneUseBinOp<add>;
def sub_oneuse : HasOneUseBinOp<sub>;
def srl_oneuse : HasOneUseBinOp<srl>;
def shl_oneuse : HasOneUseBinOp<shl>;
def select_oneuse : HasOneUseTernaryOp<select>;
def AMDGPUmul_u24_oneuse : HasOneUseBinOp<AMDGPUmul_u24>;
def AMDGPUmul_i24_oneuse : HasOneUseBinOp<AMDGPUmul_i24>;
//===----------------------------------------------------------------------===//
// PatFrags for shifts
//===----------------------------------------------------------------------===//
// Constrained shift PatFrags.
def csh_mask_16 : PatFrag<(ops node:$src0), (and node:$src0, imm),
[{ return isUnneededShiftMask(N, 4); }]> {
let GISelPredicateCode = [{ return isUnneededShiftMask(MI, 4); }];
}
def csh_mask_32 : PatFrag<(ops node:$src0), (and node:$src0, imm),
[{ return isUnneededShiftMask(N, 5); }]> {
let GISelPredicateCode = [{ return isUnneededShiftMask(MI, 5); }];
}
def csh_mask_64 : PatFrag<(ops node:$src0), (and node:$src0, imm),
[{ return isUnneededShiftMask(N, 6); }]> {
let GISelPredicateCode = [{ return isUnneededShiftMask(MI, 6); }];
}
foreach width = [16, 32, 64] in {
defvar csh_mask = !cast<SDPatternOperator>("csh_mask_"#width);
def cshl_#width : PatFrags<(ops node:$src0, node:$src1),
[(shl node:$src0, node:$src1), (shl node:$src0, (csh_mask node:$src1))]>;
defvar cshl = !cast<SDPatternOperator>("cshl_"#width);
def cshl_#width#_oneuse : HasOneUseBinOp<cshl>;
def clshl_rev_#width : PatFrag <(ops node:$src0, node:$src1),
(cshl $src1, $src0)>;
def csrl_#width : PatFrags<(ops node:$src0, node:$src1),
[(srl node:$src0, node:$src1), (srl node:$src0, (csh_mask node:$src1))]>;
defvar csrl = !cast<SDPatternOperator>("csrl_"#width);
def csrl_#width#_oneuse : HasOneUseBinOp<csrl>;
def clshr_rev_#width : PatFrag <(ops node:$src0, node:$src1),
(csrl $src1, $src0)>;
def csra_#width : PatFrags<(ops node:$src0, node:$src1),
[(sra node:$src0, node:$src1), (sra node:$src0, (csh_mask node:$src1))]>;
defvar csra = !cast<SDPatternOperator>("csra_"#width);
def csra_#width#_oneuse : HasOneUseBinOp<csra>;
def cashr_rev_#width : PatFrag <(ops node:$src0, node:$src1),
(csra $src1, $src0)>;
} // end foreach width
def srl_16 : PatFrag<
(ops node:$src0), (srl_oneuse node:$src0, (i32 16))
>;
def hi_i16_elt : PatFrag<
(ops node:$src0), (i16 (trunc (i32 (srl_16 node:$src0))))
>;
def hi_f16_elt : PatLeaf<
(vt), [{
if (N->getOpcode() != ISD::BITCAST)
return false;
SDValue Tmp = N->getOperand(0);
if (Tmp.getOpcode() != ISD::SRL)
return false;
if (const auto *RHS = dyn_cast<ConstantSDNode>(Tmp.getOperand(1))
return RHS->getZExtValue() == 16;
return false;
}]>;
//===----------------------------------------------------------------------===//
// PatLeafs for zero immediate
//===----------------------------------------------------------------------===//
def immzero : PatLeaf<(imm), [{ return N->isZero(); }]>;
def fpimmzero : PatLeaf<(fpimm), [{ return N->isZero(); }]>;
//===----------------------------------------------------------------------===//
// PatLeafs for floating-point comparisons
//===----------------------------------------------------------------------===//
def COND_OEQ : PatFrags<(ops), [(OtherVT SETOEQ), (OtherVT SETEQ)]>;
def COND_ONE : PatFrags<(ops), [(OtherVT SETONE), (OtherVT SETNE)]>;
def COND_OGT : PatFrags<(ops), [(OtherVT SETOGT), (OtherVT SETGT)]>;
def COND_OGE : PatFrags<(ops), [(OtherVT SETOGE), (OtherVT SETGE)]>;
def COND_OLT : PatFrags<(ops), [(OtherVT SETOLT), (OtherVT SETLT)]>;
