//===- XtensaInstrInfo.td - Target Description for Xtensa -*- tablegen -*--===//
//
// The LLVM Compiler Infrastructure
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the Xtensa instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "XtensaInstrFormats.td"
include "XtensaOperands.td"
include "XtensaOperators.td"
//===----------------------------------------------------------------------===//
// Arithmetic & Logical instructions
//===----------------------------------------------------------------------===//
class ArithLogic_RRR<bits<4> oper2, bits<4> oper1, string instrAsm,
SDPatternOperator opNode, bit isComm = 0>
: RRR_Inst<0x00, oper1, oper2, (outs AR:$r), (ins AR:$s, AR:$t),
instrAsm#"\t$r, $s, $t",
[(set AR:$r, (opNode AR:$s, AR:$t))]> {
let isCommutable = isComm;
let isReMaterializable = 0;
}
def ADD : ArithLogic_RRR<0x08, 0x00, "add", add, 1>;
def SUB : ArithLogic_RRR<0x0C, 0x00, "sub", sub>;
def AND : ArithLogic_RRR<0x01, 0x00, "and", and, 1>;
def OR : ArithLogic_RRR<0x02, 0x00, "or", or, 1>;
def XOR : ArithLogic_RRR<0x03, 0x00, "xor", xor, 1>;
class ADDX<bits<4> oper, string instrAsm, list<dag> pattern>
: RRR_Inst<0x00, 0x00, oper, (outs AR:$r), (ins AR:$s, AR:$t),
instrAsm#"\t$r, $s, $t", pattern>;
def ADDX2 : ADDX<0x09, "addx2", [(set AR:$r, (add AR:$t, (shl AR:$s, (i32 1))))]>;
def ADDX4 : ADDX<0x0A, "addx4", [(set AR:$r, (add AR:$t, (shl AR:$s, (i32 2))))]>;
def ADDX8 : ADDX<0x0B, "addx8", [(set AR:$r, (add AR:$t, (shl AR:$s, (i32 3))))]>;
class SUBX<bits<4> oper, string instrAsm, list<dag> pattern>
: RRR_Inst<0x00, 0x00, oper, (outs AR:$r), (ins AR:$s, AR:$t),
instrAsm#"\t$r, $s, $t", pattern>;
def SUBX2 : SUBX<0x0D, "subx2", [(set AR:$r, (sub (shl AR:$s, (i32 1)), AR:$t))]>;
def SUBX4 : SUBX<0x0E, "subx4", [(set AR:$r, (sub (shl AR:$s, (i32 2)), AR:$t))]>;
def SUBX8 : SUBX<0x0F, "subx8", [(set AR:$r, (sub (shl AR:$s, (i32 3)), AR:$t))]>;
def ABS : RRR_Inst<0x00, 0x00, 0x06, (outs AR:$r), (ins AR:$t),
"abs\t$r, $t", []> {
let s = 0x1;
}
def ADDI : RRI8_Inst<0x02, (outs AR:$t), (ins AR:$s, imm8:$imm8),
"addi\t$t, $s, $imm8",
[(set AR:$t, (add AR:$s, imm8:$imm8))]> {
let r = 0x0C;
}
def ADDMI : RRI8_Inst<0x02, (outs AR:$t), (ins AR:$s, imm8_sh8:$imm_sh8),
"addmi\t$t, $s, $imm_sh8",
[(set AR:$t, (add AR:$s, imm8_sh8:$imm_sh8))]> {
bits<16> imm_sh8;
let r = 0x0D;
let imm8 = imm_sh8{15-8};
}
def NEG : RRR_Inst<0x00, 0x00, 0x06, (outs AR:$r), (ins AR:$t),
"neg\t$r, $t",
[(set AR:$r, (ineg AR:$t))]> {
let s = 0x00;
}
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
def MOVI : RRI8_Inst<0x02, (outs AR:$t), (ins imm12m:$imm),
"movi\t$t, $imm",
[(set AR:$t, imm12m:$imm)]> {
bits<12> imm;
let imm8{7-0} = imm{7-0};
let s{3-0} = imm{11-8};
let r = 0xa;
}
def MOVEQZ : RRR_Inst<0x00, 0x03, 0x08, (outs AR:$r), (ins AR:$s, AR:$t),
"moveqz\t$r, $s, $t", []>;
def MOVNEZ : RRR_Inst<0x00, 0x03, 0x09, (outs AR:$r), (ins AR:$s, AR:$t),
