//===-- RISCVInstrInfoVPseudos.td - RISC-V 'V' Pseudos -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file contains the required infrastructure to support code generation
/// for the standard 'V' (Vector) extension, version 1.0.
///
/// This file is included from RISCVInstrInfoV.td
///
/// Overview of our vector instruction pseudos. Many of the instructions
/// have behavior which depends on the value of VTYPE. Several core aspects of
/// the compiler - e.g. register allocation - depend on fields in this
/// configuration register. The details of which fields matter differ by the
/// specific instruction, but the common dimensions are:
///
/// LMUL/EMUL - Most instructions can write to differently sized register groups
/// depending on LMUL.
///
/// Masked vs Unmasked - Many instructions which allow a mask disallow register
/// overlap. As a result, masked vs unmasked require different register
/// allocation constraints.
///
/// Policy - For each of mask and tail policy, there are three options:
/// * "Undisturbed" - As defined in the specification, required to preserve the
/// exact bit pattern of inactive lanes.
/// * "Agnostic" - As defined in the specification, required to either preserve
/// the exact bit pattern of inactive lanes, or produce the bit pattern -1 for
/// those lanes. Note that each lane can make this choice independently.
/// Instructions which produce masks (and only those instructions) also have the
/// option of producing a result as-if VL had been VLMAX.
/// * "Undefined" - The bit pattern of the inactive lanes is unspecified, and
/// can be changed without impacting the semantics of the program. Note that
/// this concept does not exist in the specification, and requires source
/// knowledge to be preserved.
///
/// SEW - Some instructions have semantics which depend on SEW. This is
/// relatively rare, and mostly impacts scheduling and cost estimation.
///
/// We have two techniques we use to represent the impact of these fields:
/// * For fields which don't impact register classes, we largely use
/// dummy operands on the pseudo instructions which convey information
/// about the value of VTYPE.
/// * For fields which do impact register classes (and a few bits of
/// legacy - see policy discussion below), we define a family of pseudo
/// instructions for each actual instruction. Said differently, we encode
/// each of the preceding fields which are relevant for a given instruction
/// in the opcode space.
///
/// Currently, the policy is represented via the following instrinsic families:
/// * _MASK - Can represent all three policy states for both tail and mask. If
/// passthrough is IMPLICIT_DEF (or NoReg), then represents "undefined".
/// Otherwise, policy operand and tablegen flags drive the interpretation.
/// (If policy operand is not present - there are a couple, though we're
/// rapidly removing them - a non-undefined policy defaults to "tail
/// agnostic", and "mask undisturbed". Since this is the only variant with
/// a mask, all other variants are "mask undefined".
/// * Unsuffixed w/ both passthrough and policy operand. Can represent all
/// three policy states. If passthrough is IMPLICIT_DEF (or NoReg), then
/// represents "undefined". Otherwise, policy operand and tablegen flags
/// drive the interpretation.
/// * Unsuffixed w/o passthrough or policy operand -- Does not have a
/// passthrough operand, and thus represents the "undefined" state. Note
/// that terminology in code frequently refers to these as "TA" which is
/// confusing. We're in the process of migrating away from this
/// representation.
///
//===----------------------------------------------------------------------===//
def riscv_vmv_x_s : SDNode<"RISCVISD::VMV_X_S",
SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVec<1>,
SDTCisInt<1>]>>;
def riscv_read_vlenb : SDNode<"RISCVISD::READ_VLENB",
SDTypeProfile<1, 0, [SDTCisVT<0, XLenVT>]>>;
// Operand that is allowed to be a register other than X0, a 5 bit unsigned
// immediate, or -1. -1 means VLMAX. This allows us to pick between VSETIVLI and
// VSETVLI opcodes using the same pseudo instructions.
def AVL : RegisterOperand<GPRNoX0> {
let OperandNamespace = "RISCVOp";
let OperandType = "OPERAND_AVL";
}
// X0 has special meaning for vsetvl/vsetvli.
// rd | rs1 | AVL value | Effect on vl
//--------------------------------------------------------------
// !X0 | X0 | VLMAX | Set vl to VLMAX
// X0 | X0 | Value in vl | Keep current vl, just change vtype.
def VLOp : ComplexPattern<XLenVT, 1, "selectVLOp">;
def DecImm : SDNodeXForm<imm, [{
return CurDAG->getSignedConstant(N->getSExtValue() - 1, SDLoc(N),
N->getValueType(0), /*isTarget=*/true);
}]>;
defvar TAIL_AGNOSTIC = 1;
defvar TU_MU = 0;
defvar TA_MA = 3;
//===----------------------------------------------------------------------===//
// Utilities.
//===----------------------------------------------------------------------===//
class PseudoToVInst<string PseudoInst> {
defvar AffixSubsts = [["Pseudo", ""],
["_E64", ""],
["_E32", ""],
["_E16", ""],
["_E8", ""],
["FPR64", "F"],
["FPR32", "F"],
["FPR16", "F"],
["_TIED", ""],
["_MASK", ""],
["_B64", ""],
["_B32", ""],
["_B16", ""],
["_B8", ""],
["_B4", ""],
["_B2", ""],
["_B1", ""],
["_MF8", ""],
["_MF4", ""],
["_MF2", ""],
["_M1", ""],
["_M2", ""],
["_M4", ""],
["_M8", ""],
["_SE", ""],
["_RM", ""]
];
string VInst = !foldl(PseudoInst, AffixSubsts, Acc, AffixSubst,
!subst(AffixSubst[0], AffixSubst[1], Acc));
}
// This class describes information associated to the LMUL.
class LMULInfo<int lmul, int oct, VReg regclass, VReg wregclass,
VReg f2regclass, VReg f4regclass, VReg f8regclass, string mx> {
bits<3> value = lmul; // This is encoded as the vlmul field of vtype.
VReg vrclass = regclass;
VReg wvrclass = wregclass;
VReg f8vrclass = f8regclass;
VReg f4vrclass = f4regclass;
VReg f2vrclass = f2regclass;
string MX = mx;
int octuple = oct;
}
// Associate LMUL with tablegen records of register classes.
def V_M1 : LMULInfo<0b000, 8, VR, VRM2, VR, VR, VR, "M1">;
def V_M2 : LMULInfo<0b001, 16, VRM2, VRM4, VR, VR, VR, "M2">;
def V_M4 : LMULInfo<0b010, 32, VRM4, VRM8, VRM2, VR, VR, "M4">;
def V_M8 : LMULInfo<0b011, 64, VRM8,/*NoVReg*/VR, VRM4, VRM2, VR, "M8">;
def V_MF8 : LMULInfo<0b101, 1, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF8">;
def V_MF4 : LMULInfo<0b110, 2, VR, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF4">;
def V_MF2 : LMULInfo<0b111, 4, VR, VR, VR, VR,/*NoVReg*/VR, "MF2">;
// Used to iterate over all possible LMULs.
defvar MxList = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
// For floating point which don't need MF8.
defvar MxListF = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
// Used for widening and narrowing instructions as it doesn't contain M8.
defvar MxListW = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4];
// Used for widening reductions. It can contain M8 because wider operands are
// scalar operands.
defvar MxListWRed = MxList;
// For floating point which don't need MF8.
defvar MxListFW = [V_MF4, V_MF2, V_M1, V_M2, V_M4];
// For widening floating-point Reduction as it doesn't contain MF8. It can
// contain M8 because wider operands are scalar operands.
defvar MxListFWRed = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
// Use for zext/sext.vf2
defvar MxListVF2 = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
// Use for zext/sext.vf4 and vector crypto instructions
defvar MxListVF4 = [V_MF2, V_M1, V_M2, V_M4, V_M8];
// Use for zext/sext.vf8
defvar MxListVF8 = [V_M1, V_M2, V_M4, V_M8];
class MxSet<int eew> {
list<LMULInfo> m = !cond(!eq(eew, 8) : [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8],
!eq(eew, 16) : [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8],
!eq(eew, 32) : [V_MF2, V_M1, V_M2, V_M4, V_M8],
!eq(eew, 64) : [V_M1, V_M2, V_M4, V_M8]);
}
class FPR_Info<int sew> {
RegisterClass fprclass = !cast<RegisterClass>("FPR" # sew);
string FX = "FPR" # sew;
int SEW = sew;
list<LMULInfo> MxList = MxSet<sew>.m;
list<LMULInfo> MxListFW = !if(!eq(sew, 64), [], !listremove(MxList, [V_M8]));
}
def SCALAR_F16 : FPR_Info<16>;
def SCALAR_F32 : FPR_Info<32>;
def SCALAR_F64 : FPR_Info<64>;
// BF16 uses the same register class as F16.
def SCALAR_BF16 : FPR_Info<16>;
defvar FPList = [SCALAR_F16, SCALAR_F32, SCALAR_F64];
// Used for widening instructions. It excludes F64.
defvar FPListW = [SCALAR_F16, SCALAR_F32];
// Used for widening bf16 instructions.
defvar BFPListW = [SCALAR_BF16];
class NFSet<LMULInfo m> {
defvar lmul = !shl(1, m.value);
list<int> L = NFList<lmul>.L;
}
class octuple_to_str<int octuple> {
string ret = !cond(!eq(octuple, 1): "MF8",
!eq(octuple, 2): "MF4",
!eq(octuple, 4): "MF2",
!eq(octuple, 8): "M1",
!eq(octuple, 16): "M2",
!eq(octuple, 32): "M4",
!eq(octuple, 64): "M8");
}
def VLOpFrag : PatFrag<(ops), (XLenVT (VLOp (XLenVT AVL:$vl)))>;
// Output pattern for X0 used to represent VLMAX in the pseudo instructions.
// We can't use X0 register because the AVL operands use GPRNoX0.
// This must be kept in sync with RISCV::VLMaxSentinel.
def VLMax : OutPatFrag<(ops), (XLenVT -1)>;
def SelectScalarFPAsInt : ComplexPattern<fAny, 1, "selectScalarFPAsInt", [], [],
1>;
// List of EEW.
defvar EEWList = [8, 16, 32, 64];
class SegRegClass<LMULInfo m, int nf> {
VReg RC = !cast<VReg>("VRN" # nf # !cond(!eq(m.value, V_MF8.value): V_M1.MX,
!eq(m.value, V_MF4.value): V_M1.MX,
!eq(m.value, V_MF2.value): V_M1.MX,
true: m.MX));
}
//===----------------------------------------------------------------------===//
// Vector register and vector group type information.
//===----------------------------------------------------------------------===//
class VTypeInfo<ValueType Vec, ValueType Mas, int Sew, LMULInfo M,
ValueType Scal = XLenVT, RegisterClass ScalarReg = GPR> {
ValueType Vector = Vec;
ValueType Mask = Mas;
int SEW = Sew;
int Log2SEW = !logtwo(Sew);
VReg RegClass = M.vrclass;
LMULInfo LMul = M;
ValueType Scalar = Scal;
RegisterClass ScalarRegClass = ScalarReg;
// The pattern fragment which produces the AVL operand, representing the
// "natural" vector length for this type. For scalable vectors this is VLMax.
OutPatFrag AVL = VLMax;
string ScalarSuffix = !cond(!eq(Scal, XLenVT) : "X",
!eq(Scal, f16) : "FPR16",
!eq(Scal, bf16) : "FPR16",
!eq(Scal, f32) : "FPR32",
!eq(Scal, f64) : "FPR64");
}
class GroupVTypeInfo<ValueType Vec, ValueType VecM1, ValueType Mas, int Sew,
LMULInfo M, ValueType Scal = XLenVT,
RegisterClass ScalarReg = GPR>
: VTypeInfo<Vec, Mas, Sew, M, Scal, ScalarReg> {
ValueType VectorM1 = VecM1;
}
defset list<VTypeInfo> AllVectors = {
defset list<VTypeInfo> AllIntegerVectors = {
defset list<VTypeInfo> NoGroupIntegerVectors = {
defset list<VTypeInfo> FractionalGroupIntegerVectors = {
def VI8MF8: VTypeInfo<vint8mf8_t, vbool64_t, 8, V_MF8>;
def VI8MF4: VTypeInfo<vint8mf4_t, vbool32_t, 8, V_MF4>;
def VI8MF2: VTypeInfo<vint8mf2_t, vbool16_t, 8, V_MF2>;
def VI16MF4: VTypeInfo<vint16mf4_t, vbool64_t, 16, V_MF4>;
def VI16MF2: VTypeInfo<vint16mf2_t, vbool32_t, 16, V_MF2>;
def VI32MF2: VTypeInfo<vint32mf2_t, vbool64_t, 32, V_MF2>;
}
def VI8M1: VTypeInfo<vint8m1_t, vbool8_t, 8, V_M1>;
def VI16M1: VTypeInfo<vint16m1_t, vbool16_t, 16, V_M1>;
def VI32M1: VTypeInfo<vint32m1_t, vbool32_t, 32, V_M1>;
def VI64M1: VTypeInfo<vint64m1_t, vbool64_t, 64, V_M1>;
}
defset list<GroupVTypeInfo> GroupIntegerVectors = {
def VI8M2: GroupVTypeInfo<vint8m2_t, vint8m1_t, vbool4_t, 8, V_M2>;
def VI8M4: GroupVTypeInfo<vint8m4_t, vint8m1_t, vbool2_t, 8, V_M4>;
def VI8M8: GroupVTypeInfo<vint8m8_t, vint8m1_t, vbool1_t, 8, V_M8>;
def VI16M2: GroupVTypeInfo<vint16m2_t, vint16m1_t, vbool8_t, 16, V_M2>;
def VI16M4: GroupVTypeInfo<vint16m4_t, vint16m1_t, vbool4_t, 16, V_M4>;
def VI16M8: GroupVTypeInfo<vint16m8_t, vint16m1_t, vbool2_t, 16, V_M8>;
def VI32M2: GroupVTypeInfo<vint32m2_t, vint32m1_t, vbool16_t, 32, V_M2>;
def VI32M4: GroupVTypeInfo<vint32m4_t, vint32m1_t, vbool8_t, 32, V_M4>;
def VI32M8: GroupVTypeInfo<vint32m8_t, vint32m1_t, vbool4_t, 32, V_M8>;
def VI64M2: GroupVTypeInfo<vint64m2_t, vint64m1_t, vbool32_t, 64, V_M2>;
def VI64M4: GroupVTypeInfo<vint64m4_t, vint64m1_t, vbool16_t, 64, V_M4>;
def VI64M8: GroupVTypeInfo<vint64m8_t, vint64m1_t, vbool8_t, 64, V_M8>;
}
}
defset list<VTypeInfo> AllFloatVectors = {
defset list<VTypeInfo> NoGroupFloatVectors = {
defset list<VTypeInfo> FractionalGroupFloatVectors = {
def VF16MF4: VTypeInfo<vfloat16mf4_t, vbool64_t, 16, V_MF4, f16, FPR16>;
def VF16MF2: VTypeInfo<vfloat16mf2_t, vbool32_t, 16, V_MF2, f16, FPR16>;
def VF32MF2: VTypeInfo<vfloat32mf2_t, vbool64_t, 32, V_MF2, f32, FPR32>;
}
def VF16M1: VTypeInfo<vfloat16m1_t, vbool16_t, 16, V_M1, f16, FPR16>;
def VF32M1: VTypeInfo<vfloat32m1_t, vbool32_t, 32, V_M1, f32, FPR32>;
def VF64M1: VTypeInfo<vfloat64m1_t, vbool64_t, 64, V_M1, f64, FPR64>;
}
defset list<GroupVTypeInfo> GroupFloatVectors = {
def VF16M2: GroupVTypeInfo<vfloat16m2_t, vfloat16m1_t, vbool8_t, 16,
V_M2, f16, FPR16>;
def VF16M4: GroupVTypeInfo<vfloat16m4_t, vfloat16m1_t, vbool4_t, 16,
V_M4, f16, FPR16>;
def VF16M8: GroupVTypeInfo<vfloat16m8_t, vfloat16m1_t, vbool2_t, 16,
V_M8, f16, FPR16>;
def VF32M2: GroupVTypeInfo<vfloat32m2_t, vfloat32m1_t, vbool16_t, 32,
V_M2, f32, FPR32>;
def VF32M4: GroupVTypeInfo<vfloat32m4_t, vfloat32m1_t, vbool8_t, 32,
V_M4, f32, FPR32>;
def VF32M8: GroupVTypeInfo<vfloat32m8_t, vfloat32m1_t, vbool4_t, 32,
V_M8, f32, FPR32>;
def VF64M2: GroupVTypeInfo<vfloat64m2_t, vfloat64m1_t, vbool32_t, 64,
V_M2, f64, FPR64>;
def VF64M4: GroupVTypeInfo<vfloat64m4_t, vfloat64m1_t, vbool16_t, 64,
V_M4, f64, FPR64>;
def VF64M8: GroupVTypeInfo<vfloat64m8_t, vfloat64m1_t, vbool8_t, 64,
V_M8, f64, FPR64>;
}
}
defset list<VTypeInfo> AllBFloatVectors = {
defset list<VTypeInfo> NoGroupBFloatVectors = {
defset list<VTypeInfo> FractionalGroupBFloatVectors = {
def VBF16MF4: VTypeInfo<vbfloat16mf4_t, vbool64_t, 16, V_MF4, bf16, FPR16>;
def VBF16MF2: VTypeInfo<vbfloat16mf2_t, vbool32_t, 16, V_MF2, bf16, FPR16>;
}
def VBF16M1: VTypeInfo<vbfloat16m1_t, vbool16_t, 16, V_M1, bf16, FPR16>;
}
defset list<GroupVTypeInfo> GroupBFloatVectors = {
def VBF16M2: GroupVTypeInfo<vbfloat16m2_t, vbfloat16m1_t, vbool8_t, 16,
V_M2, bf16, FPR16>;
def VBF16M4: GroupVTypeInfo<vbfloat16m4_t, vbfloat16m1_t, vbool4_t, 16,
V_M4, bf16, FPR16>;
def VBF16M8: GroupVTypeInfo<vbfloat16m8_t, vbfloat16m1_t, vbool2_t, 16,
V_M8, bf16, FPR16>;
}
}
}
defvar AllFloatVectorsExceptFP16 = !filter(vti, AllFloatVectors, !ne(vti.Scalar, f16));
defvar AllFP16Vectors = !filter(vti, AllFloatVectors, !eq(vti.Scalar, f16));
// This functor is used to obtain the int vector type that has the same SEW and
// multiplier as the input parameter type
class GetIntVTypeInfo<VTypeInfo vti> {
// Equivalent integer vector type. Eg.