def COND_OLE : PatFrags<(ops), [(OtherVT SETOLE), (OtherVT SETLE)]>;
def COND_O : PatFrags<(ops), [(OtherVT SETO)]>;
def COND_UO : PatFrags<(ops), [(OtherVT SETUO)]>;
//===----------------------------------------------------------------------===//
// PatLeafs for unsigned / unordered comparisons
//===----------------------------------------------------------------------===//
def COND_UEQ : PatFrag<(ops), (OtherVT SETUEQ)>;
def COND_UNE : PatFrag<(ops), (OtherVT SETUNE)>;
def COND_UGT : PatFrag<(ops), (OtherVT SETUGT)>;
def COND_UGE : PatFrag<(ops), (OtherVT SETUGE)>;
def COND_ULT : PatFrag<(ops), (OtherVT SETULT)>;
def COND_ULE : PatFrag<(ops), (OtherVT SETULE)>;
// XXX - For some reason R600 version is preferring to use unordered
// for setne?
def COND_UNE_NE : PatFrags<(ops), [(OtherVT SETUNE), (OtherVT SETNE)]>;
//===----------------------------------------------------------------------===//
// PatLeafs for signed comparisons
//===----------------------------------------------------------------------===//
def COND_SGT : PatFrag<(ops), (OtherVT SETGT)>;
def COND_SGE : PatFrag<(ops), (OtherVT SETGE)>;
def COND_SLT : PatFrag<(ops), (OtherVT SETLT)>;
def COND_SLE : PatFrag<(ops), (OtherVT SETLE)>;
//===----------------------------------------------------------------------===//
// PatLeafs for integer equality
//===----------------------------------------------------------------------===//
def COND_EQ : PatFrags<(ops), [(OtherVT SETEQ), (OtherVT SETUEQ)]>;
def COND_NE : PatFrags<(ops), [(OtherVT SETNE), (OtherVT SETUNE)]>;
// FIXME: Should not need code predicate
//def COND_NULL : PatLeaf<(OtherVT null_frag)>;
def COND_NULL : PatLeaf <
(cond),
[{(void)N; return false;}]
>;
//===----------------------------------------------------------------------===//
// PatLeafs for Texture Constants
//===----------------------------------------------------------------------===//
def TEX_ARRAY : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return TType == 9 || TType == 10 || TType == 16;
}]
>;
def TEX_RECT : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return TType == 5;
}]
>;
def TEX_SHADOW : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return (TType >= 6 && TType <= 8) || TType == 13;
}]
>;
def TEX_SHADOW_ARRAY : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return TType == 11 || TType == 12 || TType == 17;
}]
>;
//===----------------------------------------------------------------------===//
// Load/Store Pattern Fragments
//===----------------------------------------------------------------------===//
def atomic_cmp_swap_glue : SDNode <"ISD::ATOMIC_CMP_SWAP", SDTAtomic3,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand, SDNPInGlue]
>;
class AddressSpaceList<list<int> AS> {
list<int> AddrSpaces = AS;
}
class Aligned<int Bytes> {
int MinAlignment = Bytes;
}
class StoreHi16<SDPatternOperator op, ValueType vt> : PatFrag <
(ops node:$value, node:$ptr), (op (srl node:$value, (i32 16)), node:$ptr)> {
let IsStore = 1;
let MemoryVT = vt;
}
def LoadAddress_constant : AddressSpaceList<[ AddrSpaces.Constant,
AddrSpaces.Constant32Bit ]>;
def LoadAddress_global : AddressSpaceList<[ AddrSpaces.Global,
AddrSpaces.Constant,
AddrSpaces.Constant32Bit ]>;
def StoreAddress_global : AddressSpaceList<[ AddrSpaces.Global ]>;
def LoadAddress_flat : AddressSpaceList<[ AddrSpaces.Flat,
AddrSpaces.Global,
AddrSpaces.Constant,