"movnez\t$r, $s, $t", []>;
def MOVLTZ : RRR_Inst<0x00, 0x03, 0x0A, (outs AR:$r), (ins AR:$s, AR:$t),
"movltz\t$r, $s, $t", []>;
def MOVGEZ : RRR_Inst<0x00, 0x03, 0x0B, (outs AR:$r), (ins AR:$s, AR:$t),
"movgez\t$r, $s, $t", []>;
//===----------------------------------------------------------------------===//
// Shift instructions
//===----------------------------------------------------------------------===//
let Uses = [SAR] in {
def SLL : RRR_Inst<0x00, 0x01, 0x0A, (outs AR:$r), (ins AR:$s),
"sll\t$r, $s", []> {
let t = 0x00;
}
def SRA : RRR_Inst<0x00, 0x01, 0x0B, (outs AR:$r), (ins AR:$t),
"sra\t$r, $t", []> {
let s = 0x00;
}
def SRC : RRR_Inst<0x00, 0x01, 0x08, (outs AR:$r), (ins AR:$s, AR:$t),
"src\t$r, $s, $t", []>;
def SRL : RRR_Inst<0x00, 0x01, 0x09, (outs AR:$r), (ins AR:$t),
"srl\t$r, $t", []> {
let s = 0x00;
}
}
let Defs = [SAR] in {
def SSL : RRR_Inst<0x00, 0x00, 0x04, (outs), (ins AR:$s),
"ssl\t$s", []> {
let r = 0x01;
let t = 0x00;
}
def SSR : RRR_Inst<0x00, 0x00, 0x04, (outs), (ins AR:$s),
"ssr\t$s", []> {
let r = 0x00;
let t = 0x00;
}
}
def EXTUI : RRR_Inst<0x00, 0x04, 0x00, (outs AR:$r), (ins AR:$t, uimm5:$imm1, imm1_16:$imm2),
"extui\t$r, $t, $imm1, $imm2",
[(set AR:$r, (Xtensa_extui AR:$t, uimm5:$imm1, imm1_16:$imm2))]> {
bits<5> imm1;
bits<4> imm2;
let s = imm1{3-0};
let Inst{16} = imm1{4};
let Inst{23-20} = imm2;
}
def SRAI : RRR_Inst<0x00, 0x01, 0x02, (outs AR:$r), (ins AR:$t, uimm5:$sa),
"srai\t$r, $t, $sa",
[(set AR:$r, (sra AR:$t, uimm5:$sa))]> {
bits<5> sa;
let Inst{20} = sa{4};
let s = sa{3-0};
}
def SRLI : RRR_Inst<0x00, 0x01, 0x04, (outs AR:$r), (ins AR:$t, uimm4:$sa),
"srli\t$r, $t, $sa",
[(set AR:$r, (srl AR:$t, uimm4:$sa))]> {
bits<4> sa;
let s = sa;
}
def SLLI : RRR_Inst<0x00, 0x01, 0x00, (outs AR:$r), (ins AR:$s, shimm1_31:$sa),
"slli\t$r, $s, $sa",
[(set AR:$r, (shl AR:$s, shimm1_31:$sa))]> {
bits<5> sa;
let Inst{20} = sa{4};
let t = sa{3-0};
}
def SSA8L : RRR_Inst<0x00, 0x00, 0x04, (outs), (ins AR:$s),
"ssa8l\t$s", []> {
let r = 0x2;
let t = 0x0;
}
def SSAI : RRR_Inst<0x00, 0x00, 0x04, (outs), (ins uimm5:$imm),
"ssai\t$imm", []> {
bits<5> imm;
let r = 0x04;
let s = imm{3-0};
let t{3-1} = 0;
let t{0} = imm{4};
}
//===----------------------------------------------------------------------===//
// Load and store instructions
//===----------------------------------------------------------------------===//
// Load instructions
let mayLoad = 1, usesCustomInserter = 1 in {
class Load_RRI8<bits<4> oper, string instrAsm, SDPatternOperator opNode,
ComplexPattern addrOp, Operand memOp>
: RRI8_Inst<0x02, (outs AR:$t), (ins memOp:$addr),
instrAsm#"\t$t, $addr",
[(set AR:$t, (opNode addrOp:$addr))]> {
bits<12> addr;
let r = oper;
let imm8{7-0} = addr{11-4};
let s{3-0} = addr{3-0};
}
}
def L8UI : Load_RRI8<0x00, "l8ui", zextloadi8, addr_ish1, mem8>;
def L16SI : Load_RRI8<0x09, "l16si", sextloadi16, addr_ish2, mem16>;