// VI8M1 → VI8M1 (identity)
// VF64M4 → VI64M4
VTypeInfo Vti = !cast<VTypeInfo>(!subst("VBF", "VI",
!subst("VF", "VI",
!cast<string>(vti))));
}
class MTypeInfo<ValueType Mas, LMULInfo M, string Bx> {
ValueType Mask = Mas;
// {SEW, VLMul} values set a valid VType to deal with this mask type.
// we assume SEW=1 and set corresponding LMUL. vsetvli insertion will
// look for SEW=1 to optimize based on surrounding instructions.
int SEW = 1;
int Log2SEW = 0;
LMULInfo LMul = M;
string BX = Bx; // Appendix of mask operations.
// The pattern fragment which produces the AVL operand, representing the
// "natural" vector length for this mask type. For scalable masks this is
// VLMax.
OutPatFrag AVL = VLMax;
}
defset list<MTypeInfo> AllMasks = {
// vbool<n>_t, <n> = SEW/LMUL, we assume SEW=8 and corresponding LMUL.
def : MTypeInfo<vbool64_t, V_MF8, "B1">;
def : MTypeInfo<vbool32_t, V_MF4, "B2">;
def : MTypeInfo<vbool16_t, V_MF2, "B4">;
def : MTypeInfo<vbool8_t, V_M1, "B8">;
def : MTypeInfo<vbool4_t, V_M2, "B16">;
def : MTypeInfo<vbool2_t, V_M4, "B32">;
def : MTypeInfo<vbool1_t, V_M8, "B64">;
}
class VTypeInfoToWide<VTypeInfo vti, VTypeInfo wti> {
VTypeInfo Vti = vti;
VTypeInfo Wti = wti;
}
class VTypeInfoToFraction<VTypeInfo vti, VTypeInfo fti> {
VTypeInfo Vti = vti;
VTypeInfo Fti = fti;
}
defset list<VTypeInfoToWide> AllWidenableIntVectors = {
def : VTypeInfoToWide<VI8MF8, VI16MF4>;
def : VTypeInfoToWide<VI8MF4, VI16MF2>;
def : VTypeInfoToWide<VI8MF2, VI16M1>;
def : VTypeInfoToWide<VI8M1, VI16M2>;
def : VTypeInfoToWide<VI8M2, VI16M4>;
def : VTypeInfoToWide<VI8M4, VI16M8>;
def : VTypeInfoToWide<VI16MF4, VI32MF2>;
def : VTypeInfoToWide<VI16MF2, VI32M1>;
def : VTypeInfoToWide<VI16M1, VI32M2>;
def : VTypeInfoToWide<VI16M2, VI32M4>;
def : VTypeInfoToWide<VI16M4, VI32M8>;
def : VTypeInfoToWide<VI32MF2, VI64M1>;
def : VTypeInfoToWide<VI32M1, VI64M2>;
def : VTypeInfoToWide<VI32M2, VI64M4>;
def : VTypeInfoToWide<VI32M4, VI64M8>;
}
defset list<VTypeInfoToWide> AllWidenableFloatVectors = {
def : VTypeInfoToWide<VF16MF4, VF32MF2>;
def : VTypeInfoToWide<VF16MF2, VF32M1>;
def : VTypeInfoToWide<VF16M1, VF32M2>;
def : VTypeInfoToWide<VF16M2, VF32M4>;
def : VTypeInfoToWide<VF16M4, VF32M8>;
def : VTypeInfoToWide<VF32MF2, VF64M1>;
def : VTypeInfoToWide<VF32M1, VF64M2>;
def : VTypeInfoToWide<VF32M2, VF64M4>;
def : VTypeInfoToWide<VF32M4, VF64M8>;
}
defset list<VTypeInfoToFraction> AllFractionableVF2IntVectors = {
def : VTypeInfoToFraction<VI16MF4, VI8MF8>;
def : VTypeInfoToFraction<VI16MF2, VI8MF4>;
def : VTypeInfoToFraction<VI16M1, VI8MF2>;
def : VTypeInfoToFraction<VI16M2, VI8M1>;
def : VTypeInfoToFraction<VI16M4, VI8M2>;
def : VTypeInfoToFraction<VI16M8, VI8M4>;
def : VTypeInfoToFraction<VI32MF2, VI16MF4>;
def : VTypeInfoToFraction<VI32M1, VI16MF2>;
def : VTypeInfoToFraction<VI32M2, VI16M1>;
def : VTypeInfoToFraction<VI32M4, VI16M2>;
def : VTypeInfoToFraction<VI32M8, VI16M4>;
def : VTypeInfoToFraction<VI64M1, VI32MF2>;
def : VTypeInfoToFraction<VI64M2, VI32M1>;
def : VTypeInfoToFraction<VI64M4, VI32M2>;
def : VTypeInfoToFraction<VI64M8, VI32M4>;
}
defset list<VTypeInfoToFraction> AllFractionableVF4IntVectors = {
def : VTypeInfoToFraction<VI32MF2, VI8MF8>;
def : VTypeInfoToFraction<VI32M1, VI8MF4>;
def : VTypeInfoToFraction<VI32M2, VI8MF2>;
def : VTypeInfoToFraction<VI32M4, VI8M1>;
def : VTypeInfoToFraction<VI32M8, VI8M2>;
def : VTypeInfoToFraction<VI64M1, VI16MF4>;
def : VTypeInfoToFraction<VI64M2, VI16MF2>;
def : VTypeInfoToFraction<VI64M4, VI16M1>;
def : VTypeInfoToFraction<VI64M8, VI16M2>;
}
defset list<VTypeInfoToFraction> AllFractionableVF8IntVectors = {
def : VTypeInfoToFraction<VI64M1, VI8MF8>;
def : VTypeInfoToFraction<VI64M2, VI8MF4>;
def : VTypeInfoToFraction<VI64M4, VI8MF2>;
def : VTypeInfoToFraction<VI64M8, VI8M1>;
}
defset list<VTypeInfoToWide> AllWidenableIntToFloatVectors = {
def : VTypeInfoToWide<VI8MF8, VF16MF4>;
def : VTypeInfoToWide<VI8MF4, VF16MF2>;
def : VTypeInfoToWide<VI8MF2, VF16M1>;
def : VTypeInfoToWide<VI8M1, VF16M2>;
def : VTypeInfoToWide<VI8M2, VF16M4>;
def : VTypeInfoToWide<VI8M4, VF16M8>;
def : VTypeInfoToWide<VI16MF4, VF32MF2>;
def : VTypeInfoToWide<VI16MF2, VF32M1>;
def : VTypeInfoToWide<VI16M1, VF32M2>;
def : VTypeInfoToWide<VI16M2, VF32M4>;
def : VTypeInfoToWide<VI16M4, VF32M8>;
def : VTypeInfoToWide<VI32MF2, VF64M1>;
def : VTypeInfoToWide<VI32M1, VF64M2>;
def : VTypeInfoToWide<VI32M2, VF64M4>;
def : VTypeInfoToWide<VI32M4, VF64M8>;
}
defset list<VTypeInfoToWide> AllWidenableBFloatToFloatVectors = {
def : VTypeInfoToWide<VBF16MF4, VF32MF2>;
def : VTypeInfoToWide<VBF16MF2, VF32M1>;
def : VTypeInfoToWide<VBF16M1, VF32M2>;
def : VTypeInfoToWide<VBF16M2, VF32M4>;
def : VTypeInfoToWide<VBF16M4, VF32M8>;
}
// This class holds the record of the RISCVVPseudoTable below.
// This represents the information we need in codegen for each pseudo.
// The definition should be consistent with `struct PseudoInfo` in
// RISCVInstrInfo.h.
class RISCVVPseudo {
Pseudo Pseudo = !cast<Pseudo>(NAME); // Used as a key.
Instruction BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
// SEW = 0 is used to denote that the Pseudo is not SEW specific (or unknown).
bits<8> SEW = 0;
bit NeedBeInPseudoTable = 1;
}
// The actual table.
def RISCVVPseudosTable : GenericTable {
let FilterClass = "RISCVVPseudo";
let FilterClassField = "NeedBeInPseudoTable";
let CppTypeName = "PseudoInfo";
let Fields = [ "Pseudo", "BaseInstr" ];
let PrimaryKey = [ "Pseudo" ];
let PrimaryKeyName = "getPseudoInfo";
let PrimaryKeyEarlyOut = true;
}
def RISCVVInversePseudosTable : GenericTable {
let FilterClass = "RISCVVPseudo";
let CppTypeName = "PseudoInfo";
let Fields = [ "Pseudo", "BaseInstr", "VLMul", "SEW"];
let PrimaryKey = [ "BaseInstr", "VLMul", "SEW"];
let PrimaryKeyName = "getBaseInfo";
let PrimaryKeyEarlyOut = true;
}
def RISCVVIntrinsicsTable : GenericTable {
let FilterClass = "RISCVVIntrinsic";
let CppTypeName = "RISCVVIntrinsicInfo";
let Fields = ["IntrinsicID", "ScalarOperand", "VLOperand"];
let PrimaryKey = ["IntrinsicID"];
let PrimaryKeyName = "getRISCVVIntrinsicInfo";
}
// Describes the relation of a masked pseudo to the unmasked variants.
// Note that all masked variants (in this table) have exactly one
// unmasked variant. For all but compares, both the masked and
// unmasked variant have a passthru and policy operand. For compares,
// neither has a policy op, and only the masked version has a passthru.
class RISCVMaskedPseudo<bits<4> MaskIdx> {
Pseudo MaskedPseudo = !cast<Pseudo>(NAME);
Pseudo UnmaskedPseudo = !cast<Pseudo>(!subst("_MASK", "", NAME));
bits<4> MaskOpIdx = MaskIdx;
}
def RISCVMaskedPseudosTable : GenericTable {
let FilterClass = "RISCVMaskedPseudo";
let CppTypeName = "RISCVMaskedPseudoInfo";
let Fields = ["MaskedPseudo", "UnmaskedPseudo", "MaskOpIdx"];
let PrimaryKey = ["MaskedPseudo"];
let PrimaryKeyName = "getMaskedPseudoInfo";
}
class RISCVVLE<bit M, bit Str, bit F, bits<3> S, bits<3> L> {
bits<1> Masked = M;
bits<1> Strided = Str;
bits<1> FF = F;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def lookupMaskedIntrinsicByUnmasked : SearchIndex {
let Table = RISCVMaskedPseudosTable;
let Key = ["UnmaskedPseudo"];
}
def RISCVVLETable : GenericTable {
let FilterClass = "RISCVVLE";
let CppTypeName = "VLEPseudo";
let Fields = ["Masked", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"];
let PrimaryKey = ["Masked", "Strided", "FF", "Log2SEW", "LMUL"];
let PrimaryKeyName = "getVLEPseudo";
}
class RISCVVSE<bit M, bit Str, bits<3> S, bits<3> L> {
bits<1> Masked = M;
bits<1> Strided = Str;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVSETable : GenericTable {
let FilterClass = "RISCVVSE";
let CppTypeName = "VSEPseudo";
let Fields = ["Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"];
let PrimaryKey = ["Masked", "Strided", "Log2SEW", "LMUL"];
let PrimaryKeyName = "getVSEPseudo";
}
class RISCVVLX_VSX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> {
bits<1> Masked = M;
bits<1> Ordered = O;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
bits<3> IndexLMUL = IL;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
class RISCVVLX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> :
RISCVVLX_VSX<M, O, S, L, IL>;
class RISCVVSX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> :
RISCVVLX_VSX<M, O, S, L, IL>;
class RISCVVLX_VSXTable : GenericTable {
let CppTypeName = "VLX_VSXPseudo";
let Fields = ["Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
let PrimaryKey = ["Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
}
def RISCVVLXTable : RISCVVLX_VSXTable {
let FilterClass = "RISCVVLX";
let PrimaryKeyName = "getVLXPseudo";
}
def RISCVVSXTable : RISCVVLX_VSXTable {
let FilterClass = "RISCVVSX";
let PrimaryKeyName = "getVSXPseudo";
}
class RISCVVLSEG<bits<4> N, bit M, bit Str, bit F, bits<3> S, bits<3> L> {
bits<4> NF = N;
bits<1> Masked = M;
bits<1> Strided = Str;
bits<1> FF = F;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVLSEGTable : GenericTable {
let FilterClass = "RISCVVLSEG";
let CppTypeName = "VLSEGPseudo";
let Fields = ["NF", "Masked", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"];
let PrimaryKey = ["NF", "Masked", "Strided", "FF", "Log2SEW", "LMUL"];
let PrimaryKeyName = "getVLSEGPseudo";
}
class RISCVVLXSEG<bits<4> N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> {
bits<4> NF = N;
bits<1> Masked = M;
bits<1> Ordered = O;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
bits<3> IndexLMUL = IL;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVLXSEGTable : GenericTable {
let FilterClass = "RISCVVLXSEG";
let CppTypeName = "VLXSEGPseudo";
let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
let PrimaryKeyName = "getVLXSEGPseudo";
}
class RISCVVSSEG<bits<4> N, bit M, bit Str, bits<3> S, bits<3> L> {
bits<4> NF = N;
bits<1> Masked = M;
bits<1> Strided = Str;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVSSEGTable : GenericTable {
let FilterClass = "RISCVVSSEG";
let CppTypeName = "VSSEGPseudo";
let Fields = ["NF", "Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"];
let PrimaryKey = ["NF", "Masked", "Strided", "Log2SEW", "LMUL"];
let PrimaryKeyName = "getVSSEGPseudo";
}
class RISCVVSXSEG<bits<4> N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> {
bits<4> NF = N;
bits<1> Masked = M;
bits<1> Ordered = O;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
bits<3> IndexLMUL = IL;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVSXSEGTable : GenericTable {
let FilterClass = "RISCVVSXSEG";
let CppTypeName = "VSXSEGPseudo";
let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
let PrimaryKeyName = "getVSXSEGPseudo";
}
//===----------------------------------------------------------------------===//
// Helpers to define the different pseudo instructions.
//===----------------------------------------------------------------------===//
// The destination vector register group for a masked vector instruction cannot
// overlap the source mask register (v0), unless the destination vector register
// is being written with a mask value (e.g., comparisons) or the scalar result
// of a reduction.
class GetVRegNoV0<VReg VRegClass> {
VReg R = !cond(!eq(VRegClass, VR) : VRNoV0,
!eq(VRegClass, VRM2) : VRM2NoV0,
!eq(VRegClass, VRM4) : VRM4NoV0,
!eq(VRegClass, VRM8) : VRM8NoV0,
!eq(VRegClass, VRN2M1) : VRN2M1NoV0,
!eq(VRegClass, VRN2M2) : VRN2M2NoV0,
!eq(VRegClass, VRN2M4) : VRN2M4NoV0,
!eq(VRegClass, VRN3M1) : VRN3M1NoV0,
!eq(VRegClass, VRN3M2) : VRN3M2NoV0,
!eq(VRegClass, VRN4M1) : VRN4M1NoV0,
!eq(VRegClass, VRN4M2) : VRN4M2NoV0,
!eq(VRegClass, VRN5M1) : VRN5M1NoV0,
!eq(VRegClass, VRN6M1) : VRN6M1NoV0,
!eq(VRegClass, VRN7M1) : VRN7M1NoV0,
!eq(VRegClass, VRN8M1) : VRN8M1NoV0,
true : VRegClass);
}
class VPseudo<Instruction instr, LMULInfo m, dag outs, dag ins, int sew = 0> :
Pseudo<outs, ins, []>, RISCVVPseudo {
let BaseInstr = instr;
let VLMul = m.value;
let SEW = sew;
}
class GetVTypePredicates<VTypeInfo vti> {
list<Predicate> Predicates = !cond(!eq(vti.Scalar, f16) : [HasVInstructionsF16],
!eq(vti.Scalar, bf16) : [HasVInstructionsBF16Minimal],
!eq(vti.Scalar, f32) : [HasVInstructionsAnyF],
!eq(vti.Scalar, f64) : [HasVInstructionsF64],
!eq(vti.SEW, 64) : [HasVInstructionsI64],
true : [HasVInstructions]);
}
class VPseudoUSLoadNoMask<VReg RetClass,
int EEW> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$dest, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew,
ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLE</*Masked*/0, /*Strided*/0, /*FF*/0, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let Constraints = "$rd = $dest";
}
class VPseudoUSLoadMask<VReg RetClass,
int EEW> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
GPRMem:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLE</*Masked*/1, /*Strided*/0, /*FF*/0, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoUSLoadFFNoMask<VReg RetClass,
int EEW> :
Pseudo<(outs RetClass:$rd, GPR:$vl),
(ins RetClass:$dest, GPRMem:$rs1, AVL:$avl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLE</*Masked*/0, /*Strided*/0, /*FF*/1, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let Constraints = "$rd = $dest";
}
class VPseudoUSLoadFFMask<VReg RetClass,
int EEW> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd, GPR:$vl),
(ins GetVRegNoV0<RetClass>.R:$passthru,
GPRMem:$rs1,
VMaskOp:$vm, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLE</*Masked*/1, /*Strided*/0, /*FF*/1, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoSLoadNoMask<VReg RetClass,
int EEW> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$dest, GPRMem:$rs1, GPR:$rs2, AVL:$vl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLE</*Masked*/0, /*Strided*/1, /*FF*/0, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let Constraints = "$rd = $dest";
}
class VPseudoSLoadMask<VReg RetClass,
int EEW> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
GPRMem:$rs1, GPR:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLE</*Masked*/1, /*Strided*/1, /*FF*/0, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoILoadNoMask<VReg RetClass,
VReg IdxClass,
int EEW,
bits<3> LMUL,
bit Ordered,
bit EarlyClobber,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$dest, GPRMem:$rs1, IdxClass:$rs2, AVL:$vl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLX</*Masked*/0, Ordered, !logtwo(EEW), VLMul, LMUL> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $dest", "$rd = $dest");
let TargetOverlapConstraintType = TargetConstraintType;
}
class VPseudoILoadMask<VReg RetClass,
VReg IdxClass,
int EEW,
bits<3> LMUL,
bit Ordered,
bit EarlyClobber,
int TargetConstraintType = 1> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
GPRMem:$rs1, IdxClass:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLX</*Masked*/1, Ordered, !logtwo(EEW), VLMul, LMUL> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $passthru", "$rd = $passthru");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoUSStoreNoMask<VReg StClass,
int EEW> :
Pseudo<(outs),
(ins StClass:$rd, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSE</*Masked*/0, /*Strided*/0, !logtwo(EEW), VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoUSStoreMask<VReg StClass,
int EEW> :
Pseudo<(outs),
(ins StClass:$rd, GPRMem:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSE</*Masked*/1, /*Strided*/0, !logtwo(EEW), VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoSStoreNoMask<VReg StClass,
int EEW> :
Pseudo<(outs),
(ins StClass:$rd, GPRMem:$rs1, GPR:$rs2,
AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSE</*Masked*/0, /*Strided*/1, !logtwo(EEW), VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoSStoreMask<VReg StClass,
int EEW> :
Pseudo<(outs),
(ins StClass:$rd, GPRMem:$rs1, GPR:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSE</*Masked*/1, /*Strided*/1, !logtwo(EEW), VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoNullaryNoMask<VReg RegClass> :
Pseudo<(outs RegClass:$rd),
(ins RegClass:$passthru,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
}
class VPseudoNullaryMask<VReg RegClass> :
Pseudo<(outs GetVRegNoV0<RegClass>.R:$rd),
(ins GetVRegNoV0<RegClass>.R:$passthru,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints ="$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let UsesMaskPolicy = 1;
let HasVecPolicyOp = 1;
}
// Nullary for pseudo instructions. They are expanded in
// RISCVExpandPseudoInsts pass.
class VPseudoNullaryPseudoM<string BaseInst> :
Pseudo<(outs VR:$rd), (ins AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
// BaseInstr is not used in RISCVExpandPseudoInsts pass.