AddrSpaces.Constant32Bit ]>;
def StoreAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, AddrSpaces.Global ]>;
def LoadAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>;
def StoreAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>;
def LoadAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>;
def StoreAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>;
def LoadAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>;
def StoreAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>;
foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in {
let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in {
def load_#as : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> {
let IsLoad = 1;
let IsNonExtLoad = 1;
}
def extloadi8_#as : PatFrag<(ops node:$ptr), (extloadi8 node:$ptr)> {
let IsLoad = 1;
}
def extloadi16_#as : PatFrag<(ops node:$ptr), (extloadi16 node:$ptr)> {
let IsLoad = 1;
}
def sextloadi8_#as : PatFrag<(ops node:$ptr), (sextloadi8 node:$ptr)> {
let IsLoad = 1;
}
def sextloadi16_#as : PatFrag<(ops node:$ptr), (sextloadi16 node:$ptr)> {
let IsLoad = 1;
}
def zextloadi8_#as : PatFrag<(ops node:$ptr), (zextloadi8 node:$ptr)> {
let IsLoad = 1;
}
def zextloadi16_#as : PatFrag<(ops node:$ptr), (zextloadi16 node:$ptr)> {
let IsLoad = 1;
}
def atomic_load_8_#as : PatFrag<(ops node:$ptr), (atomic_load_8 node:$ptr)> {
let IsAtomic = 1;
let MemoryVT = i8;
}
def atomic_load_16_#as : PatFrag<(ops node:$ptr), (atomic_load_16 node:$ptr)> {
let IsAtomic = 1;
let MemoryVT = i16;
}
def atomic_load_32_#as : PatFrag<(ops node:$ptr), (atomic_load_32 node:$ptr)> {
let IsAtomic = 1;
let MemoryVT = i32;
}
def atomic_load_64_#as : PatFrag<(ops node:$ptr), (atomic_load_64 node:$ptr)> {
let IsAtomic = 1;
let MemoryVT = i64;
}
} // End let AddressSpaces
} // End foreach as
foreach as = [ "global", "flat", "local", "private", "region" ] in {
let IsStore = 1, AddressSpaces = !cast<AddressSpaceList>("StoreAddress_"#as).AddrSpaces in {
def store_#as : PatFrag<(ops node:$val, node:$ptr),
(unindexedstore node:$val, node:$ptr)> {
let IsTruncStore = 0;
}
// truncstore fragments.
def truncstore_#as : PatFrag<(ops node:$val, node:$ptr),
(unindexedstore node:$val, node:$ptr)> {
let IsTruncStore = 1;
}
// TODO: We don't really need the truncstore here. We can use
// unindexedstore with MemoryVT directly, which will save an
// unnecessary check that the memory size is less than the value type
// in the generated matcher table.
def truncstorei8_#as : PatFrag<(ops node:$val, node:$ptr),
(truncstorei8 node:$val, node:$ptr)>;
def truncstorei16_#as : PatFrag<(ops node:$val, node:$ptr),
(truncstorei16 node:$val, node:$ptr)>;
def store_hi16_#as : StoreHi16 <truncstorei16, i16>;
def truncstorei8_hi16_#as : StoreHi16<truncstorei8, i8>;
def truncstorei16_hi16_#as : StoreHi16<truncstorei16, i16>;
} // End let IsStore = 1, AddressSpaces = ...
let IsAtomic = 1, AddressSpaces = !cast<AddressSpaceList>("StoreAddress_"#as).AddrSpaces in {
def atomic_store_8_#as : PatFrag<(ops node:$val, node:$ptr),
(atomic_store_8 node:$val, node:$ptr)>;
def atomic_store_16_#as : PatFrag<(ops node:$val, node:$ptr),
(atomic_store_16 node:$val, node:$ptr)>;
def atomic_store_32_#as : PatFrag<(ops node:$val, node:$ptr),
(atomic_store_32 node:$val, node:$ptr)>;
def atomic_store_64_#as : PatFrag<(ops node:$val, node:$ptr),
(atomic_store_64 node:$val, node:$ptr)>;
} // End let IsAtomic = 1, AddressSpaces = ...