def L16UI : Load_RRI8<0x01, "l16ui", zextloadi16, addr_ish2, mem16>;
def L32I : Load_RRI8<0x02, "l32i", load, addr_ish4, mem32>;
// Store instructions
let mayStore = 1, usesCustomInserter = 1 in {
class Store_II8<bits<4> oper, string instrAsm, SDPatternOperator opNode,
ComplexPattern addrOp, Operand memOp>
: RRI8_Inst<0x02, (outs), (ins AR:$t, memOp:$addr),
instrAsm#"\t$t, $addr",
[(opNode AR:$t, addrOp:$addr)]> {
bits<12> addr;
let r = oper;
let imm8{7-0} = addr{11-4};
let s{3-0} = addr{3-0};
}
}
def S8I : Store_II8<0x04, "s8i", truncstorei8, addr_ish1, mem8>;
def S16I : Store_II8<0x05, "s16i", truncstorei16, addr_ish2, mem16>;
def S32I : Store_II8<0x06, "s32i", store, addr_ish4, mem32>;
def L32R : RI16_Inst<0x01, (outs AR:$t), (ins L32Rtarget:$label),
"l32r\t$t, $label", []> {
bits<16> label;
let imm16 = label;
}
// pcrel addr loading using L32R
def : Pat<(Xtensa_pcrel_wrapper tconstpool : $in), (L32R tconstpool : $in)>;
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched.
// Setting of attribute mayLoad is trick to process instruction operands
// in function XtensaRegisterInfo::eliminateFI
let isCodeGenOnly = 1, mayLoad = 1 in {
def LEA_ADD : RRI8_Inst<0x02, (outs AR:$t), (ins mem32:$addr),
"addi\t$t, $addr",
[(set AR:$t, addr_ish4:$addr)]> {
bits<12> addr;
let r = 0x0C;
let imm8{7-0} = addr{11-4};
let s{3-0} = addr{3-0};
}
}
//extending loads
def : Pat<(i32 (extloadi1 addr_ish1:$addr)), (L8UI addr_ish1:$addr)>;
def : Pat<(i32 (extloadi8 addr_ish1:$addr)), (L8UI addr_ish1:$addr)>;
def : Pat<(i32 (extloadi16 addr_ish2:$addr)), (L16UI addr_ish2:$addr)>;
//===----------------------------------------------------------------------===//
// Conditional branch instructions
//===----------------------------------------------------------------------===//
let isBranch = 1, isTerminator = 1 in {
class Branch_RR<bits<4> oper, string instrAsm, CondCode CC>
: RRI8_Inst<0x07, (outs),
(ins AR:$s, AR:$t, brtarget:$target),
instrAsm#"\t$s, $t, $target",
[(brcc CC, AR:$s, AR:$t, bb:$target)]> {
bits<8> target;
let r = oper;
let imm8 = target;
}
class Branch_RI<bits<4> oper, string instrAsm, CondCode CC>
: RRI8_Inst<0x06, (outs),
(ins AR:$s, b4const:$imm, brtarget:$target),
instrAsm#"\t$s, $imm, $target",
[(brcc CC, AR:$s, b4const:$imm, bb:$target)]> {
bits<4> imm;
bits<8> target;
let t = oper;
let r = imm;
let imm8 = target;
}
class Branch_RIU<bits<4> oper, string instrAsm, CondCode CC>
: RRI8_Inst<0x06, (outs),
(ins AR:$s, b4constu:$imm, brtarget:$target),
instrAsm#"\t$s, $imm, $target",
[(brcc CC, AR:$s, b4constu:$imm, bb:$target)]> {
bits<4> imm;
bits<8> target;
let t = oper;
let r = imm;
let imm8 = target;
}
class Branch_RZ<bits<2> n, bits<2> m, string instrAsm, CondCode CC>
: BRI12_Inst<0x06, n, m, (outs),
(ins AR:$s, brtarget:$target),
instrAsm#"\t$s, $target",
[(brcc CC, AR:$s, (i32 0), bb:$target)]> {
bits<12> target;
let imm12 = target;
}
}
def BEQ : Branch_RR<0x01, "beq", SETEQ>;