// Just fill a corresponding real v-inst to pass tablegen check.
let BaseInstr = !cast<Instruction>(BaseInst);
// We exclude them from RISCVVPseudoTable.
let NeedBeInPseudoTable = 0;
}
class VPseudoUnaryNoMask<DAGOperand RetClass,
DAGOperand OpClass,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, OpClass:$rs2,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
}
class VPseudoUnaryNoMaskNoPolicy<DAGOperand RetClass,
DAGOperand OpClass,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins OpClass:$rs2, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Constraint;
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoUnaryNoMaskRoundingMode<DAGOperand RetClass,
DAGOperand OpClass,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, OpClass:$rs2, ixlenimm:$rm,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let HasRoundModeOp = 1;
let UsesVXRM = 0;
}
class VPseudoUnaryMask<VReg RetClass,
VReg OpClass,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru, OpClass:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoUnaryMaskRoundingMode<VReg RetClass,
VReg OpClass,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru, OpClass:$rs2,
VMaskOp:$vm, ixlenimm:$rm,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
let HasRoundModeOp = 1;
let UsesVXRM = 0;
}
class VPseudoUnaryMask_NoExcept<VReg RetClass,
VReg OpClass,
string Constraint = ""> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru, OpClass:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []> {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
let usesCustomInserter = 1;
}
class VPseudoUnaryNoMask_FRM<VReg RetClass,
VReg OpClass,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, OpClass:$rs2, ixlenimm:$frm,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let HasRoundModeOp = 1;
}
class VPseudoUnaryMask_FRM<VReg RetClass,
VReg OpClass,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru, OpClass:$rs2,
VMaskOp:$vm, ixlenimm:$frm,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
let HasRoundModeOp = 1;
}
class VPseudoUnaryNoMaskGPROut :
Pseudo<(outs GPR:$rd),
(ins VR:$rs2, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoUnaryMaskGPROut :
Pseudo<(outs GPR:$rd),
(ins VR:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
// Mask can be V0~V31
class VPseudoUnaryAnyMask<VReg RetClass,
VReg Op1Class> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, Op1Class:$rs2,
VR:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "@earlyclobber $rd, $rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoBinaryNoMask<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Constraint;
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoBinaryNoMaskPolicy<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, Op1Class:$rs2, Op2Class:$rs1, AVL:$vl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
}
class VPseudoBinaryNoMaskRoundingMode<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
string Constraint,
int UsesVXRM_ = 1,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, Op1Class:$rs2, Op2Class:$rs1, ixlenimm:$rm,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let HasRoundModeOp = 1;
let UsesVXRM = UsesVXRM_;
}
class VPseudoBinaryMaskPolicyRoundingMode<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint,
int UsesVXRM_,
int TargetConstraintType = 1> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
Op1Class:$rs2, Op2Class:$rs1,
VMaskOp:$vm, ixlenimm:$rm, AVL:$vl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
let HasRoundModeOp = 1;
let UsesVXRM = UsesVXRM_;
}
// Special version of VPseudoBinaryNoMask where we pretend the first source is
// tied to the destination.
// This allows maskedoff and rs2 to be the same register.
class VPseudoTiedBinaryNoMask<VReg RetClass,
DAGOperand Op2Class,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew,
ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $rs2"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let isConvertibleToThreeAddress = 1;
let IsTiedPseudo = 1;
}
class VPseudoTiedBinaryNoMaskRoundingMode<VReg RetClass,
DAGOperand Op2Class,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$rs2, Op2Class:$rs1,
ixlenimm:$rm,
AVL:$vl, ixlenimm:$sew,
ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $rs2"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let isConvertibleToThreeAddress = 1;
let IsTiedPseudo = 1;
let HasRoundModeOp = 1;
let UsesVXRM = 0;
}
class VPseudoIStoreNoMask<VReg StClass, VReg IdxClass, int EEW, bits<3> LMUL,
bit Ordered>:
Pseudo<(outs),
(ins StClass:$rd, GPRMem:$rs1, IdxClass:$rs2, AVL:$vl,
ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSX</*Masked*/0, Ordered, !logtwo(EEW), VLMul, LMUL> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoIStoreMask<VReg StClass, VReg IdxClass, int EEW, bits<3> LMUL,
bit Ordered>:
Pseudo<(outs),
(ins StClass:$rd, GPRMem:$rs1, IdxClass:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSX</*Masked*/1, Ordered, !logtwo(EEW), VLMul, LMUL> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoBinaryMaskPolicy<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
Op1Class:$rs2, Op2Class:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoTernaryMaskPolicy<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
Op1Class:$rs2, Op2Class:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
}
class VPseudoTernaryMaskPolicyRoundingMode<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
Op1Class:$rs2, Op2Class:$rs1,
VMaskOp:$vm,
ixlenimm:$rm,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let HasRoundModeOp = 1;
let UsesVXRM = 0;
}
// Like VPseudoBinaryMaskPolicy, but output can be V0 and there is no policy.
class VPseudoBinaryMOutMask<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru,
Op1Class:$rs2, Op2Class:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let UsesMaskPolicy = 1;
}
// Special version of VPseudoBinaryMaskPolicy where we pretend the first source
// is tied to the destination so we can workaround the earlyclobber constraint.
// This allows maskedoff and rs2 to be the same register.
class VPseudoTiedBinaryMask<VReg RetClass,
DAGOperand Op2Class,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
Op2Class:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
let IsTiedPseudo = 1;
}
class VPseudoTiedBinaryMaskRoundingMode<VReg RetClass,
DAGOperand Op2Class,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru,
Op2Class:$rs1,
VMaskOp:$vm,
ixlenimm:$rm,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $passthru"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
let IsTiedPseudo = 1;
let HasRoundModeOp = 1;
let UsesVXRM = 0;
}
class VPseudoBinaryCarry<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
bit CarryIn,
string Constraint,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
!if(CarryIn,
(ins Op1Class:$rs2, Op2Class:$rs1,
VMV0:$carry, AVL:$vl, ixlenimm:$sew),
(ins Op1Class:$rs2, Op2Class:$rs1,
AVL:$vl, ixlenimm:$sew)), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Constraint;
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let VLMul = MInfo.value;
}
class VPseudoTiedBinaryCarryIn<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, Op1Class:$rs2, Op2Class:$rs1,
VMV0:$carry, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let TargetOverlapConstraintType = TargetConstraintType;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 0;
let VLMul = MInfo.value;
}
class VPseudoTernaryNoMask<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2,
AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $rs3"], ",");
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoTernaryNoMaskWithPolicy<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2,
AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $rs3"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVecPolicyOp = 1;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoTernaryNoMaskWithPolicyRoundingMode<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint = "",
int TargetConstraintType = 1> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2,
ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !interleave([Constraint, "$rd = $rs3"], ",");
let TargetOverlapConstraintType = TargetConstraintType;
let HasVecPolicyOp = 1;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasRoundModeOp = 1;
let UsesVXRM = 0;
}
class VPseudoUSSegLoadNoMask<VReg RetClass,
int EEW,
bits<4> NF> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$dest, GPRMem:$rs1, AVL:$vl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/0, /*Strided*/0, /*FF*/0, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let Constraints = "$rd = $dest";
}
class VPseudoUSSegLoadMask<VReg RetClass,
int EEW,
bits<4> NF> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru, GPRMem:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/1, /*Strided*/0, /*FF*/0, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoUSSegLoadFFNoMask<VReg RetClass,
int EEW,
bits<4> NF> :
Pseudo<(outs RetClass:$rd, GPR:$vl),
(ins RetClass:$dest, GPRMem:$rs1, AVL:$avl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/0, /*Strided*/0, /*FF*/1, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let Constraints = "$rd = $dest";
}
class VPseudoUSSegLoadFFMask<VReg RetClass,
int EEW,
bits<4> NF> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd, GPR:$vl),
(ins GetVRegNoV0<RetClass>.R:$passthru, GPRMem:$rs1,
VMaskOp:$vm, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/1, /*Strided*/0, /*FF*/1, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoSSegLoadNoMask<VReg RetClass,
int EEW,
bits<4> NF> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, GPRMem:$rs1, GPR:$offset, AVL:$vl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/0, /*Strided*/1, /*FF*/0, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let Constraints = "$rd = $passthru";
}
class VPseudoSSegLoadMask<VReg RetClass,
int EEW,
bits<4> NF> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru, GPRMem:$rs1,
GPR:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew,
ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/1, /*Strided*/1, /*FF*/0, !logtwo(EEW), VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoISegLoadNoMask<VReg RetClass,
VReg IdxClass,
int EEW,
bits<3> LMUL,
bits<4> NF,
bit Ordered> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$passthru, GPRMem:$rs1, IdxClass:$offset, AVL:$vl,
ixlenimm:$sew, ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLXSEG<NF, /*Masked*/0, Ordered, !logtwo(EEW), VLMul, LMUL> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
// For vector indexed segment loads, the destination vector register groups
// cannot overlap the source vector register group
let Constraints = "@earlyclobber $rd, $rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
}
class VPseudoISegLoadMask<VReg RetClass,
VReg IdxClass,
int EEW,
bits<3> LMUL,
bits<4> NF,
bit Ordered> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$passthru, GPRMem:$rs1,
IdxClass:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew,
ixlenimm:$policy), []>,
RISCVVPseudo,
RISCVVLXSEG<NF, /*Masked*/1, Ordered, !logtwo(EEW), VLMul, LMUL> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
// For vector indexed segment loads, the destination vector register groups
// cannot overlap the source vector register group
let Constraints = "@earlyclobber $rd, $rd = $passthru";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasVecPolicyOp = 1;
let UsesMaskPolicy = 1;
}
class VPseudoUSSegStoreNoMask<VReg ValClass,
int EEW,
bits<4> NF> :
Pseudo<(outs),
(ins ValClass:$rd, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSSEG<NF, /*Masked*/0, /*Strided*/0, !logtwo(EEW), VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoUSSegStoreMask<VReg ValClass,
int EEW,
bits<4> NF> :
Pseudo<(outs),
(ins ValClass:$rd, GPRMem:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSSEG<NF, /*Masked*/1, /*Strided*/0, !logtwo(EEW), VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoSSegStoreNoMask<VReg ValClass,
int EEW,
bits<4> NF> :
Pseudo<(outs),
(ins ValClass:$rd, GPRMem:$rs1, GPR:$offset,
AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSSEG<NF, /*Masked*/0, /*Strided*/1, !logtwo(EEW), VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoSSegStoreMask<VReg ValClass,
int EEW,
bits<4> NF> :
Pseudo<(outs),
(ins ValClass:$rd, GPRMem:$rs1, GPR: $offset,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSSEG<NF, /*Masked*/1, /*Strided*/1, !logtwo(EEW), VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoISegStoreNoMask<VReg ValClass,
VReg IdxClass,
int EEW,
bits<3> LMUL,
bits<4> NF,
bit Ordered> :
Pseudo<(outs),
(ins ValClass:$rd, GPRMem:$rs1, IdxClass: $index,
AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSXSEG<NF, /*Masked*/0, Ordered, !logtwo(EEW), VLMul, LMUL> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
class VPseudoISegStoreMask<VReg ValClass,
VReg IdxClass,
int EEW,
bits<3> LMUL,
bits<4> NF,
bit Ordered> :
Pseudo<(outs),
(ins ValClass:$rd, GPRMem:$rs1, IdxClass: $index,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo,
RISCVVSXSEG<NF, /*Masked*/1, Ordered, !logtwo(EEW), VLMul, LMUL> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
}
multiclass VPseudoUSLoad {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value, SEW=eew in {
def "E" # eew # "_V_" # LInfo :
VPseudoUSLoadNoMask<vreg, eew>,
VLESched<LInfo>;
def "E" # eew # "_V_" # LInfo # "_MASK" :
VPseudoUSLoadMask<vreg, eew>,
RISCVMaskedPseudo<MaskIdx=2>,
VLESched<LInfo>;
}
}
}
}
multiclass VPseudoFFLoad {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value, SEW=eew in {
def "E" # eew # "FF_V_" # LInfo:
VPseudoUSLoadFFNoMask<vreg, eew>,
VLFSched<LInfo>;
def "E" # eew # "FF_V_" # LInfo # "_MASK":
VPseudoUSLoadFFMask<vreg, eew>,
RISCVMaskedPseudo<MaskIdx=2>,
VLFSched<LInfo>;
}
}
}
}
multiclass VPseudoLoadMask {
foreach mti = AllMasks in {
defvar mx = mti.LMul.MX;
defvar WriteVLDM_MX = !cast<SchedWrite>("WriteVLDM_" # mx);
let VLMul = mti.LMul.value in {
def "_V_" # mti.BX : VPseudoUSLoadNoMask<VR, EEW=1>,
Sched<[WriteVLDM_MX, ReadVLDX]>;
}
}
}
multiclass VPseudoSLoad {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value, SEW=eew in {
def "E" # eew # "_V_" # LInfo : VPseudoSLoadNoMask<vreg, eew>,
VLSSched<eew, LInfo>;
def "E" # eew # "_V_" # LInfo # "_MASK" :
VPseudoSLoadMask<vreg, eew>,
RISCVMaskedPseudo<MaskIdx=3>,
VLSSched<eew, LInfo>;
}
}
}
}
multiclass VPseudoILoad<bit Ordered> {
foreach idxEEW = EEWList in {
foreach dataEEW = EEWList in {
foreach dataEMUL = MxSet<dataEEW>.m in {
defvar dataEMULOctuple = dataEMUL.octuple;
// Calculate emul = eew * lmul / sew
defvar idxEMULOctuple =
!srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW));
if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then {
defvar DataLInfo = dataEMUL.MX;
defvar IdxLInfo = octuple_to_str<idxEMULOctuple>.ret;
defvar idxEMUL = !cast<LMULInfo>("V_" # IdxLInfo);
defvar Vreg = dataEMUL.vrclass;
defvar IdxVreg = idxEMUL.vrclass;