} // End foreach as
multiclass noret_op {
let HasNoUse = true in
def "_noret" : PatFrag<(ops node:$ptr, node:$data),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$data)>;
}
multiclass global_addr_space_atomic_op {
def "_noret_global_addrspace" :
PatFrag<(ops node:$ptr, node:$data),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$data)>{
let HasNoUse = true;
let AddressSpaces = LoadAddress_global.AddrSpaces;
let IsAtomic = 1;
}
def "_global_addrspace" :
PatFrag<(ops node:$ptr, node:$data),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$data)>{
let AddressSpaces = LoadAddress_global.AddrSpaces;
let IsAtomic = 1;
}
}
multiclass flat_addr_space_atomic_op {
def "_noret_flat_addrspace" :
PatFrag<(ops node:$ptr, node:$data),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$data)>{
let HasNoUse = true;
let AddressSpaces = LoadAddress_flat.AddrSpaces;
let IsAtomic = 1;
}
def "_flat_addrspace" :
PatFrag<(ops node:$ptr, node:$data),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$data)>{
let AddressSpaces = LoadAddress_flat.AddrSpaces;
let IsAtomic = 1;
}
}
multiclass local_addr_space_atomic_op {
def "_noret_local_addrspace" :
PatFrag<(ops node:$ptr, node:$data),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$data)>{
let HasNoUse = true;
let AddressSpaces = LoadAddress_local.AddrSpaces;
let IsAtomic = 1;
}
def "_local_addrspace" :
PatFrag<(ops node:$ptr, node:$data),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$data)>{
let AddressSpaces = LoadAddress_local.AddrSpaces;
let IsAtomic = 1;
}
}
defm int_amdgcn_flat_atomic_fmin : noret_op;
defm int_amdgcn_flat_atomic_fmax : noret_op;
defm int_amdgcn_global_atomic_fmin : noret_op;
defm int_amdgcn_global_atomic_fmax : noret_op;
defm int_amdgcn_global_atomic_csub : noret_op;
defm int_amdgcn_global_atomic_ordered_add_b64 : noret_op;
defm int_amdgcn_flat_atomic_fmin_num : noret_op;
defm int_amdgcn_flat_atomic_fmax_num : noret_op;
defm int_amdgcn_global_atomic_fmin_num : noret_op;
defm int_amdgcn_global_atomic_fmax_num : noret_op;
defm int_amdgcn_atomic_cond_sub_u32 : local_addr_space_atomic_op;
defm int_amdgcn_atomic_cond_sub_u32 : flat_addr_space_atomic_op;
defm int_amdgcn_atomic_cond_sub_u32 : global_addr_space_atomic_op;
multiclass noret_binary_atomic_op<SDNode atomic_op> {
let HasNoUse = true in
defm "_noret" : binary_atomic_op<atomic_op>;
}
multiclass noret_binary_atomic_op_fp<SDNode atomic_op> {
let HasNoUse = true in
defm "_noret" : binary_atomic_op_fp<atomic_op>;
}
multiclass noret_ternary_atomic_op<SDNode atomic_op> {
let HasNoUse = true in
defm "_noret" : ternary_atomic_op<atomic_op>;
}
defvar atomic_addrspace_names = [ "global", "flat", "constant", "local", "private", "region" ];
multiclass binary_atomic_op_all_as<SDNode atomic_op> {
foreach as = atomic_addrspace_names in {
let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in {
defm "_"#as : binary_atomic_op<atomic_op>;
defm "_"#as : noret_binary_atomic_op<atomic_op>;
}
}
}
multiclass binary_atomic_op_fp_all_as<SDNode atomic_op> {
foreach as = atomic_addrspace_names in {
let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in {
defm "_"#as : binary_atomic_op_fp<atomic_op>;
defm "_"#as : noret_binary_atomic_op_fp<atomic_op>;
}
}
}
defm atomic_swap : binary_atomic_op_all_as<atomic_swap>;
defm atomic_load_add : binary_atomic_op_all_as<atomic_load_add>;
defm atomic_load_and : binary_atomic_op_all_as<atomic_load_and>;
defm atomic_load_max : binary_atomic_op_all_as<atomic_load_max>;
defm atomic_load_min : binary_atomic_op_all_as<atomic_load_min>;