def BNE : Branch_RR<0x09, "bne", SETNE>;
def BGE : Branch_RR<0x0A, "bge", SETGE>;
def BLT : Branch_RR<0x02, "blt", SETLT>;
def BGEU : Branch_RR<0x0B, "bgeu", SETUGE>;
def BLTU : Branch_RR<0x03, "bltu", SETULT>;
def BEQI : Branch_RI<0x02, "beqi", SETEQ>;
def BNEI : Branch_RI<0x06, "bnei", SETNE>;
def BGEI : Branch_RI<0x0E, "bgei", SETGE>;
def BLTI : Branch_RI<0x0A, "blti", SETLT>;
def BGEUI : Branch_RIU<0x0F, "bgeui", SETUGE>;
def BLTUI : Branch_RIU<0x0B, "bltui", SETULT>;
def BEQZ : Branch_RZ<0x01, 0x00, "beqz", SETEQ>;
def BNEZ : Branch_RZ<0x01, 0x01, "bnez", SETNE>;
def BGEZ : Branch_RZ<0x01, 0x03, "bgez", SETGE>;
def BLTZ : Branch_RZ<0x01, 0x02, "bltz", SETLT>;
def BALL : RRI8_Inst<0x07, (outs),
(ins AR:$s, AR:$t, brtarget:$target),
"ball\t$s, $t, $target", []> {
bits<8> target;
let r = 0x04;
let imm8 = target;
}
def BANY : RRI8_Inst<0x07, (outs),
(ins AR:$s, AR:$t, brtarget:$target),
"bany\t$s, $t, $target", []> {
bits<8> target;
let r = 0x08;
let imm8 = target;
}
def BBC : RRI8_Inst<0x07, (outs),
(ins AR:$s, AR:$t, brtarget:$target),
"bbc\t$s, $t, $target", []> {
bits<8> target;
let r = 0x05;
let imm8 = target;
}
def BBS : RRI8_Inst<0x07, (outs),
(ins AR:$s, AR:$t, brtarget:$target),
"bbs\t$s, $t, $target", []> {
bits<8> target;
let r = 0x0d;
let imm8 = target;
}
def BNALL : RRI8_Inst<0x07, (outs),
(ins AR:$s, AR:$t, brtarget:$target),
"bnall\t$s, $t, $target", []> {
bits<8> target;
let r = 0x0c;
let imm8 = target;
}
def BNONE : RRI8_Inst<0x07, (outs),
(ins AR:$s, AR:$t, brtarget:$target),
"bnone\t$s, $t, $target", []> {
bits<8> target;
let r = 0x00;
let imm8 = target;
}
def BBCI : RRI8_Inst<0x07, (outs),
(ins AR:$s, uimm5:$imm, brtarget:$target),
"bbci\t$s, $imm, $target", []> {
bits<8> target;
bits<5> imm;
let r{3-1} = 0x3;
let r{0} = imm{4};
let t{3-0} = imm{3-0};
let imm8 = target;
}
def BBSI : RRI8_Inst<0x07, (outs),
(ins AR:$s, uimm5:$imm, brtarget:$target),
"bbsi\t$s, $imm, $target", []> {
bits<8> target;
bits<5> imm;
let r{3-1} = 0x7;
let r{0} = imm{4};
let t{3-0} = imm{3-0};
let imm8 = target;
}
//===----------------------------------------------------------------------===//
// Call and jump instructions
//===----------------------------------------------------------------------===//
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
def J : CALL_Inst<0x06, (outs), (ins jumptarget:$offset),
"j\t$offset",
[(br bb:$offset)]> {
let n = 0x0;
}
def JX : CALLX_Inst<0x00, 0x00, 0x00, (outs), (ins AR:$s),
"jx\t$s",
[(brind AR:$s)]> {
let m = 0x2;
let n = 0x2;
let r = 0;
let isIndirectBranch = 1;
}
}
let isCall = 1, Defs = [A0] in {
def CALL0 : CALL_Inst<0x05, (outs), (ins pcrel32call:$offset),
"call0\t$offset", []> {
let n = 0;
}
def CALLX0 : CALLX_Inst<0x00, 0x00, 0x00, (outs), (ins AR:$s),
"callx0\t$s", []> {
let m = 0x3;
let n = 0x0;
let r = 0;
}
}
let isReturn = 1, isTerminator = 1,
isBarrier = 1, Uses = [A0] in {