defvar HasConstraint = !ne(dataEEW, idxEEW);
defvar TypeConstraints =
!if(!eq(dataEEW, idxEEW), 1, !if(!gt(dataEEW, idxEEW), !if(!ge(idxEMULOctuple, 8), 3, 1), 2));
let VLMul = dataEMUL.value in {
def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo :
VPseudoILoadNoMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, Ordered, HasConstraint, TypeConstraints>,
VLXSched<dataEEW, Ordered, DataLInfo, IdxLInfo>;
def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" :
VPseudoILoadMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, Ordered, HasConstraint, TypeConstraints>,
RISCVMaskedPseudo<MaskIdx=3>,
VLXSched<dataEEW, Ordered, DataLInfo, IdxLInfo>;
}
}
}
}
}
}
multiclass VPseudoUSStore {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value, SEW=eew in {
def "E" # eew # "_V_" # LInfo : VPseudoUSStoreNoMask<vreg, eew>,
VSESched<LInfo>;
def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSStoreMask<vreg, eew>,
VSESched<LInfo>;
}
}
}
}
multiclass VPseudoStoreMask {
foreach mti = AllMasks in {
defvar mx = mti.LMul.MX;
defvar WriteVSTM_MX = !cast<SchedWrite>("WriteVSTM_" # mx);
let VLMul = mti.LMul.value in {
def "_V_" # mti.BX : VPseudoUSStoreNoMask<VR, EEW=1>,
Sched<[WriteVSTM_MX, ReadVSTX]>;
}
}
}
multiclass VPseudoSStore {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value, SEW=eew in {
def "E" # eew # "_V_" # LInfo : VPseudoSStoreNoMask<vreg, eew>,
VSSSched<eew, LInfo>;
def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSStoreMask<vreg, eew>,
VSSSched<eew, LInfo>;
}
}
}
}
multiclass VPseudoIStore<bit Ordered> {
foreach idxEEW = EEWList in {
foreach dataEEW = EEWList in {
foreach dataEMUL = MxSet<dataEEW>.m in {
defvar dataEMULOctuple = dataEMUL.octuple;
// Calculate emul = eew * lmul / sew
defvar idxEMULOctuple =
!srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW));
if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then {
defvar DataLInfo = dataEMUL.MX;
defvar IdxLInfo = octuple_to_str<idxEMULOctuple>.ret;
defvar idxEMUL = !cast<LMULInfo>("V_" # IdxLInfo);
defvar Vreg = dataEMUL.vrclass;
defvar IdxVreg = idxEMUL.vrclass;
let VLMul = dataEMUL.value in {
def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo :
VPseudoIStoreNoMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, Ordered>,
VSXSched<dataEEW, Ordered, DataLInfo, IdxLInfo>;
def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" :
VPseudoIStoreMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, Ordered>,
VSXSched<dataEEW, Ordered, DataLInfo, IdxLInfo>;
}
}
}
}
}
}
multiclass VPseudoVPOP_M {
foreach mti = AllMasks in {
defvar mx = mti.LMul.MX;
let VLMul = mti.LMul.value in {
def "_M_" # mti.BX : VPseudoUnaryNoMaskGPROut,
SchedBinary<"WriteVMPopV", "ReadVMPopV", "ReadVMPopV", mx>;
def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMaskGPROut,
SchedBinary<"WriteVMPopV", "ReadVMPopV", "ReadVMPopV", mx>;
}
}
}
multiclass VPseudoV1ST_M {
foreach mti = AllMasks in {
defvar mx = mti.LMul.MX;
let VLMul = mti.LMul.value in {
def "_M_" #mti.BX : VPseudoUnaryNoMaskGPROut,
SchedBinary<"WriteVMFFSV", "ReadVMFFSV", "ReadVMFFSV", mx>;
def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMaskGPROut,
SchedBinary<"WriteVMFFSV", "ReadVMFFSV", "ReadVMFFSV", mx>;
}
}
}
multiclass VPseudoVSFS_M {
defvar constraint = "@earlyclobber $rd";
foreach mti = AllMasks in {
defvar mx = mti.LMul.MX;
let VLMul = mti.LMul.value in {
def "_M_" # mti.BX : VPseudoUnaryNoMaskNoPolicy<VR, VR, constraint>,
SchedUnary<"WriteVMSFSV", "ReadVMSFSV", mx,
forcePassthruRead=true>;
let ForceTailAgnostic = true in
def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMask<VR, VR, constraint>,
SchedUnary<"WriteVMSFSV", "ReadVMSFSV", mx,
forcePassthruRead=true>;
}
}
}
multiclass VPseudoVID_V {
foreach m = MxList in {
defvar mx = m.MX;
let VLMul = m.value in {
def "_V_" # mx : VPseudoNullaryNoMask<m.vrclass>,
SchedNullary<"WriteVIdxV", mx, forcePassthruRead=true>;
def "_V_" # mx # "_MASK" : VPseudoNullaryMask<m.vrclass>,
RISCVMaskedPseudo<MaskIdx=1>,
SchedNullary<"WriteVIdxV", mx,
forcePassthruRead=true>;
}
}
}
multiclass VPseudoNullaryPseudoM <string BaseInst> {
foreach mti = AllMasks in {
let VLMul = mti.LMul.value in {
def "_M_" # mti.BX : VPseudoNullaryPseudoM<BaseInst # "_MM">,
SchedBinary<"WriteVMALUV", "ReadVMALUV", "ReadVMALUV", mti.LMul.MX>;
}
}
}
multiclass VPseudoVIOTA_M {
defvar constraint = "@earlyclobber $rd";
foreach m = MxList in {
defvar mx = m.MX;
let VLMul = m.value in {
def "_" # mx : VPseudoUnaryNoMask<m.vrclass, VR, constraint>,
SchedUnary<"WriteVIotaV", "ReadVIotaV", mx,
forcePassthruRead=true>;
def "_" # mx # "_MASK" : VPseudoUnaryMask<m.vrclass, VR, constraint>,
RISCVMaskedPseudo<MaskIdx=2>,
SchedUnary<"WriteVIotaV", "ReadVIotaV", mx,
forcePassthruRead=true>;
}
}
}
multiclass VPseudoVCPR_V {
foreach m = MxList in {
defvar mx = m.MX;
defvar sews = SchedSEWSet<mx>.val;
let VLMul = m.value in
foreach e = sews in {
defvar suffix = "_" # m.MX # "_E" # e;
let SEW = e in
def _VM # suffix
: VPseudoUnaryAnyMask<m.vrclass, m.vrclass>,
SchedBinary<"WriteVCompressV", "ReadVCompressV", "ReadVCompressV",
mx, e>;
}
}
}
multiclass VPseudoBinary<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = "",
int sew = 0,
int TargetConstraintType = 1,
bit Commutable = 0> {
let VLMul = MInfo.value, SEW=sew, isCommutable = Commutable in {
defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX);
def suffix : VPseudoBinaryNoMaskPolicy<RetClass, Op1Class, Op2Class,
Constraint, TargetConstraintType>;
def suffix # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class,
Constraint, TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoBinaryRoundingMode<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = "",
int sew = 0,
int UsesVXRM = 1,
int TargetConstraintType = 1,
bit Commutable = 0> {
let VLMul = MInfo.value, SEW=sew, isCommutable = Commutable in {
defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX);
def suffix : VPseudoBinaryNoMaskRoundingMode<RetClass, Op1Class, Op2Class,
Constraint, UsesVXRM,
TargetConstraintType>;
def suffix # "_MASK" : VPseudoBinaryMaskPolicyRoundingMode<RetClass,
Op1Class,
Op2Class,
Constraint,
UsesVXRM,
TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoBinaryM<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = "",
int TargetConstraintType = 1,
bit Commutable = 0> {
let VLMul = MInfo.value, isCommutable = Commutable in {
def "_" # MInfo.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class,
Constraint, TargetConstraintType>;
let ForceTailAgnostic = true in
def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMOutMask<RetClass, Op1Class,
Op2Class, Constraint, TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoBinaryEmul<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo lmul,
LMULInfo emul,
string Constraint = "",
int sew> {
let VLMul = lmul.value, SEW=sew in {
defvar suffix = !if(sew, "_" # lmul.MX # "_E" # sew, "_" # lmul.MX);
def suffix # "_" # emul.MX : VPseudoBinaryNoMaskPolicy<RetClass, Op1Class, Op2Class,
Constraint>;
def suffix # "_" # emul.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class,
Constraint>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoTiedBinary<VReg RetClass,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = "",
int TargetConstraintType = 1> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX # "_TIED": VPseudoTiedBinaryNoMask<RetClass, Op2Class,
Constraint, TargetConstraintType>;
def "_" # MInfo.MX # "_MASK_TIED" : VPseudoTiedBinaryMask<RetClass, Op2Class,
Constraint, TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=2>;
}
}
multiclass VPseudoTiedBinaryRoundingMode<VReg RetClass,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = "",
int sew = 0,
int TargetConstraintType = 1> {
defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX);
let VLMul = MInfo.value in {
def suffix # "_TIED":
VPseudoTiedBinaryNoMaskRoundingMode<RetClass, Op2Class, Constraint, TargetConstraintType>;
def suffix # "_MASK_TIED" :
VPseudoTiedBinaryMaskRoundingMode<RetClass, Op2Class, Constraint, TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=2>;
}
}
multiclass VPseudoBinaryV_VV<LMULInfo m, string Constraint = "", int sew = 0, bit Commutable = 0> {
defm _VV : VPseudoBinary<m.vrclass, m.vrclass, m.vrclass, m, Constraint, sew, Commutable=Commutable>;
}
multiclass VPseudoBinaryV_VV_RM<LMULInfo m, string Constraint = "", bit Commutable = 0> {
defm _VV : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, m.vrclass, m, Constraint,
Commutable=Commutable>;
}
multiclass VPseudoBinaryFV_VV_RM<LMULInfo m, int sew> {
defm _VV : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, m.vrclass, m,
"", sew, UsesVXRM=0>;
}
multiclass VPseudoVGTR_EI16_VV {
defvar constraint = "@earlyclobber $rd";
foreach m = MxList in {
defvar mx = m.MX;
foreach sew = EEWList in {
defvar dataEMULOctuple = m.octuple;
// emul = lmul * 16 / sew
defvar idxEMULOctuple = !srl(!mul(dataEMULOctuple, 16), !logtwo(sew));
if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then {
defvar emulMX = octuple_to_str<idxEMULOctuple>.ret;
defvar emul = !cast<LMULInfo>("V_" # emulMX);
defvar sews = SchedSEWSet<mx>.val;
foreach e = sews in {
defm _VV
: VPseudoBinaryEmul<m.vrclass, m.vrclass, emul.vrclass, m, emul,
constraint, e>,
SchedBinary<"WriteVRGatherEI16VV", "ReadVRGatherEI16VV_data",
"ReadVRGatherEI16VV_index", mx, e, forcePassthruRead=true>;
}
}
}
}
}
multiclass VPseudoBinaryV_VX<LMULInfo m, string Constraint = "", int sew = 0> {
defm "_VX" : VPseudoBinary<m.vrclass, m.vrclass, GPR, m, Constraint, sew>;
}
multiclass VPseudoBinaryV_VX_RM<LMULInfo m, string Constraint = ""> {
defm "_VX" : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, GPR, m, Constraint>;
}
multiclass VPseudoVSLD1_VX<string Constraint = ""> {
foreach m = MxList in {
defm "_VX" : VPseudoBinary<m.vrclass, m.vrclass, GPR, m, Constraint>,
SchedBinary<"WriteVISlide1X", "ReadVISlideV", "ReadVISlideX",
m.MX, forcePassthruRead=true>;
}
}
multiclass VPseudoBinaryV_VF<LMULInfo m, FPR_Info f, int sew> {
defm "_V" # f.FX : VPseudoBinary<m.vrclass, m.vrclass,
f.fprclass, m, "", sew>;
}
multiclass VPseudoBinaryV_VF_RM<LMULInfo m, FPR_Info f, int sew> {
defm "_V" # f.FX : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass,
f.fprclass, m, "", sew,
UsesVXRM=0>;
}
multiclass VPseudoVSLD1_VF<string Constraint = ""> {
foreach f = FPList in {
foreach m = f.MxList in {
defm "_V" #f.FX
: VPseudoBinary<m.vrclass, m.vrclass, f.fprclass, m, Constraint>,
SchedBinary<"WriteVFSlide1F", "ReadVFSlideV", "ReadVFSlideF", m.MX,
forcePassthruRead=true>;
}
}
}
multiclass VPseudoBinaryV_VI<Operand ImmType, LMULInfo m, string Constraint = ""> {
defm _VI : VPseudoBinary<m.vrclass, m.vrclass, ImmType, m, Constraint>;
}
multiclass VPseudoBinaryV_VI_RM<Operand ImmType, LMULInfo m, string Constraint = ""> {
defm _VI : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, ImmType, m, Constraint>;
}
multiclass VPseudoVALU_MM<bit Commutable = 0> {
foreach m = MxList in {
defvar mx = m.MX;
let VLMul = m.value, isCommutable = Commutable in {
def "_MM_" # mx : VPseudoBinaryNoMask<VR, VR, VR, "">,
SchedBinary<"WriteVMALUV", "ReadVMALUV", "ReadVMALUV", mx>;
}
}
}
// We use earlyclobber here due to
// * The destination EEW is smaller than the source EEW and the overlap is
// in the lowest-numbered part of the source register group is legal.
// Otherwise, it is illegal.
// * The destination EEW is greater than the source EEW, the source EMUL is
// at least 1, and the overlap is in the highest-numbered part of the
// destination register group is legal. Otherwise, it is illegal.
multiclass VPseudoBinaryW_VV<LMULInfo m, bit Commutable = 0> {
defm _VV : VPseudoBinary<m.wvrclass, m.vrclass, m.vrclass, m,
"@earlyclobber $rd", TargetConstraintType=3,
Commutable=Commutable>;
}
multiclass VPseudoBinaryW_VV_RM<LMULInfo m, int sew> {
defm _VV : VPseudoBinaryRoundingMode<m.wvrclass, m.vrclass, m.vrclass, m,
"@earlyclobber $rd", sew, UsesVXRM=0,
TargetConstraintType=3>;
}
multiclass VPseudoBinaryW_VX<LMULInfo m> {
defm "_VX" : VPseudoBinary<m.wvrclass, m.vrclass, GPR, m,
"@earlyclobber $rd", TargetConstraintType=3>;
}
multiclass VPseudoBinaryW_VI<Operand ImmType, LMULInfo m> {
defm "_VI" : VPseudoBinary<m.wvrclass, m.vrclass, ImmType, m,
"@earlyclobber $rd", TargetConstraintType=3>;
}
multiclass VPseudoBinaryW_VF_RM<LMULInfo m, FPR_Info f, int sew> {
defm "_V" # f.FX : VPseudoBinaryRoundingMode<m.wvrclass, m.vrclass,
f.fprclass, m,
"@earlyclobber $rd", sew,
UsesVXRM=0,
TargetConstraintType=3>;
}
multiclass VPseudoBinaryW_WV<LMULInfo m> {
defm _WV : VPseudoBinary<m.wvrclass, m.wvrclass, m.vrclass, m,
"@earlyclobber $rd", TargetConstraintType=3>;
defm _WV : VPseudoTiedBinary<m.wvrclass, m.vrclass, m,
"@earlyclobber $rd", TargetConstraintType=3>;
}
multiclass VPseudoBinaryW_WV_RM<LMULInfo m, int sew> {
defm _WV : VPseudoBinaryRoundingMode<m.wvrclass, m.wvrclass, m.vrclass, m,
"@earlyclobber $rd", sew, UsesVXRM = 0,
TargetConstraintType = 3>;
defm _WV : VPseudoTiedBinaryRoundingMode<m.wvrclass, m.vrclass, m,
"@earlyclobber $rd", sew,
TargetConstraintType = 3>;
}
multiclass VPseudoBinaryW_WX<LMULInfo m> {
defm "_WX" : VPseudoBinary<m.wvrclass, m.wvrclass, GPR, m, /*Constraint*/ "", TargetConstraintType=3>;
}
multiclass VPseudoBinaryW_WF_RM<LMULInfo m, FPR_Info f, int sew> {
defm "_W" # f.FX : VPseudoBinaryRoundingMode<m.wvrclass, m.wvrclass,
f.fprclass, m,
Constraint="",
sew=sew,
UsesVXRM=0,
TargetConstraintType=3>;
}
// Narrowing instructions like vnsrl/vnsra/vnclip(u) don't need @earlyclobber
// if the source and destination have an LMUL<=1. This matches this overlap
// exception from the spec.
// "The destination EEW is smaller than the source EEW and the overlap is in the
// lowest-numbered part of the source register group."
multiclass VPseudoBinaryV_WV<LMULInfo m> {
defm _WV : VPseudoBinary<m.vrclass, m.wvrclass, m.vrclass, m,
!if(!ge(m.octuple, 8), "@earlyclobber $rd", ""),
TargetConstraintType=2>;
}
multiclass VPseudoBinaryV_WV_RM<LMULInfo m> {
defm _WV : VPseudoBinaryRoundingMode<m.vrclass, m.wvrclass, m.vrclass, m,
!if(!ge(m.octuple, 8),
"@earlyclobber $rd", ""),
TargetConstraintType=2>;
}
multiclass VPseudoBinaryV_WX<LMULInfo m> {
defm _WX : VPseudoBinary<m.vrclass, m.wvrclass, GPR, m,
!if(!ge(m.octuple, 8), "@earlyclobber $rd", ""),
TargetConstraintType=2>;
}
multiclass VPseudoBinaryV_WX_RM<LMULInfo m> {
defm _WX : VPseudoBinaryRoundingMode<m.vrclass, m.wvrclass, GPR, m,
!if(!ge(m.octuple, 8),
"@earlyclobber $rd", ""),
TargetConstraintType=2>;
}
multiclass VPseudoBinaryV_WI<LMULInfo m> {
defm _WI : VPseudoBinary<m.vrclass, m.wvrclass, uimm5, m,
!if(!ge(m.octuple, 8), "@earlyclobber $rd", ""),
TargetConstraintType=2>;
}
multiclass VPseudoBinaryV_WI_RM<LMULInfo m> {
defm _WI : VPseudoBinaryRoundingMode<m.vrclass, m.wvrclass, uimm5, m,
!if(!ge(m.octuple, 8),
"@earlyclobber $rd", ""),
TargetConstraintType=2>;
}
// For vadc and vsbc, the instruction encoding is reserved if the destination
// vector register is v0.