defm atomic_load_or : binary_atomic_op_all_as<atomic_load_or>;
defm atomic_load_sub : binary_atomic_op_all_as<atomic_load_sub>;
defm atomic_load_umax : binary_atomic_op_all_as<atomic_load_umax>;
defm atomic_load_umin : binary_atomic_op_all_as<atomic_load_umin>;
defm atomic_load_xor : binary_atomic_op_all_as<atomic_load_xor>;
defm atomic_load_fadd : binary_atomic_op_fp_all_as<atomic_load_fadd>;
defm atomic_load_fmin : binary_atomic_op_fp_all_as<atomic_load_fmin>;
defm atomic_load_fmax : binary_atomic_op_fp_all_as<atomic_load_fmax>;
defm atomic_load_uinc_wrap : binary_atomic_op_all_as<atomic_load_uinc_wrap>;
defm atomic_load_udec_wrap : binary_atomic_op_all_as<atomic_load_udec_wrap>;
defm AMDGPUatomic_cmp_swap : binary_atomic_op_all_as<AMDGPUatomic_cmp_swap>;
def load_align8_local : PatFrag<(ops node:$ptr), (load_local node:$ptr)>,
Aligned<8> {
let IsLoad = 1;
}
def load_align16_local : PatFrag<(ops node:$ptr), (load_local node:$ptr)>,
Aligned<16> {
let IsLoad = 1;
}
def store_align8_local: PatFrag<(ops node:$val, node:$ptr),
(store_local node:$val, node:$ptr)>, Aligned<8> {
let IsStore = 1;
}
def store_align16_local: PatFrag<(ops node:$val, node:$ptr),
(store_local node:$val, node:$ptr)>, Aligned<16> {
let IsStore = 1;
}
let AddressSpaces = StoreAddress_local.AddrSpaces in {
defm atomic_cmp_swap_local : ternary_atomic_op<atomic_cmp_swap>;
defm atomic_cmp_swap_local : noret_ternary_atomic_op<atomic_cmp_swap>;
defm atomic_cmp_swap_local_m0 : noret_ternary_atomic_op<atomic_cmp_swap_glue>;
defm atomic_cmp_swap_local_m0 : ternary_atomic_op<atomic_cmp_swap_glue>;
}
let AddressSpaces = StoreAddress_region.AddrSpaces in {
defm atomic_cmp_swap_region : noret_ternary_atomic_op<atomic_cmp_swap>;
defm atomic_cmp_swap_region_m0 : noret_ternary_atomic_op<atomic_cmp_swap_glue>;
defm atomic_cmp_swap_region_m0 : ternary_atomic_op<atomic_cmp_swap_glue>;
}
//===----------------------------------------------------------------------===//
// Misc Pattern Fragments
//===----------------------------------------------------------------------===//
class Constants {
int TWO_PI = 0x40c90fdb;
int PI = 0x40490fdb;
int TWO_PI_INV = 0x3e22f983;
int FP_4294966784 = 0x4f7ffffe; // 4294966784 = 4294967296 - 512 = 2^32 - 2^9
int FP16_ONE = 0x3C00;
int FP16_NEG_ONE = 0xBC00;
int FP32_ONE = 0x3f800000;
int FP32_NEG_ONE = 0xbf800000;
int FP64_ONE = 0x3ff0000000000000;
int FP64_NEG_ONE = 0xbff0000000000000;
}
def CONST : Constants;
def FP_ZERO : PatLeaf <
(fpimm),
[{return N->getValueAPF().isZero();}]
>;
def FP_ONE : PatLeaf <
(fpimm),
[{return N->isExactlyValue(1.0);}]
>;
def FP_HALF : PatLeaf <
(fpimm),
[{return N->isExactlyValue(0.5);}]
>;
/* Generic helper patterns for intrinsics */
/* -------------------------------------- */
class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul>
: AMDGPUPat <
(fpow f32:$src0, f32:$src1),
(exp_ieee (mul f32:$src1, (log_ieee f32:$src0)))
>;
/* Other helper patterns */
/* --------------------- */
/* Extract element pattern */
class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx,
SubRegIndex sub_reg>
: AMDGPUPat<
(sub_type (extractelt vec_type:$src, sub_idx)),
(EXTRACT_SUBREG $src, sub_reg)
>;
/* Insert element pattern */
class Insert_Element <ValueType elem_type, ValueType vec_type,
int sub_idx, SubRegIndex sub_reg>
: AMDGPUPat <
(insertelt vec_type:$vec, elem_type:$elem, sub_idx),
(INSERT_SUBREG $vec, $elem, sub_reg)
>;
// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer
// can handle COPY instructions.