def RET : CALLX_Inst<0x00, 0x00, 0x00, (outs), (ins),
"ret", [(Xtensa_ret)]> {
let m = 0x2;
let n = 0x0;
let s = 0;
let r = 0;
}
}
// Call patterns
def : Pat<(Xtensa_call (i32 tglobaladdr:$dst)),
(CALL0 tglobaladdr:$dst)>;
def : Pat<(Xtensa_call (i32 texternalsym:$dst)),
(CALL0 texternalsym:$dst)>;
def : Pat<(Xtensa_call AR:$dst),
(CALLX0 AR:$dst)>;
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1, Size = 3 in {
def BR_JT: Pseudo<(outs), (ins AR:$s, i32imm:$jt),
"!br_jt_p, $s, $jt",
[(Xtensa_brjt AR:$s, tjumptable:$jt)]>;
}
//===----------------------------------------------------------------------===//
// Mem barrier instructions
//===----------------------------------------------------------------------===//
def MEMW : RRR_Inst<0x00, 0x00, 0x00, (outs), (ins),
"memw", []> {
let r = 0x2;
let t = 0x0c;
let s = 0x0;
}
def EXTW : RRR_Inst<0x00, 0x00, 0x00, (outs), (ins),
"extw", []> {
let r = 0x2;
let s = 0x0;
let t = 0xd;
let hasSideEffects = 1;
}
//===----------------------------------------------------------------------===//
// Processor control instructions
//===----------------------------------------------------------------------===//
def DSYNC : RRR_Inst<0x00, 0x00, 0x00, (outs), (ins),
"dsync", []> {
let r = 0x2;
let s = 0x0;
let t = 0x3;
let hasSideEffects = 1;
}
def ISYNC : RRR_Inst<0x00, 0x00, 0x00, (outs), (ins),
"isync", []> {
let r = 0x2;
let s = 0x0;
let t = 0x0;
let hasSideEffects = 1;
}
def RSYNC : RRR_Inst<0x00, 0x00, 0x00, (outs), (ins),
"rsync", []> {
let r = 0x2;
let s = 0x0;
let t = 0x1;
let hasSideEffects = 1;
}
def ESYNC : RRR_Inst<0x00, 0x00, 0x00, (outs), (ins),
"esync", []> {
let r = 0x2;
let s = 0x0;
let t = 0x2;
let hasSideEffects = 1;
}
def NOP : RRR_Inst<0x00, 0x00, 0x00, (outs), (ins),
"nop", []> {
let r = 0x02;
let s = 0x00;
let t = 0x0f;
}
def WSR : RSR_Inst<0x00, 0x03, 0x01, (outs SR:$sr), (ins AR:$t),
"wsr\t$t, $sr", []>;
def RSR : RSR_Inst<0x00, 0x03, 0x00, (outs AR:$t), (ins SR:$sr),
"rsr\t$t, $sr", []>;
def XSR : RSR_Inst<0x00, 0x01, 0x06, (outs AR:$ard, SR:$srd), (ins AR:$t, SR:$sr),
"xsr\t$t, $sr", []> {
let Constraints = "$ard = $t, $srd = $sr";
}
//===----------------------------------------------------------------------===//
// Stack allocation
//===----------------------------------------------------------------------===//
// ADJCALLSTACKDOWN/UP implicitly use/def SP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKDOWN",
[(Xtensa_callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
[(Xtensa_callseq_end timm:$amt1, timm:$amt2)]>;
}
//===----------------------------------------------------------------------===//
// Generic select instruction
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1 in {
def SELECT : Pseudo<(outs AR:$dst), (ins AR:$lhs, AR:$rhs, AR:$t, AR:$f, i32imm:$cond),
"!select $dst, $lhs, $rhs, $t, $f, $cond",
[(set i32:$dst, (Xtensa_select_cc i32:$lhs, i32:$rhs, i32:$t, i32:$f, imm:$cond))]>;
}