// For vadc and vsbc, CarryIn == 1 and CarryOut == 0
multiclass VPseudoBinaryV_VM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
string Constraint = "",
bit Commutable = 0,
int TargetConstraintType = 1> {
let isCommutable = Commutable in
def "_VV" # !if(CarryIn, "M", "") # "_" # m.MX :
VPseudoBinaryCarry<!if(CarryOut, VR,
!if(!and(CarryIn, !not(CarryOut)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, m.vrclass, m, CarryIn, Constraint, TargetConstraintType>;
}
multiclass VPseudoTiedBinaryV_VM<LMULInfo m, bit Commutable = 0> {
let isCommutable = Commutable in
def "_VVM" # "_" # m.MX:
VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
m.vrclass, m.vrclass, m>;
}
multiclass VPseudoBinaryV_XM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
string Constraint = "", int TargetConstraintType = 1> {
def "_VX" # !if(CarryIn, "M", "") # "_" # m.MX :
VPseudoBinaryCarry<!if(CarryOut, VR,
!if(!and(CarryIn, !not(CarryOut)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, GPR, m, CarryIn, Constraint, TargetConstraintType>;
}
multiclass VPseudoTiedBinaryV_XM<LMULInfo m> {
def "_VXM" # "_" # m.MX:
VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
m.vrclass, GPR, m>;
}
multiclass VPseudoVMRG_FM {
foreach f = FPList in {
foreach m = f.MxList in {
defvar mx = m.MX;
def "_V" # f.FX # "M_" # mx
: VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R, m.vrclass,
f.fprclass, m>,
SchedBinary<"WriteVFMergeV", "ReadVFMergeV", "ReadVFMergeF", mx,
forceMasked=1, forcePassthruRead=true>;
}
}
}
multiclass VPseudoBinaryV_IM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
string Constraint = "", int TargetConstraintType = 1> {
def "_VI" # !if(CarryIn, "M", "") # "_" # m.MX :
VPseudoBinaryCarry<!if(CarryOut, VR,
!if(!and(CarryIn, !not(CarryOut)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, simm5, m, CarryIn, Constraint, TargetConstraintType>;
}
multiclass VPseudoTiedBinaryV_IM<LMULInfo m> {
def "_VIM" # "_" # m.MX:
VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
m.vrclass, simm5, m>;
}
multiclass VPseudoUnaryVMV_V_X_I {
foreach m = MxList in {
let VLMul = m.value in {
defvar mx = m.MX;
let VLMul = m.value in {
def "_V_" # mx : VPseudoUnaryNoMask<m.vrclass, m.vrclass>,
SchedUnary<"WriteVIMovV", "ReadVIMovV", mx,
forcePassthruRead=true>;
let isReMaterializable = 1 in
def "_X_" # mx : VPseudoUnaryNoMask<m.vrclass, GPR>,
SchedUnary<"WriteVIMovX", "ReadVIMovX", mx,
forcePassthruRead=true>;
let isReMaterializable = 1 in
def "_I_" # mx : VPseudoUnaryNoMask<m.vrclass, simm5>,
SchedNullary<"WriteVIMovI", mx,
forcePassthruRead=true>;
}
}
}
}
multiclass VPseudoVMV_F {
foreach f = FPList in {
foreach m = f.MxList in {
defvar mx = m.MX;
let VLMul = m.value in {
def "_" # f.FX # "_" # mx :
VPseudoUnaryNoMask<m.vrclass, f.fprclass>,
SchedUnary<"WriteVFMovV", "ReadVFMovF", mx, forcePassthruRead=true>;
}
}
}
}
multiclass VPseudoVCLS_V {
foreach m = MxListF in {
defvar mx = m.MX;
let VLMul = m.value in {
def "_V_" # mx : VPseudoUnaryNoMask<m.vrclass, m.vrclass>,
SchedUnary<"WriteVFClassV", "ReadVFClassV", mx,
forcePassthruRead=true>;
def "_V_" # mx # "_MASK" : VPseudoUnaryMask<m.vrclass, m.vrclass>,
RISCVMaskedPseudo<MaskIdx=2>,
SchedUnary<"WriteVFClassV", "ReadVFClassV", mx,
forcePassthruRead=true>;
}
}
}
multiclass VPseudoVSQR_V_RM {
foreach m = MxListF in {
defvar mx = m.MX;
defvar sews = SchedSEWSet<m.MX, isF=1>.val;
let VLMul = m.value in
foreach e = sews in {
defvar suffix = "_" # mx # "_E" # e;
let SEW = e in {
def "_V" # suffix : VPseudoUnaryNoMaskRoundingMode<m.vrclass, m.vrclass>,
SchedUnary<"WriteVFSqrtV", "ReadVFSqrtV", mx, e,
forcePassthruRead=true>;
def "_V" #suffix # "_MASK"
: VPseudoUnaryMaskRoundingMode<m.vrclass, m.vrclass>,
RISCVMaskedPseudo<MaskIdx = 2>,
SchedUnary<"WriteVFSqrtV", "ReadVFSqrtV", mx, e,
forcePassthruRead=true>;
}
}
}
}
multiclass VPseudoVRCP_V {
foreach m = MxListF in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isF=1>.val in {
let VLMul = m.value in {
def "_V_" # mx # "_E" # e
: VPseudoUnaryNoMask<m.vrclass, m.vrclass>,
SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forcePassthruRead=true>;
def "_V_" # mx # "_E" # e # "_MASK"
: VPseudoUnaryMask<m.vrclass, m.vrclass>,
RISCVMaskedPseudo<MaskIdx = 2>,
SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forcePassthruRead=true>;
}
}
}
}
multiclass VPseudoVRCP_V_RM {
foreach m = MxListF in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isF=1>.val in {
let VLMul = m.value in {
def "_V_" # mx # "_E" # e
: VPseudoUnaryNoMaskRoundingMode<m.vrclass, m.vrclass>,
SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forcePassthruRead=true>;
def "_V_" # mx # "_E" # e # "_MASK"
: VPseudoUnaryMaskRoundingMode<m.vrclass, m.vrclass>,
RISCVMaskedPseudo<MaskIdx = 2>,
SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forcePassthruRead=true>;
}
}
}
}
multiclass PseudoVEXT_VF2 {
defvar constraints = "@earlyclobber $rd";
foreach m = MxListVF2 in {
defvar mx = m.MX;
defvar CurrTypeConstraints = !if(!or(!eq(mx, "MF4"), !eq(mx, "MF2"), !eq(mx, "M1")), 1, 3);
let VLMul = m.value in {
def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f2vrclass, constraints, CurrTypeConstraints>,
SchedUnary<"WriteVExtV", "ReadVExtV", mx, forcePassthruRead=true>;
def "_" # mx # "_MASK" :
VPseudoUnaryMask<m.vrclass, m.f2vrclass, constraints, CurrTypeConstraints>,
RISCVMaskedPseudo<MaskIdx=2>,
SchedUnary<"WriteVExtV", "ReadVExtV", mx, forcePassthruRead=true>;
}
}
}
multiclass PseudoVEXT_VF4 {
defvar constraints = "@earlyclobber $rd";
foreach m = MxListVF4 in {
defvar mx = m.MX;
defvar CurrTypeConstraints = !if(!or(!eq(mx, "MF2"), !eq(mx, "M1"), !eq(mx, "M2")), 1, 3);
let VLMul = m.value in {
def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f4vrclass, constraints, CurrTypeConstraints>,
SchedUnary<"WriteVExtV", "ReadVExtV", mx, forcePassthruRead=true>;
def "_" # mx # "_MASK" :
VPseudoUnaryMask<m.vrclass, m.f4vrclass, constraints, CurrTypeConstraints>,
RISCVMaskedPseudo<MaskIdx=2>,
SchedUnary<"WriteVExtV", "ReadVExtV", mx, forcePassthruRead=true>;
}
}
}
multiclass PseudoVEXT_VF8 {
defvar constraints = "@earlyclobber $rd";
foreach m = MxListVF8 in {
defvar mx = m.MX;
defvar CurrTypeConstraints = !if(!or(!eq(mx, "M1"), !eq(mx, "M2"), !eq(mx, "M4")), 1, 3);
let VLMul = m.value in {
def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f8vrclass, constraints, CurrTypeConstraints>,
SchedUnary<"WriteVExtV", "ReadVExtV", mx, forcePassthruRead=true>;
def "_" # mx # "_MASK" :
VPseudoUnaryMask<m.vrclass, m.f8vrclass, constraints, CurrTypeConstraints>,
RISCVMaskedPseudo<MaskIdx=2>,
SchedUnary<"WriteVExtV", "ReadVExtV", mx, forcePassthruRead=true>;
}
}
}
// The destination EEW is 1 since "For the purposes of register group overlap
// constraints, mask elements have EEW=1."
// The source EEW is 8, 16, 32, or 64.
// When the destination EEW is different from source EEW, we need to use
// @earlyclobber to avoid the overlap between destination and source registers.
// We don't need @earlyclobber for LMUL<=1 since that matches this overlap
// exception from the spec
// "The destination EEW is smaller than the source EEW and the overlap is in the
// lowest-numbered part of the source register group".
// With LMUL<=1 the source and dest occupy a single register so any overlap
// is in the lowest-numbered part.
multiclass VPseudoBinaryM_VV<LMULInfo m, int TargetConstraintType = 1,
bit Commutable = 0> {
defm _VV : VPseudoBinaryM<VR, m.vrclass, m.vrclass, m,
!if(!ge(m.octuple, 16), "@earlyclobber $rd", ""),
TargetConstraintType, Commutable=Commutable>;
}
multiclass VPseudoBinaryM_VX<LMULInfo m, int TargetConstraintType = 1> {
defm "_VX" :
VPseudoBinaryM<VR, m.vrclass, GPR, m,
!if(!ge(m.octuple, 16), "@earlyclobber $rd", ""), TargetConstraintType>;
}
multiclass VPseudoBinaryM_VF<LMULInfo m, FPR_Info f, int TargetConstraintType = 1> {
defm "_V" # f.FX :
VPseudoBinaryM<VR, m.vrclass, f.fprclass, m,
!if(!ge(m.octuple, 16), "@earlyclobber $rd", ""), TargetConstraintType>;
}
multiclass VPseudoBinaryM_VI<LMULInfo m, int TargetConstraintType = 1> {
defm _VI : VPseudoBinaryM<VR, m.vrclass, simm5, m,
!if(!ge(m.octuple, 16), "@earlyclobber $rd", ""), TargetConstraintType>;
}
multiclass VPseudoVGTR_VV_VX_VI {
defvar constraint = "@earlyclobber $rd";
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VX<m, constraint>,
SchedBinary<"WriteVRGatherVX", "ReadVRGatherVX_data",
"ReadVRGatherVX_index", mx, forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VI<uimm5, m, constraint>,
SchedUnary<"WriteVRGatherVI", "ReadVRGatherVI_data", mx,
forcePassthruRead=true>;
defvar sews = SchedSEWSet<mx>.val;
foreach e = sews in {
defm "" : VPseudoBinaryV_VV<m, constraint, e>,
SchedBinary<"WriteVRGatherVV", "ReadVRGatherVV_data",
"ReadVRGatherVV_index", mx, e, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVSALU_VV_VX_VI<bit Commutable = 0> {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV<m, Commutable=Commutable>,
SchedBinary<"WriteVSALUV", "ReadVSALUV", "ReadVSALUX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VX<m>,
SchedBinary<"WriteVSALUX", "ReadVSALUV", "ReadVSALUX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VI<simm5, m>,
SchedUnary<"WriteVSALUI", "ReadVSALUV", mx, forcePassthruRead=true>;
}
}
multiclass VPseudoVSHT_VV_VX_VI {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV<m>,
SchedBinary<"WriteVShiftV", "ReadVShiftV", "ReadVShiftV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VX<m>,
SchedBinary<"WriteVShiftX", "ReadVShiftV", "ReadVShiftX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VI<uimm5, m>,
SchedUnary<"WriteVShiftI", "ReadVShiftV", mx, forcePassthruRead=true>;
}
}
multiclass VPseudoVSSHT_VV_VX_VI_RM {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV_RM<m>,
SchedBinary<"WriteVSShiftV", "ReadVSShiftV", "ReadVSShiftV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VX_RM<m>,
SchedBinary<"WriteVSShiftX", "ReadVSShiftV", "ReadVSShiftX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VI_RM<uimm5, m>,
SchedUnary<"WriteVSShiftI", "ReadVSShiftV", mx, forcePassthruRead=true>;
}
}
multiclass VPseudoVALU_VV_VX_VI<bit Commutable = 0> {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV<m, Commutable=Commutable>,
SchedBinary<"WriteVIALUV", "ReadVIALUV", "ReadVIALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VX<m>,
SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VI<simm5, m>,
SchedUnary<"WriteVIALUI", "ReadVIALUV", mx, forcePassthruRead=true>;
}
}
multiclass VPseudoVSALU_VV_VX {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV<m>,
SchedBinary<"WriteVSALUV", "ReadVSALUV", "ReadVSALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VX<m>,
SchedBinary<"WriteVSALUX", "ReadVSALUV", "ReadVSALUX", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVSMUL_VV_VX_RM {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV_RM<m, Commutable=1>,
SchedBinary<"WriteVSMulV", "ReadVSMulV", "ReadVSMulV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VX_RM<m>,
SchedBinary<"WriteVSMulX", "ReadVSMulV", "ReadVSMulX", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVAALU_VV_VX_RM<bit Commutable = 0> {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV_RM<m, Commutable=Commutable>,
SchedBinary<"WriteVAALUV", "ReadVAALUV", "ReadVAALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VX_RM<m>,
SchedBinary<"WriteVAALUX", "ReadVAALUV", "ReadVAALUX", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVMINMAX_VV_VX {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV<m, Commutable=1>,
SchedBinary<"WriteVIMinMaxV", "ReadVIMinMaxV", "ReadVIMinMaxV", mx>;
defm "" : VPseudoBinaryV_VX<m>,
SchedBinary<"WriteVIMinMaxX", "ReadVIMinMaxV", "ReadVIMinMaxX", mx>;
}
}
multiclass VPseudoVMUL_VV_VX<bit Commutable = 0> {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VV<m, Commutable=Commutable>,
SchedBinary<"WriteVIMulV", "ReadVIMulV", "ReadVIMulV", mx>;
defm "" : VPseudoBinaryV_VX<m>,
SchedBinary<"WriteVIMulX", "ReadVIMulV", "ReadVIMulX", mx>;
}
}
multiclass VPseudoVDIV_VV_VX {
foreach m = MxList in {
defvar mx = m.MX;
defvar sews = SchedSEWSet<mx>.val;
foreach e = sews in {
defm "" : VPseudoBinaryV_VV<m, "", e>,
SchedBinary<"WriteVIDivV", "ReadVIDivV", "ReadVIDivV", mx, e>;
defm "" : VPseudoBinaryV_VX<m, "", e>,
SchedBinary<"WriteVIDivX", "ReadVIDivV", "ReadVIDivX", mx, e>;
}
}
}
multiclass VPseudoVFMUL_VV_VF_RM {
foreach m = MxListF in {
foreach e = SchedSEWSet<m.MX, isF=1>.val in
defm "" : VPseudoBinaryFV_VV_RM<m, e>,
SchedBinary<"WriteVFMulV", "ReadVFMulV", "ReadVFMulV", m.MX, e,
forcePassthruRead=true>;
}
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>,
SchedBinary<"WriteVFMulF", "ReadVFMulV", "ReadVFMulF", m.MX,
f.SEW, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVFDIV_VV_VF_RM {
foreach m = MxListF in {
defvar mx = m.MX;
defvar sews = SchedSEWSet<mx, isF=1>.val;
foreach e = sews in {
defm "" : VPseudoBinaryFV_VV_RM<m, e>,
SchedBinary<"WriteVFDivV", "ReadVFDivV", "ReadVFDivV", mx, e,
forcePassthruRead=true>;
}
}
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>,
SchedBinary<"WriteVFDivF", "ReadVFDivV", "ReadVFDivF", m.MX, f.SEW,
forcePassthruRead=true>;
}
}
}
multiclass VPseudoVFRDIV_VF_RM {
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>,
SchedBinary<"WriteVFDivF", "ReadVFDivV", "ReadVFDivF", m.MX, f.SEW,
forcePassthruRead=true>;
}
}
}
multiclass VPseudoVALU_VV_VX {
foreach m = MxList in {
defm "" : VPseudoBinaryV_VV<m>,
SchedBinary<"WriteVIALUV", "ReadVIALUV", "ReadVIALUV", m.MX,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VX<m>,
SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVSGNJ_VV_VF {
foreach m = MxListF in {
foreach e = SchedSEWSet<m.MX, isF=1>.val in
defm "" : VPseudoBinaryV_VV<m, sew=e>,
SchedBinary<"WriteVFSgnjV", "ReadVFSgnjV", "ReadVFSgnjV", m.MX,
e, forcePassthruRead=true>;
}
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryV_VF<m, f, sew=f.SEW>,
SchedBinary<"WriteVFSgnjF", "ReadVFSgnjV", "ReadVFSgnjF", m.MX,
f.SEW, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVMAX_VV_VF {
foreach m = MxListF in {
foreach e = SchedSEWSet<m.MX, isF=1>.val in
defm "" : VPseudoBinaryV_VV<m, sew=e>,
SchedBinary<"WriteVFMinMaxV", "ReadVFMinMaxV", "ReadVFMinMaxV",
m.MX, e, forcePassthruRead=true>;
}
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryV_VF<m, f, sew=f.SEW>,
SchedBinary<"WriteVFMinMaxF", "ReadVFMinMaxV", "ReadVFMinMaxF",
m.MX, f.SEW, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVALU_VV_VF_RM {
foreach m = MxListF in {
foreach e = SchedSEWSet<m.MX, isF=1>.val in
defm "" : VPseudoBinaryFV_VV_RM<m, e>,
SchedBinary<"WriteVFALUV", "ReadVFALUV", "ReadVFALUV", m.MX, e,
forcePassthruRead=true>;
}
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>,
SchedBinary<"WriteVFALUF", "ReadVFALUV", "ReadVFALUF", m.MX,
f.SEW, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVALU_VF_RM {
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>,
SchedBinary<"WriteVFALUF", "ReadVFALUV", "ReadVFALUF", m.MX,
f.SEW, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVALU_VX_VI {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VX<m>,
SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_VI<simm5, m>,
SchedUnary<"WriteVIALUI", "ReadVIALUV", mx, forcePassthruRead=true>;
}
}
multiclass VPseudoVWALU_VV_VX<bit Commutable = 0> {
foreach m = MxListW in {
defvar mx = m.MX;
defm "" : VPseudoBinaryW_VV<m, Commutable=Commutable>,
SchedBinary<"WriteVIWALUV", "ReadVIWALUV", "ReadVIWALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryW_VX<m>,