// bitconvert pattern
class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : AMDGPUPat <
(dt (bitconvert (st rc:$src0))),
(dt rc:$src0)
>;
// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer
// can handle COPY instructions.
class DwordAddrPat<ValueType vt, RegisterClass rc> : AMDGPUPat <
(vt (AMDGPUdwordaddr (vt rc:$addr))),
(vt rc:$addr)
>;
// rotr pattern
class ROTRPattern <Instruction BIT_ALIGN> : AMDGPUPat <
(rotr i32:$src0, i32:$src1),
(BIT_ALIGN $src0, $src0, $src1)
>;
// Special conversion patterns
def cvt_rpi_i32_f32 : PatFrag <
(ops node:$src),
(fp_to_sint (ffloor (fadd $src, FP_HALF))),
[{ (void) N; return TM.Options.NoNaNsFPMath; }]
>;
def cvt_flr_i32_f32 : PatFrag <
(ops node:$src),
(fp_to_sint (ffloor $src)),
[{ (void)N; return TM.Options.NoNaNsFPMath; }]
>;
let AddedComplexity = 2 in {
class IMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat <
(add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2),
!if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)),
(Inst $src0, $src1, $src2))
>;
class UMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat <
(add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2),
!if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)),
(Inst $src0, $src1, $src2))
>;
} // AddedComplexity.
class RcpPat<Instruction RcpInst, ValueType vt> : AMDGPUPat <
(fdiv FP_ONE, vt:$src),
(RcpInst $src)
>;
// Instructions which select to the same v_min_f*
def fminnum_like : PatFrags<(ops node:$src0, node:$src1),
[(fminnum_ieee node:$src0, node:$src1),
(fminnum node:$src0, node:$src1)]
>;
// Instructions which select to the same v_max_f*
def fmaxnum_like : PatFrags<(ops node:$src0, node:$src1),
[(fmaxnum_ieee node:$src0, node:$src1),
(fmaxnum node:$src0, node:$src1)]
>;
class NeverNaNPats<dag ops, list<dag> frags> : PatFrags<ops, frags> {
let PredicateCode = [{
return CurDAG->isKnownNeverNaN(SDValue(N,0));
}];
let GISelPredicateCode = [{
return isKnownNeverNaN(MI.getOperand(0).getReg(), MRI);
}];
}
def fminnum_like_nnan : NeverNaNPats<(ops node:$src0, node:$src1),
[(fminnum_ieee node:$src0, node:$src1),
(fminnum node:$src0, node:$src1)]
>;
def fmaxnum_like_nnan : NeverNaNPats<(ops node:$src0, node:$src1),
[(fmaxnum_ieee node:$src0, node:$src1),
(fmaxnum node:$src0, node:$src1)]
>;
def fminnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1),
[(fminnum_ieee_oneuse node:$src0, node:$src1),
(fminnum_oneuse node:$src0, node:$src1)]
>;
def fmaxnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1),
[(fmaxnum_ieee_oneuse node:$src0, node:$src1),
(fmaxnum_oneuse node:$src0, node:$src1)]
>;
def any_fmad : PatFrags<(ops node:$src0, node:$src1, node:$src2),
[(fmad node:$src0, node:$src1, node:$src2),
(AMDGPUfmad_ftz node:$src0, node:$src1, node:$src2)]
>;
// FIXME: fsqrt should not select directly
def any_amdgcn_sqrt : PatFrags<(ops node:$src0),
[(fsqrt node:$src0), (int_amdgcn_sqrt node:$src0)]
>;