SchedBinary<"WriteVIWALUX", "ReadVIWALUV", "ReadVIWALUX", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVWMUL_VV_VX<bit Commutable = 0> {
foreach m = MxListW in {
defvar mx = m.MX;
defm "" : VPseudoBinaryW_VV<m, Commutable=Commutable>,
SchedBinary<"WriteVIWMulV", "ReadVIWMulV", "ReadVIWMulV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryW_VX<m>,
SchedBinary<"WriteVIWMulX", "ReadVIWMulV", "ReadVIWMulX", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVWMUL_VV_VF_RM {
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm "" : VPseudoBinaryW_VV_RM<m, sew=e>,
SchedBinary<"WriteVFWMulV", "ReadVFWMulV", "ReadVFWMulV", m.MX,
e, forcePassthruRead=true>;
}
foreach f = FPListW in {
foreach m = f.MxListFW in {
defm "" : VPseudoBinaryW_VF_RM<m, f, sew=f.SEW>,
SchedBinary<"WriteVFWMulF", "ReadVFWMulV", "ReadVFWMulF", m.MX,
f.SEW, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVWALU_WV_WX {
foreach m = MxListW in {
defvar mx = m.MX;
defm "" : VPseudoBinaryW_WV<m>,
SchedBinary<"WriteVIWALUV", "ReadVIWALUV", "ReadVIWALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryW_WX<m>,
SchedBinary<"WriteVIWALUX", "ReadVIWALUV", "ReadVIWALUX", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVFWALU_VV_VF_RM {
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm "" : VPseudoBinaryW_VV_RM<m, sew=e>,
SchedBinary<"WriteVFWALUV", "ReadVFWALUV", "ReadVFWALUV", m.MX,
e, forcePassthruRead=true>;
}
foreach f = FPListW in {
foreach m = f.MxListFW in {
defm "" : VPseudoBinaryW_VF_RM<m, f, sew=f.SEW>,
SchedBinary<"WriteVFWALUF", "ReadVFWALUV", "ReadVFWALUF", m.MX,
f.SEW, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVFWALU_WV_WF_RM {
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm "" : VPseudoBinaryW_WV_RM<m, sew=e>,
SchedBinary<"WriteVFWALUV", "ReadVFWALUV", "ReadVFWALUV", m.MX,
e, forcePassthruRead=true>;
}
foreach f = FPListW in {
foreach m = f.MxListFW in {
defm "" : VPseudoBinaryW_WF_RM<m, f, sew=f.SEW>,
SchedBinary<"WriteVFWALUF", "ReadVFWALUV", "ReadVFWALUF", m.MX,
f.SEW, forcePassthruRead=true>;
}
}
}
multiclass VPseudoVMRG_VM_XM_IM {
foreach m = MxList in {
defvar mx = m.MX;
def "_VVM" # "_" # m.MX:
VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
m.vrclass, m.vrclass, m>,
SchedBinary<"WriteVIMergeV", "ReadVIMergeV", "ReadVIMergeV", mx,
forcePassthruRead=true>;
def "_VXM" # "_" # m.MX:
VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
m.vrclass, GPR, m>,
SchedBinary<"WriteVIMergeX", "ReadVIMergeV", "ReadVIMergeX", mx,
forcePassthruRead=true>;
def "_VIM" # "_" # m.MX:
VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
m.vrclass, simm5, m>,
SchedUnary<"WriteVIMergeI", "ReadVIMergeV", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCALU_VM_XM_IM {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoTiedBinaryV_VM<m, Commutable=1>,
SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoTiedBinaryV_XM<m>,
SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx,
forcePassthruRead=true>;
defm "" : VPseudoTiedBinaryV_IM<m>,
SchedUnary<"WriteVICALUI", "ReadVICALUV", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCALU_VM_XM {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoTiedBinaryV_VM<m>,
SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoTiedBinaryV_XM<m>,
SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCALUM_VM_XM_IM {
defvar constraint = "@earlyclobber $rd";
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VM<m, CarryOut=1, CarryIn=1, Constraint=constraint,
Commutable=1, TargetConstraintType=2>,
SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMasked=1,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_XM<m, CarryOut=1, CarryIn=1, Constraint=constraint, TargetConstraintType=2>,
SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMasked=1,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_IM<m, CarryOut=1, CarryIn=1, Constraint=constraint, TargetConstraintType=2>,
SchedUnary<"WriteVICALUI", "ReadVICALUV", mx, forceMasked=1,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCALUM_VM_XM {
defvar constraint = "@earlyclobber $rd";
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VM<m, CarryOut=1, CarryIn=1, Constraint=constraint,
TargetConstraintType=2>,
SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMasked=1,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_XM<m, CarryOut=1, CarryIn=1, Constraint=constraint,
TargetConstraintType=2>,
SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMasked=1,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCALUM_V_X_I {
defvar constraint = "@earlyclobber $rd";
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VM<m, CarryOut=1, CarryIn=0, Constraint=constraint,
Commutable=1, TargetConstraintType=2>,
SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_XM<m, CarryOut=1, CarryIn=0, Constraint=constraint, TargetConstraintType=2>,
SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_IM<m, CarryOut=1, CarryIn=0, Constraint=constraint>,
SchedUnary<"WriteVICALUI", "ReadVICALUV", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCALUM_V_X {
defvar constraint = "@earlyclobber $rd";
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_VM<m, CarryOut=1, CarryIn=0, Constraint=constraint, TargetConstraintType=2>,
SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_XM<m, CarryOut=1, CarryIn=0, Constraint=constraint, TargetConstraintType=2>,
SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNCLP_WV_WX_WI_RM {
foreach m = MxListW in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_WV_RM<m>,
SchedBinary<"WriteVNClipV", "ReadVNClipV", "ReadVNClipV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_WX_RM<m>,
SchedBinary<"WriteVNClipX", "ReadVNClipV", "ReadVNClipX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_WI_RM<m>,
SchedUnary<"WriteVNClipI", "ReadVNClipV", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNSHT_WV_WX_WI {
foreach m = MxListW in {
defvar mx = m.MX;
defm "" : VPseudoBinaryV_WV<m>,
SchedBinary<"WriteVNShiftV", "ReadVNShiftV", "ReadVNShiftV", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_WX<m>,
SchedBinary<"WriteVNShiftX", "ReadVNShiftV", "ReadVNShiftX", mx,
forcePassthruRead=true>;
defm "" : VPseudoBinaryV_WI<m>,
SchedUnary<"WriteVNShiftI", "ReadVNShiftV", mx,
forcePassthruRead=true>;
}
}
multiclass VPseudoTernaryWithTailPolicy<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
int sew> {
let VLMul = MInfo.value, SEW=sew in {
defvar mx = MInfo.MX;
def "_" # mx # "_E" # sew : VPseudoTernaryNoMaskWithPolicy<RetClass, Op1Class, Op2Class>;
def "_" # mx # "_E" # sew # "_MASK" : VPseudoTernaryMaskPolicy<RetClass, Op1Class, Op2Class>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoTernaryWithTailPolicyRoundingMode<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
int sew> {
let VLMul = MInfo.value, SEW=sew in {
defvar mx = MInfo.MX;
def "_" # mx # "_E" # sew
: VPseudoTernaryNoMaskWithPolicyRoundingMode<RetClass, Op1Class,
Op2Class>;
def "_" # mx # "_E" # sew # "_MASK"
: VPseudoTernaryMaskPolicyRoundingMode<RetClass, Op1Class,
Op2Class>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoTernaryWithPolicy<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = "",
bit Commutable = 0,
int TargetConstraintType = 1> {
let VLMul = MInfo.value in {
let isCommutable = Commutable in
def "_" # MInfo.MX : VPseudoTernaryNoMaskWithPolicy<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>;
def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoTernaryWithPolicyRoundingMode<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = "",
int sew = 0,
bit Commutable = 0,
int TargetConstraintType = 1> {
let VLMul = MInfo.value in {
defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX);
let isCommutable = Commutable in
def suffix :
VPseudoTernaryNoMaskWithPolicyRoundingMode<RetClass, Op1Class,
Op2Class, Constraint,
TargetConstraintType>;
def suffix # "_MASK" :
VPseudoBinaryMaskPolicyRoundingMode<RetClass, Op1Class,
Op2Class, Constraint,
UsesVXRM_=0,
TargetConstraintType=TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoTernaryV_VV_AAXA<LMULInfo m> {
defm _VV : VPseudoTernaryWithPolicy<m.vrclass, m.vrclass, m.vrclass, m,
Commutable=1>;
}
multiclass VPseudoTernaryV_VV_AAXA_RM<LMULInfo m, int sew> {
defm _VV : VPseudoTernaryWithPolicyRoundingMode<m.vrclass, m.vrclass, m.vrclass, m,
sew=sew, Commutable=1>;
}
multiclass VPseudoTernaryV_VX_AAXA<LMULInfo m> {
defm "_VX" : VPseudoTernaryWithPolicy<m.vrclass, GPR, m.vrclass, m,
Commutable=1>;
}
multiclass VPseudoTernaryV_VF_AAXA_RM<LMULInfo m, FPR_Info f,
int sew> {
defm "_V" # f.FX : VPseudoTernaryWithPolicyRoundingMode<m.vrclass, f.fprclass,
m.vrclass, m,
sew=sew, Commutable=1>;
}
multiclass VPseudoTernaryW_VV<LMULInfo m, bit Commutable = 0> {
defvar constraint = "@earlyclobber $rd";
defm _VV : VPseudoTernaryWithPolicy<m.wvrclass, m.vrclass, m.vrclass, m,
constraint, Commutable=Commutable, TargetConstraintType=3>;
}
multiclass VPseudoTernaryW_VV_RM<LMULInfo m, int sew> {
defvar constraint = "@earlyclobber $rd";
defm _VV : VPseudoTernaryWithPolicyRoundingMode<m.wvrclass, m.vrclass, m.vrclass, m,
constraint, sew,
TargetConstraintType=3>;
}
multiclass VPseudoTernaryW_VX<LMULInfo m> {
defvar constraint = "@earlyclobber $rd";
defm "_VX" : VPseudoTernaryWithPolicy<m.wvrclass, GPR, m.vrclass, m,
constraint, TargetConstraintType=3>;
}
multiclass VPseudoTernaryW_VF_RM<LMULInfo m, FPR_Info f, int sew> {
defvar constraint = "@earlyclobber $rd";
defm "_V" # f.FX : VPseudoTernaryWithPolicyRoundingMode<m.wvrclass, f.fprclass,
m.vrclass, m, constraint,
sew=sew,
TargetConstraintType=3>;
}
multiclass VPseudoVSLDVWithPolicy<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = ""> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX : VPseudoTernaryNoMaskWithPolicy<RetClass, Op1Class, Op2Class, Constraint>;
def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class, Constraint>,
RISCVMaskedPseudo<MaskIdx=3>;
}
}
multiclass VPseudoVSLDV_VX<LMULInfo m, string Constraint = ""> {
defm _VX : VPseudoVSLDVWithPolicy<m.vrclass, m.vrclass, GPR, m, Constraint>;
}
multiclass VPseudoVSLDV_VI<LMULInfo m, string Constraint = ""> {
defm _VI : VPseudoVSLDVWithPolicy<m.vrclass, m.vrclass, uimm5, m, Constraint>;
}
multiclass VPseudoVMAC_VV_VX_AAXA {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoTernaryV_VV_AAXA<m>,
SchedTernary<"WriteVIMulAddV", "ReadVIMulAddV", "ReadVIMulAddV",
"ReadVIMulAddV", mx>;
defm "" : VPseudoTernaryV_VX_AAXA<m>,
SchedTernary<"WriteVIMulAddX", "ReadVIMulAddV", "ReadVIMulAddX",
"ReadVIMulAddV", mx>;
}
}
multiclass VPseudoVMAC_VV_VF_AAXA_RM {
foreach m = MxListF in {
foreach e = SchedSEWSet<m.MX, isF=1>.val in
defm "" : VPseudoTernaryV_VV_AAXA_RM<m, sew=e>,
SchedTernary<"WriteVFMulAddV", "ReadVFMulAddV", "ReadVFMulAddV",
"ReadVFMulAddV", m.MX, e>;
}
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoTernaryV_VF_AAXA_RM<m, f, sew=f.SEW>,
SchedTernary<"WriteVFMulAddF", "ReadVFMulAddV", "ReadVFMulAddF",
"ReadVFMulAddV", m.MX, f.SEW>;
}
}
}
multiclass VPseudoVSLD_VX_VI<bit slidesUp = false, string Constraint = ""> {
defvar WriteSlideX = !if(slidesUp, "WriteVSlideUpX", "WriteVSlideDownX");
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoVSLDV_VX<m, Constraint>,
SchedTernary<WriteSlideX, "ReadVISlideV", "ReadVISlideV",
"ReadVISlideX", mx>;
defm "" : VPseudoVSLDV_VI<m, Constraint>,
SchedBinary<"WriteVSlideI", "ReadVISlideV", "ReadVISlideV", mx>;
}
}
multiclass VPseudoVWMAC_VV_VX<bit Commutable = 0> {
foreach m = MxListW in {
defvar mx = m.MX;
defm "" : VPseudoTernaryW_VV<m, Commutable=Commutable>,
SchedTernary<"WriteVIWMulAddV", "ReadVIWMulAddV", "ReadVIWMulAddV",
"ReadVIWMulAddV", mx>;
defm "" : VPseudoTernaryW_VX<m>,
SchedTernary<"WriteVIWMulAddX", "ReadVIWMulAddV", "ReadVIWMulAddX",
"ReadVIWMulAddV", mx>;
}
}
multiclass VPseudoVWMAC_VX {
foreach m = MxListW in {
defm "" : VPseudoTernaryW_VX<m>,
SchedTernary<"WriteVIWMulAddX", "ReadVIWMulAddV", "ReadVIWMulAddX",
"ReadVIWMulAddV", m.MX>;
}
}
multiclass VPseudoVWMAC_VV_VF_RM {
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm "" : VPseudoTernaryW_VV_RM<m, sew=e>,
SchedTernary<"WriteVFWMulAddV", "ReadVFWMulAddV",
"ReadVFWMulAddV", "ReadVFWMulAddV", m.MX, e>;
}
foreach f = FPListW in {
foreach m = f.MxListFW in {
defm "" : VPseudoTernaryW_VF_RM<m, f, sew=f.SEW>,
SchedTernary<"WriteVFWMulAddF", "ReadVFWMulAddV",
"ReadVFWMulAddF", "ReadVFWMulAddV", m.MX, f.SEW>;
}
}
}
multiclass VPseudoVWMAC_VV_VF_BF_RM {
foreach m = MxListFW in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isF=1, isWidening=1>.val in
defm "" : VPseudoTernaryW_VV_RM<m, sew=e>,
SchedTernary<"WriteVFWMulAddV", "ReadVFWMulAddV",
"ReadVFWMulAddV", "ReadVFWMulAddV", mx, e>;
}
foreach f = BFPListW in {
foreach m = f.MxListFW in {
defvar mx = m.MX;
defm "" : VPseudoTernaryW_VF_RM<m, f, sew=f.SEW>,
SchedTernary<"WriteVFWMulAddF", "ReadVFWMulAddV",
"ReadVFWMulAddF", "ReadVFWMulAddV", mx, f.SEW>;
}
}
}
multiclass VPseudoVCMPM_VV_VX_VI<bit Commutable = 0> {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryM_VV<m, TargetConstraintType=2, Commutable=Commutable>,
SchedBinary<"WriteVICmpV", "ReadVICmpV", "ReadVICmpV", mx>;
defm "" : VPseudoBinaryM_VX<m, TargetConstraintType=2>,
SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>;
defm "" : VPseudoBinaryM_VI<m, TargetConstraintType=2>,
SchedUnary<"WriteVICmpI", "ReadVICmpV", mx>;
}
}
multiclass VPseudoVCMPM_VV_VX {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryM_VV<m, TargetConstraintType=2>,
SchedBinary<"WriteVICmpV", "ReadVICmpV", "ReadVICmpV", mx>;
defm "" : VPseudoBinaryM_VX<m, TargetConstraintType=2>,
SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>;
}
}
multiclass VPseudoVCMPM_VV_VF {
foreach m = MxListF in {
defm "" : VPseudoBinaryM_VV<m, TargetConstraintType=2>,
SchedBinary<"WriteVFCmpV", "ReadVFCmpV", "ReadVFCmpV", m.MX>;
}
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryM_VF<m, f, TargetConstraintType=2>,
SchedBinary<"WriteVFCmpF", "ReadVFCmpV", "ReadVFCmpF", m.MX>;
}
}
}
multiclass VPseudoVCMPM_VF {
foreach f = FPList in {
foreach m = f.MxList in {
defm "" : VPseudoBinaryM_VF<m, f, TargetConstraintType=2>,
SchedBinary<"WriteVFCmpF", "ReadVFCmpV", "ReadVFCmpF", m.MX>;
}
}
}
multiclass VPseudoVCMPM_VX_VI {
foreach m = MxList in {
defvar mx = m.MX;
defm "" : VPseudoBinaryM_VX<m, TargetConstraintType=2>,
SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>;
defm "" : VPseudoBinaryM_VI<m, TargetConstraintType=2>,
SchedUnary<"WriteVICmpI", "ReadVICmpV", mx>;
}
}
multiclass VPseudoVRED_VS {
foreach m = MxList in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx>.val in {
defm _VS : VPseudoTernaryWithTailPolicy<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>,
SchedReduction<"WriteVIRedV_From", "ReadVIRedV", mx, e>;
}
}
}
multiclass VPseudoVREDMINMAX_VS {
foreach m = MxList in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx>.val in {
defm _VS : VPseudoTernaryWithTailPolicy<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>,
SchedReduction<"WriteVIRedMinMaxV_From", "ReadVIRedV", mx, e>;
}
}
}
multiclass VPseudoVWRED_VS {
foreach m = MxListWRed in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isWidening=1>.val in {
defm _VS : VPseudoTernaryWithTailPolicy<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>,
SchedReduction<"WriteVIWRedV_From", "ReadVIWRedV", mx, e>;
}
}
}
multiclass VPseudoVFRED_VS_RM {
foreach m = MxListF in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isF=1>.val in {
defm _VS
: VPseudoTernaryWithTailPolicyRoundingMode<V_M1.vrclass, m.vrclass,
V_M1.vrclass, m, e>,
SchedReduction<"WriteVFRedV_From", "ReadVFRedV", mx, e>;
}
}
}
multiclass VPseudoVFREDMINMAX_VS {
foreach m = MxListF in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isF=1>.val in {
defm _VS : VPseudoTernaryWithTailPolicy<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>,
SchedReduction<"WriteVFRedMinMaxV_From", "ReadVFRedV", mx, e>;
}
}
}
multiclass VPseudoVFREDO_VS_RM {
foreach m = MxListF in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isF=1>.val in {
defm _VS : VPseudoTernaryWithTailPolicyRoundingMode<V_M1.vrclass, m.vrclass,
V_M1.vrclass, m, e>,
SchedReduction<"WriteVFRedOV_From", "ReadVFRedOV", mx, e>;
}
}
}
multiclass VPseudoVFWRED_VS_RM {
foreach m = MxListFWRed in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isF=1, isWidening=1>.val in {
defm _VS
: VPseudoTernaryWithTailPolicyRoundingMode<V_M1.vrclass, m.vrclass,
V_M1.vrclass, m, e>,
SchedReduction<"WriteVFWRedV_From", "ReadVFWRedV", mx, e>;
}
}
}
multiclass VPseudoVFWREDO_VS_RM {
foreach m = MxListFWRed in {
defvar mx = m.MX;
foreach e = SchedSEWSet<mx, isF=1, isWidening=1>.val in {
defm _VS
: VPseudoTernaryWithTailPolicyRoundingMode<V_M1.vrclass, m.vrclass,
V_M1.vrclass, m, e>,
SchedReduction<"WriteVFWRedOV_From", "ReadVFWRedV", mx, e>;
}
}
}
multiclass VPseudoConversion<VReg RetClass,
VReg Op1Class,
LMULInfo MInfo,
string Constraint = "",
int sew = 0,
int TargetConstraintType = 1> {
defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX);
let VLMul = MInfo.value, SEW=sew in {
def suffix : VPseudoUnaryNoMask<RetClass, Op1Class, Constraint, TargetConstraintType>;
def suffix # "_MASK" : VPseudoUnaryMask<RetClass, Op1Class,
Constraint, TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=2>;
}
}
multiclass VPseudoConversionRoundingMode<VReg RetClass,
VReg Op1Class,
LMULInfo MInfo,
string Constraint = "",
int sew = 0,
int TargetConstraintType = 1> {
let VLMul = MInfo.value, SEW=sew in {
defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX);
def suffix : VPseudoUnaryNoMaskRoundingMode<RetClass, Op1Class, Constraint, TargetConstraintType>;
def suffix # "_MASK" : VPseudoUnaryMaskRoundingMode<RetClass, Op1Class,
Constraint,
TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=2>;
}
}
multiclass VPseudoConversionRM<VReg RetClass,
VReg Op1Class,
LMULInfo MInfo,
string Constraint = "",
int sew = 0,
int TargetConstraintType = 1> {
let VLMul = MInfo.value, SEW=sew in {
defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX);
def suffix : VPseudoUnaryNoMask_FRM<RetClass, Op1Class,
Constraint, TargetConstraintType>;
def suffix # "_MASK" : VPseudoUnaryMask_FRM<RetClass, Op1Class,
Constraint, TargetConstraintType>,
RISCVMaskedPseudo<MaskIdx=2>;
}
}
multiclass VPseudoConversionNoExcept<VReg RetClass,
VReg Op1Class,
LMULInfo MInfo,
string Constraint = ""> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX # "_MASK" : VPseudoUnaryMask_NoExcept<RetClass, Op1Class, Constraint>;
}
}
multiclass VPseudoVCVTI_V {
foreach m = MxListF in {
defm _V : VPseudoConversion<m.vrclass, m.vrclass, m>,
SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCVTI_V_RM {
foreach m = MxListF in {
defm _V : VPseudoConversionRoundingMode<m.vrclass, m.vrclass, m>,
SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCVTI_RM_V {
foreach m = MxListF in {
defm _V : VPseudoConversionRM<m.vrclass, m.vrclass, m>,
SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVFROUND_NOEXCEPT_V {
foreach m = MxListF in {
defm _V : VPseudoConversionNoExcept<m.vrclass, m.vrclass, m>,
SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCVTF_V_RM {
foreach m = MxListF in {
foreach e = SchedSEWSet<m.MX, isF=1>.val in
defm _V : VPseudoConversionRoundingMode<m.vrclass, m.vrclass, m, sew=e>,
SchedUnary<"WriteVFCvtIToFV", "ReadVFCvtIToFV", m.MX, e,
forcePassthruRead=true>;
}
}
multiclass VPseudoVCVTF_RM_V {
foreach m = MxListF in {
foreach e = SchedSEWSet<m.MX, isF=1>.val in
defm _V : VPseudoConversionRM<m.vrclass, m.vrclass, m, sew=e>,
SchedUnary<"WriteVFCvtIToFV", "ReadVFCvtIToFV", m.MX, e,
forcePassthruRead=true>;
}
}
multiclass VPseudoVWCVTI_V {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListFW in {
defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint, TargetConstraintType=3>,
SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVWCVTI_V_RM {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListFW in {
defm _V : VPseudoConversionRoundingMode<m.wvrclass, m.vrclass, m, constraint, TargetConstraintType=3>,
SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVWCVTI_RM_V {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListFW in {
defm _V : VPseudoConversionRM<m.wvrclass, m.vrclass, m, constraint>,
SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVWCVTF_V {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW in {
foreach e = SchedSEWSet<m.MX, isF=0, isWidening=1>.val in
defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint, sew=e,
TargetConstraintType=3>,
SchedUnary<"WriteVFWCvtIToFV", "ReadVFWCvtIToFV", m.MX, e,
forcePassthruRead=true>;
}
}
multiclass VPseudoVWCVTD_V {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint, sew=e,
TargetConstraintType=3>,
SchedUnary<"WriteVFWCvtFToFV", "ReadVFWCvtFToFV", m.MX, e,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNCVTI_W {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW in {
defm _W : VPseudoConversion<m.vrclass, m.wvrclass, m, constraint, TargetConstraintType=2>,
SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNCVTI_W_RM {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW in {
defm _W : VPseudoConversionRoundingMode<m.vrclass, m.wvrclass, m, constraint, TargetConstraintType=2>,
SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNCVTI_RM_W {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW in {
defm _W : VPseudoConversionRM<m.vrclass, m.wvrclass, m, constraint, TargetConstraintType=2>,
SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNCVTF_W_RM {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm _W : VPseudoConversionRoundingMode<m.vrclass, m.wvrclass, m,
constraint, sew=e,
TargetConstraintType=2>,
SchedUnary<"WriteVFNCvtIToFV", "ReadVFNCvtIToFV", m.MX, e,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNCVTF_RM_W {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm _W : VPseudoConversionRM<m.vrclass, m.wvrclass, m, constraint, sew=e,
TargetConstraintType=2>,
SchedUnary<"WriteVFNCvtIToFV", "ReadVFNCvtIToFV", m.MX, e,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNCVTD_W {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm _W : VPseudoConversion<m.vrclass, m.wvrclass, m, constraint, sew=e,
TargetConstraintType=2>,
SchedUnary<"WriteVFNCvtFToFV", "ReadVFNCvtFToFV", m.MX, e,
forcePassthruRead=true>;
}
}
multiclass VPseudoVNCVTD_W_RM {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListFW in {
foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in
defm _W : VPseudoConversionRoundingMode<m.vrclass, m.wvrclass, m,
constraint, sew=e,
TargetConstraintType=2>,
SchedUnary<"WriteVFNCvtFToFV", "ReadVFNCvtFToFV", m.MX, e,
forcePassthruRead=true>;
}
}
multiclass VPseudoUSSegLoad {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value, SEW=eew in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
def nf # "E" # eew # "_V_" # LInfo :
VPseudoUSSegLoadNoMask<vreg, eew, nf>, VLSEGSched<nf, eew, LInfo>;
def nf # "E" # eew # "_V_" # LInfo # "_MASK" :
VPseudoUSSegLoadMask<vreg, eew, nf>, VLSEGSched<nf, eew, LInfo>;
}
}
}
}
}
multiclass VPseudoUSSegLoadFF {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value, SEW=eew in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
def nf # "E" # eew # "FF_V_" # LInfo :
VPseudoUSSegLoadFFNoMask<vreg, eew, nf>, VLSEGFFSched<nf, eew, LInfo>;
def nf # "E" # eew # "FF_V_" # LInfo # "_MASK" :
VPseudoUSSegLoadFFMask<vreg, eew, nf>, VLSEGFFSched<nf, eew, LInfo>;
}
}
}
}
}
multiclass VPseudoSSegLoad {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value, SEW=eew in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegLoadNoMask<vreg, eew, nf>,
VLSSEGSched<nf, eew, LInfo>;
def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegLoadMask<vreg, eew, nf>,
VLSSEGSched<nf, eew, LInfo>;
}
}
}
}
}
multiclass VPseudoISegLoad<bit Ordered> {
foreach idxEEW = EEWList in {
foreach dataEEW = EEWList in {
foreach dataEMUL = MxSet<dataEEW>.m in {
defvar dataEMULOctuple = dataEMUL.octuple;
// Calculate emul = eew * lmul / sew
defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW));
if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then {
defvar DataLInfo = dataEMUL.MX;
defvar IdxLInfo = octuple_to_str<idxEMULOctuple>.ret;
defvar idxEMUL = !cast<LMULInfo>("V_" # IdxLInfo);
defvar DataVreg = dataEMUL.vrclass;
defvar IdxVreg = idxEMUL.vrclass;
let VLMul = dataEMUL.value in {
foreach nf = NFSet<dataEMUL>.L in {
defvar Vreg = SegRegClass<dataEMUL, nf>.RC;
def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo :
VPseudoISegLoadNoMask<Vreg, IdxVreg, idxEEW, idxEMUL.value,
nf, Ordered>,
VLXSEGSched<nf, dataEEW, Ordered, DataLInfo>;
def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" :
VPseudoISegLoadMask<Vreg, IdxVreg, idxEEW, idxEMUL.value,
nf, Ordered>,
VLXSEGSched<nf, dataEEW, Ordered, DataLInfo>;
}
}
}
}
}
}
}
multiclass VPseudoUSSegStore {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value, SEW=eew in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
def nf # "E" # eew # "_V_" # LInfo : VPseudoUSSegStoreNoMask<vreg, eew, nf>,
VSSEGSched<nf, eew, LInfo>;
def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSSegStoreMask<vreg, eew, nf>,
VSSEGSched<nf, eew, LInfo>;
}
}
}
}
}
multiclass VPseudoSSegStore {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value, SEW=eew in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegStoreNoMask<vreg, eew, nf>,
VSSSEGSched<nf, eew, LInfo>;
def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegStoreMask<vreg, eew, nf>,
VSSSEGSched<nf, eew, LInfo>;
}
}
}
}
}
multiclass VPseudoISegStore<bit Ordered> {
foreach idxEEW = EEWList in {
foreach dataEEW = EEWList in {
foreach dataEMUL = MxSet<dataEEW>.m in {
defvar dataEMULOctuple = dataEMUL.octuple;
// Calculate emul = eew * lmul / sew
defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW));
if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then {
defvar DataLInfo = dataEMUL.MX;
defvar IdxLInfo = octuple_to_str<idxEMULOctuple>.ret;
defvar idxEMUL = !cast<LMULInfo>("V_" # IdxLInfo);
defvar DataVreg = dataEMUL.vrclass;
defvar IdxVreg = idxEMUL.vrclass;
let VLMul = dataEMUL.value in {
foreach nf = NFSet<dataEMUL>.L in {
defvar Vreg = SegRegClass<dataEMUL, nf>.RC;
def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo :
VPseudoISegStoreNoMask<Vreg, IdxVreg, idxEEW, idxEMUL.value,
nf, Ordered>,
VSXSEGSched<nf, idxEEW, Ordered, DataLInfo>;
def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" :
VPseudoISegStoreMask<Vreg, IdxVreg, idxEEW, idxEMUL.value,
nf, Ordered>,
VSXSEGSched<nf, idxEEW, Ordered, DataLInfo>;
}
}
}
}
}
}
}
//===----------------------------------------------------------------------===//
// Helpers to define the intrinsic patterns.
//===----------------------------------------------------------------------===//
class VPatUnaryNoMask<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op2_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew),
inst#"_"#kind#"_"#vlmul.MX))
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
GPR:$vl, log2sew, TU_MU)>;
class VPatUnaryNoMaskRoundingMode<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op2_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(XLenVT timm:$round),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew),
inst#"_"#kind#"_"#vlmul.MX))
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(XLenVT timm:$round),
GPR:$vl, log2sew, TU_MU)>;
class VPatUnaryNoMaskRTZ<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op2_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(XLenVT 0b001),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew),
inst#"_"#kind#"_"#vlmul.MX))
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
GPR:$vl, log2sew, TU_MU)>;
class VPatUnaryMask<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(mask_type V0),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(
!if(isSEWAware,
inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK",
inst#"_"#kind#"_"#vlmul.MX#"_MASK"))
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(mask_type V0), GPR:$vl, log2sew, (XLenVT timm:$policy))>;
class VPatUnaryMaskRoundingMode<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(mask_type V0),
(XLenVT timm:$round),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(
!if(isSEWAware,
inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK",
inst#"_"#kind#"_"#vlmul.MX#"_MASK"))
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(mask_type V0),
(XLenVT timm:$round),
GPR:$vl, log2sew, (XLenVT timm:$policy))>;
class VPatUnaryMaskRTZ<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(mask_type V0),
(XLenVT 0b001),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(
!if(isSEWAware,
inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK",
inst#"_"#kind#"_"#vlmul.MX#"_MASK"))
(result_type result_reg_class:$passthru),
(op2_type op2_reg_class:$rs2),
(mask_type V0),
GPR:$vl, log2sew, (XLenVT timm:$policy))>;
class VPatMaskUnaryNoMask<string intrinsic_name,
string inst,
MTypeInfo mti> :
Pat<(mti.Mask (!cast<Intrinsic>(intrinsic_name)
(mti.Mask VR:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX)
(mti.Mask VR:$rs2),
GPR:$vl, mti.Log2SEW)>;
class VPatMaskUnaryMask<string intrinsic_name,
string inst,
MTypeInfo mti> :
Pat<(mti.Mask (!cast<Intrinsic>(intrinsic_name#"_mask")
(mti.Mask VR:$passthru),
(mti.Mask VR:$rs2),
(mti.Mask V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX#"_MASK")
(mti.Mask VR:$passthru),
(mti.Mask VR:$rs2),
(mti.Mask V0), GPR:$vl, mti.Log2SEW, TU_MU)>;
class VPatUnaryAnyMask<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class> :
Pat<(result_type (!cast<Intrinsic>(intrinsic)
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(mask_type VR:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew))
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(mask_type VR:$rs2),
GPR:$vl, log2sew)>;
class VPatBinaryM<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew)>;
class VPatBinaryNoMaskTU<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst)
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew, TU_MU)>;
class VPatBinaryNoMaskTURoundingMode<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(XLenVT timm:$round),
VLOpFrag)),
(!cast<Instruction>(inst)
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(XLenVT timm:$round),
GPR:$vl, sew, TU_MU)>;
// Same as VPatBinaryM but source operands are swapped.
class VPatBinaryMSwapped<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(op2_type op2_kind:$rs2),
(op1_type op1_reg_class:$rs1),
VLOpFrag)),
(!cast<Instruction>(inst)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew)>;
class VPatBinaryMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_MASK")
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew)>;
class VPatBinaryMaskPolicy<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(inst#"_MASK")
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>;
class VPatBinaryMaskPolicyRoundingMode<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
(XLenVT timm:$round),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(inst#"_MASK")
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
(XLenVT timm:$round),
GPR:$vl, sew, (XLenVT timm:$policy))>;
// Same as VPatBinaryMask but source operands are swapped.
class VPatBinaryMaskSwapped<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
(op1_type op1_reg_class:$rs1),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_MASK")
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew)>;
class VPatTiedBinaryNoMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op2_type,
int sew,
VReg result_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type (undef)),
(result_type result_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_TIED")
(result_type result_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew, TAIL_AGNOSTIC)>;
class VPatTiedBinaryNoMaskRoundingMode<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op2_type,
int sew,
VReg result_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type (undef)),
(result_type result_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(XLenVT timm:$round),
VLOpFrag)),
(!cast<Instruction>(inst#"_TIED")
(result_type result_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(XLenVT timm:$round),
GPR:$vl, sew, TAIL_AGNOSTIC)>;
class VPatTiedBinaryNoMaskTU<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op2_type,
int sew,
VReg result_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type result_reg_class:$passthru),
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_TIED")
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
GPR:$vl, sew, TU_MU)>;
class VPatTiedBinaryNoMaskTURoundingMode<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op2_type,
int sew,
VReg result_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type result_reg_class:$passthru),
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
(XLenVT timm:$round),
VLOpFrag)),
(!cast<Instruction>(inst#"_TIED")
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
(XLenVT timm:$round),
GPR:$vl, sew, TU_MU)>;
class VPatTiedBinaryMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(inst#"_MASK_TIED")
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>;
class VPatTiedBinaryMaskRoundingMode<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$passthru),
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
(mask_type V0),
(XLenVT timm:$round),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(inst#"_MASK_TIED")
(result_type result_reg_class:$passthru),
(op2_type op2_kind:$rs2),
(mask_type V0),
(XLenVT timm:$round),
GPR:$vl, sew, (XLenVT timm:$policy))>;
class VPatTernaryNoMaskTU<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic)
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew))
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
GPR:$vl, log2sew, TU_MU)>;
class VPatTernaryNoMaskTURoundingMode<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic)
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(XLenVT timm:$round),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew))
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
(XLenVT timm:$round),
GPR:$vl, log2sew, TU_MU)>;
class VPatTernaryNoMaskWithPolicy<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic)
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
GPR:$vl, sew, (XLenVT timm:$policy))>;
class VPatTernaryNoMaskWithPolicyRoundingMode<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind,
bit isSEWAware = 0> :
Pat<(result_type (!cast<Intrinsic>(intrinsic)
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(XLenVT timm:$round),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(!if(isSEWAware,
inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew),
inst#"_"#kind#"_"#vlmul.MX))
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
(XLenVT timm:$round),
GPR:$vl, log2sew, (XLenVT timm:$policy))>;
class VPatTernaryMaskPolicy<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask")
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX # "_MASK")
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
(mask_type V0),
GPR:$vl, sew, (XLenVT timm:$policy))>;
class VPatTernaryMaskPolicyRoundingMode<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind,
bit isSEWAware = 0> :
Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask")
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
(XLenVT timm:$round),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(!if(isSEWAware,
inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew) # "_MASK",
inst#"_"#kind#"_"#vlmul.MX # "_MASK"))
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
(mask_type V0),
(XLenVT timm:$round),
GPR:$vl, log2sew, (XLenVT timm:$policy))>;
class VPatTernaryMaskTU<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask")
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)# "_MASK")
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
(mask_type V0),
GPR:$vl, log2sew, TU_MU)>;
class VPatTernaryMaskTURoundingMode<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask")
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
(XLenVT timm:$round),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)# "_MASK")
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
(mask_type V0),
(XLenVT timm:$round),
GPR:$vl, log2sew, TU_MU)>;
multiclass VPatUnaryS_M<string intrinsic_name,
string inst> {
foreach mti = AllMasks in {
def : Pat<(XLenVT (!cast<Intrinsic>(intrinsic_name)
(mti.Mask VR:$rs1), VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX) $rs1,
GPR:$vl, mti.Log2SEW)>;
def : Pat<(XLenVT (!cast<Intrinsic>(intrinsic_name # "_mask")
(mti.Mask VR:$rs1), (mti.Mask V0), VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX#"_MASK") $rs1,
(mti.Mask V0), GPR:$vl, mti.Log2SEW)>;
}
}
multiclass VPatUnaryV_V_AnyMask<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
let Predicates = GetVTypePredicates<vti>.Predicates in
def : VPatUnaryAnyMask<intrinsic, instruction, "VM",
vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass>;
}
}
multiclass VPatUnaryM_M<string intrinsic,
string inst> {
foreach mti = AllMasks in {
def : VPatMaskUnaryNoMask<intrinsic, inst, mti>;
def : VPatMaskUnaryMask<intrinsic, inst, mti>;
}
}
multiclass VPatUnaryV_M<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : VPatUnaryNoMask<intrinsic, instruction, "M", vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, VR>;
def : VPatUnaryMask<intrinsic, instruction, "M", vti.Vector, vti.Mask,
vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, VR>;
}
}
}
multiclass VPatUnaryV_VF<string intrinsic, string instruction, string suffix,
list<VTypeInfoToFraction> fractionList> {
foreach vtiTofti = fractionList in {
defvar vti = vtiTofti.Vti;
defvar fti = vtiTofti.Fti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<fti>.Predicates) in {
def : VPatUnaryNoMask<intrinsic, instruction, suffix,
vti.Vector, fti.Vector,
vti.Log2SEW, vti.LMul, vti.RegClass, fti.RegClass>;
def : VPatUnaryMask<intrinsic, instruction, suffix,
vti.Vector, fti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, fti.RegClass>;
}
}
}
multiclass VPatUnaryV_V<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0> {
foreach vti = vtilist in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : VPatUnaryNoMask<intrinsic, instruction, "V",
vti.Vector, vti.Vector, vti.Log2SEW,
vti.LMul, vti.RegClass, vti.RegClass, isSEWAware>;
def : VPatUnaryMask<intrinsic, instruction, "V",
vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW,
vti.LMul, vti.RegClass, vti.RegClass, isSEWAware>;
}
}
}
multiclass VPatUnaryV_V_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0> {
foreach vti = vtilist in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : VPatUnaryNoMaskRoundingMode<intrinsic, instruction, "V",
vti.Vector, vti.Vector, vti.Log2SEW,
vti.LMul, vti.RegClass, vti.RegClass, isSEWAware>;
def : VPatUnaryMaskRoundingMode<intrinsic, instruction, "V",
vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW,
vti.LMul, vti.RegClass, vti.RegClass, isSEWAware>;
}
}
}
multiclass VPatNullaryV<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic)
(vti.Vector vti.RegClass:$passthru),
VLOpFrag)),
(!cast<Instruction>(instruction#"_V_" # vti.LMul.MX)
vti.RegClass:$passthru, GPR:$vl, vti.Log2SEW, TU_MU)>;
def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic # "_mask")
(vti.Vector vti.RegClass:$passthru),
(vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(instruction#"_V_" # vti.LMul.MX # "_MASK")
vti.RegClass:$passthru, (vti.Mask V0),
GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>;
}
}
}
multiclass VPatNullaryM<string intrinsic, string inst> {
foreach mti = AllMasks in
def : Pat<(mti.Mask (!cast<Intrinsic>(intrinsic)
VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX)
GPR:$vl, mti.Log2SEW)>;
}
multiclass VPatBinaryM<string intrinsic,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> {
def : VPatBinaryM<intrinsic, inst, result_type, op1_type, op2_type,
sew, op1_reg_class, op2_kind>;
def : VPatBinaryMask<intrinsic, inst, result_type, op1_type, op2_type,
mask_type, sew, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatBinary<string intrinsic,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> {
def : VPatBinaryNoMaskTU<intrinsic, inst, result_type, op1_type, op2_type,
sew, result_reg_class, op1_reg_class, op2_kind>;
def : VPatBinaryMaskPolicy<intrinsic, inst, result_type, op1_type, op2_type,
mask_type, sew, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatBinaryRoundingMode<string intrinsic,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> {
def : VPatBinaryNoMaskTURoundingMode<intrinsic, inst, result_type, op1_type, op2_type,
sew, result_reg_class, op1_reg_class, op2_kind>;
def : VPatBinaryMaskPolicyRoundingMode<intrinsic, inst, result_type, op1_type, op2_type,
mask_type, sew, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatBinaryMSwapped<string intrinsic,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> {
def : VPatBinaryMSwapped<intrinsic, inst, result_type, op1_type, op2_type,
sew, op1_reg_class, op2_kind>;
def : VPatBinaryMaskSwapped<intrinsic, inst, result_type, op1_type, op2_type,
mask_type, sew, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatBinaryCarryInTAIL<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> {
def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(result_type result_reg_class:$passthru),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew)>;
}
multiclass VPatBinaryCarryIn<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg op1_reg_class,
DAGOperand op2_kind> {
def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew)>;
}
multiclass VPatBinaryMaskOut<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
LMULInfo vlmul,
VReg op1_reg_class,
DAGOperand op2_kind> {
def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew)>;
}
multiclass VPatConversion<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class,
bit isSEWAware = 0> {
def : VPatUnaryNoMask<intrinsic, inst, kind, result_type, op1_type,
log2sew, vlmul, result_reg_class, op1_reg_class,
isSEWAware>;
def : VPatUnaryMask<intrinsic, inst, kind, result_type, op1_type,
mask_type, log2sew, vlmul, result_reg_class, op1_reg_class,
isSEWAware>;
}
multiclass VPatConversionRoundingMode<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class,
bit isSEWAware = 0> {
def : VPatUnaryNoMaskRoundingMode<intrinsic, inst, kind, result_type, op1_type,
log2sew, vlmul, result_reg_class,
op1_reg_class, isSEWAware>;
def : VPatUnaryMaskRoundingMode<intrinsic, inst, kind, result_type, op1_type,
mask_type, log2sew, vlmul, result_reg_class,
op1_reg_class, isSEWAware>;
}
multiclass VPatConversionRTZ<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class,
bit isSEWAware = 0> {
def : VPatUnaryNoMaskRTZ<intrinsic, inst, kind, result_type, op1_type,
log2sew, vlmul, result_reg_class,
op1_reg_class, isSEWAware>;
def : VPatUnaryMaskRTZ<intrinsic, inst, kind, result_type, op1_type,
mask_type, log2sew, vlmul, result_reg_class,
op1_reg_class, isSEWAware>;
}
multiclass VPatBinaryV_VV<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinary<intrinsic,
!if(isSEWAware,
instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW,
instruction # "_VV_" # vti.LMul.MX),
vti.Vector, vti.Vector, vti.Vector,vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_VV_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryRoundingMode<intrinsic,
!if(isSEWAware,
instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW,
instruction # "_VV_" # vti.LMul.MX),
vti.Vector, vti.Vector, vti.Vector,vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_VV_INT<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
defvar ivti = GetIntVTypeInfo<vti>.Vti;
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinary<intrinsic,
instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW,
vti.Vector, vti.Vector, ivti.Vector, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
}
multiclass VPatBinaryV_VV_INT_EEW<string intrinsic, string instruction,
int eew, list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
// emul = lmul * eew / sew
defvar vlmul = vti.LMul;
defvar octuple_lmul = vlmul.octuple;
defvar octuple_emul = !srl(!mul(octuple_lmul, eew), vti.Log2SEW);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar emul_str = octuple_to_str<octuple_emul>.ret;
defvar ivti = !cast<VTypeInfo>("VI" # eew # emul_str);
defvar inst = instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW # "_" # emul_str;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
defm : VPatBinary<intrinsic, inst,
vti.Vector, vti.Vector, ivti.Vector, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, ivti.RegClass>;
}
}
}
multiclass VPatBinaryV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0> {
foreach vti = vtilist in {
defvar kind = "V"#vti.ScalarSuffix;
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinary<intrinsic,
!if(isSEWAware,
instruction#"_"#kind#"_"#vti.LMul.MX#"_E"#vti.SEW,
instruction#"_"#kind#"_"#vti.LMul.MX),
vti.Vector, vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, vti.ScalarRegClass>;
}
}
multiclass VPatBinaryV_VX_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0> {
foreach vti = vtilist in {
defvar kind = "V"#vti.ScalarSuffix;
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryRoundingMode<intrinsic,
!if(isSEWAware,
instruction#"_"#kind#"_"#vti.LMul.MX#"_E"#vti.SEW,
instruction#"_"#kind#"_"#vti.LMul.MX),
vti.Vector, vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, vti.ScalarRegClass>;
}
}
multiclass VPatBinaryV_VX_INT<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinary<intrinsic, instruction # "_VX_" # vti.LMul.MX,
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, GPR>;
}
multiclass VPatBinaryV_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand imm_type> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinary<intrinsic, instruction # "_VI_" # vti.LMul.MX,
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, imm_type>;
}
multiclass VPatBinaryV_VI_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist,
Operand imm_type> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryRoundingMode<intrinsic,
instruction # "_VI_" # vti.LMul.MX,
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, imm_type>;
}
multiclass VPatBinaryM_MM<string intrinsic, string instruction> {
foreach mti = AllMasks in
let Predicates = [HasVInstructions] in
def : VPatBinaryM<intrinsic, instruction # "_MM_" # mti.LMul.MX,
mti.Mask, mti.Mask, mti.Mask,
mti.Log2SEW, VR, VR>;
}
multiclass VPatBinaryW_VV<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinary<intrinsic, instruction # "_VV_" # Vti.LMul.MX,
Wti.Vector, Vti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Vti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryW_VV_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar name = !if(isSEWAware,
instruction # "_VV_" # Vti.LMul.MX # "_E" # Vti.SEW,
instruction # "_VV_" # Vti.LMul.MX);
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinaryRoundingMode<intrinsic, name,
Wti.Vector, Vti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Vti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryW_VX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "V"#Vti.ScalarSuffix;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
Wti.Vector, Vti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Vti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryW_VX_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "V"#Vti.ScalarSuffix;
defvar name = !if(isSEWAware,
instruction#"_"#kind#"_"#Vti.LMul.MX # "_E" # Vti.SEW,
instruction#"_"#kind#"_"#Vti.LMul.MX);
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinaryRoundingMode<intrinsic, name,
Wti.Vector, Vti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Vti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryW_WV<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in {
def : VPatTiedBinaryNoMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Wti.Vector, Vti.Vector,
Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
def : VPatBinaryNoMaskTU<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Wti.Vector, Wti.Vector, Vti.Vector, Vti.Log2SEW,
Wti.RegClass, Wti.RegClass, Vti.RegClass>;
let AddedComplexity = 1 in {
def : VPatTiedBinaryNoMaskTU<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Wti.Vector, Vti.Vector,
Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
def : VPatTiedBinaryMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
}
def : VPatBinaryMaskPolicy<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Wti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Wti.RegClass, Vti.RegClass>;
}
}
}
multiclass VPatBinaryW_WV_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar name = !if(isSEWAware,
instruction # "_WV_" # Vti.LMul.MX # "_E" # Vti.SEW,
instruction # "_WV_" # Vti.LMul.MX);
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in {
def : VPatTiedBinaryNoMaskRoundingMode<intrinsic, name,
Wti.Vector, Vti.Vector,
Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
def : VPatBinaryNoMaskTURoundingMode<intrinsic, name,
Wti.Vector, Wti.Vector, Vti.Vector, Vti.Log2SEW,
Wti.RegClass, Wti.RegClass, Vti.RegClass>;
let AddedComplexity = 1 in {
def : VPatTiedBinaryNoMaskTURoundingMode<intrinsic, name,
Wti.Vector, Vti.Vector,
Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
def : VPatTiedBinaryMaskRoundingMode<intrinsic, name,
Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
}
def : VPatBinaryMaskPolicyRoundingMode<intrinsic, name,
Wti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Wti.RegClass, Vti.RegClass>;
}
}
}
multiclass VPatBinaryW_WX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "W"#Vti.ScalarSuffix;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
Wti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Wti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryW_WX_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "W"#Vti.ScalarSuffix;
defvar name = !if(isSEWAware,
instruction#"_"#kind#"_"#Vti.LMul.MX#"_E"#Vti.SEW,
instruction#"_"#kind#"_"#Vti.LMul.MX);
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinaryRoundingMode<intrinsic, name,
Wti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Wti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryV_WV<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinary<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Vti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryV_WV_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinaryRoundingMode<intrinsic,
instruction # "_WV_" # Vti.LMul.MX,
Vti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryV_WX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "W"#Vti.ScalarSuffix;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
Vti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryV_WX_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "W"#Vti.ScalarSuffix;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinaryRoundingMode<intrinsic,
instruction#"_"#kind#"_"#Vti.LMul.MX,
Vti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryV_WI<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinary<intrinsic, instruction # "_WI_" # Vti.LMul.MX,
Vti.Vector, Wti.Vector, XLenVT, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, uimm5>;
}
}
multiclass VPatBinaryV_WI_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates,
GetVTypePredicates<Wti>.Predicates) in
defm : VPatBinaryRoundingMode<intrinsic,
instruction # "_WI_" # Vti.LMul.MX,
Vti.Vector, Wti.Vector, XLenVT, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, uimm5>;
}
}
multiclass VPatBinaryV_VM<string intrinsic, string instruction,
bit CarryOut = 0,
list<VTypeInfo> vtilist = AllIntegerVectors> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryCarryIn<intrinsic, instruction, "VVM",
!if(CarryOut, vti.Mask, vti.Vector),
vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_XM<string intrinsic, string instruction,
bit CarryOut = 0,
list<VTypeInfo> vtilist = AllIntegerVectors> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryCarryIn<intrinsic, instruction,
"V"#vti.ScalarSuffix#"M",
!if(CarryOut, vti.Mask, vti.Vector),
vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, vti.LMul,
vti.RegClass, vti.ScalarRegClass>;
}
multiclass VPatBinaryV_IM<string intrinsic, string instruction,
bit CarryOut = 0> {
foreach vti = AllIntegerVectors in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryCarryIn<intrinsic, instruction, "VIM",
!if(CarryOut, vti.Mask, vti.Vector),
vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.LMul,
vti.RegClass, simm5>;
}
multiclass VPatBinaryV_VM_TAIL<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryCarryInTAIL<intrinsic, instruction, "VVM",
vti.Vector,
vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_XM_TAIL<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryCarryInTAIL<intrinsic, instruction,
"V"#vti.ScalarSuffix#"M",
vti.Vector,
vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.ScalarRegClass>;
}
multiclass VPatBinaryV_IM_TAIL<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryCarryInTAIL<intrinsic, instruction, "VIM",
vti.Vector,
vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.LMul,
vti.RegClass, vti.RegClass, simm5>;
}
multiclass VPatBinaryV_V<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VV",
vti.Mask, vti.Vector, vti.Vector,
vti.Log2SEW, vti.LMul,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_X<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VX",
vti.Mask, vti.Vector, XLenVT,
vti.Log2SEW, vti.LMul,
vti.RegClass, GPR>;
}
multiclass VPatBinaryV_I<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VI",
vti.Mask, vti.Vector, XLenVT,
vti.Log2SEW, vti.LMul,
vti.RegClass, simm5>;
}
multiclass VPatBinaryM_VV<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryM<intrinsic, instruction # "_VV_" # vti.LMul.MX,
vti.Mask, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, VR,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinarySwappedM_VV<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryMSwapped<intrinsic, instruction # "_VV_" # vti.LMul.MX,
vti.Mask, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, VR,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryM_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
defvar kind = "V"#vti.ScalarSuffix;
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryM<intrinsic, instruction#"_"#kind#"_"#vti.LMul.MX,
vti.Mask, vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, VR,
vti.RegClass, vti.ScalarRegClass>;
}
}
multiclass VPatBinaryM_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryM<intrinsic, instruction # "_VI_" # vti.LMul.MX,
vti.Mask, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, VR,
vti.RegClass, simm5>;
}
multiclass VPatBinaryV_VV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand ImmType = simm5>
: VPatBinaryV_VV<intrinsic, instruction, vtilist>,
VPatBinaryV_VX<intrinsic, instruction, vtilist>,
VPatBinaryV_VI<intrinsic, instruction, vtilist, ImmType>;
multiclass VPatBinaryV_VV_VX_VI_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand ImmType>
: VPatBinaryV_VV_RM<intrinsic, instruction, vtilist>,
VPatBinaryV_VX_RM<intrinsic, instruction, vtilist>,
VPatBinaryV_VI_RM<intrinsic, instruction, vtilist, ImmType>;
multiclass VPatBinaryV_VV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0>
: VPatBinaryV_VV<intrinsic, instruction, vtilist, isSEWAware>,
VPatBinaryV_VX<intrinsic, instruction, vtilist, isSEWAware>;
multiclass VPatBinaryV_VV_VX_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0>
: VPatBinaryV_VV_RM<intrinsic, instruction, vtilist, isSEWAware>,
VPatBinaryV_VX_RM<intrinsic, instruction, vtilist, isSEWAware>;
multiclass VPatBinaryV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryV_VX<intrinsic, instruction, vtilist>,
VPatBinaryV_VI<intrinsic, instruction, vtilist, simm5>;
multiclass VPatBinaryW_VV_VX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatBinaryW_VV<intrinsic, instruction, vtilist>,
VPatBinaryW_VX<intrinsic, instruction, vtilist>;
multiclass
VPatBinaryW_VV_VX_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 0>
: VPatBinaryW_VV_RM<intrinsic, instruction, vtilist, isSEWAware>,
VPatBinaryW_VX_RM<intrinsic, instruction, vtilist, isSEWAware>;
multiclass VPatBinaryW_WV_WX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatBinaryW_WV<intrinsic, instruction, vtilist>,
VPatBinaryW_WX<intrinsic, instruction, vtilist>;
multiclass
VPatBinaryW_WV_WX_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 0>
: VPatBinaryW_WV_RM<intrinsic, instruction, vtilist, isSEWAware>,
VPatBinaryW_WX_RM<intrinsic, instruction, vtilist, isSEWAware>;
multiclass VPatBinaryV_WV_WX_WI<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatBinaryV_WV<intrinsic, instruction, vtilist>,
VPatBinaryV_WX<intrinsic, instruction, vtilist>,
VPatBinaryV_WI<intrinsic, instruction, vtilist>;
multiclass VPatBinaryV_WV_WX_WI_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatBinaryV_WV_RM<intrinsic, instruction, vtilist>,
VPatBinaryV_WX_RM<intrinsic, instruction, vtilist>,
VPatBinaryV_WI_RM<intrinsic, instruction, vtilist>;
multiclass VPatBinaryV_VM_XM_IM<string intrinsic, string instruction>
: VPatBinaryV_VM_TAIL<intrinsic, instruction>,
VPatBinaryV_XM_TAIL<intrinsic, instruction>,
VPatBinaryV_IM_TAIL<intrinsic, instruction>;
multiclass VPatBinaryM_VM_XM_IM<string intrinsic, string instruction>
: VPatBinaryV_VM<intrinsic, instruction, CarryOut=1>,
VPatBinaryV_XM<intrinsic, instruction, CarryOut=1>,
VPatBinaryV_IM<intrinsic, instruction, CarryOut=1>;
multiclass VPatBinaryM_V_X_I<string intrinsic, string instruction>
: VPatBinaryV_V<intrinsic, instruction>,
VPatBinaryV_X<intrinsic, instruction>,
VPatBinaryV_I<intrinsic, instruction>;
multiclass VPatBinaryV_VM_XM<string intrinsic, string instruction>
: VPatBinaryV_VM_TAIL<intrinsic, instruction>,
VPatBinaryV_XM_TAIL<intrinsic, instruction>;
multiclass VPatBinaryM_VM_XM<string intrinsic, string instruction>
: VPatBinaryV_VM<intrinsic, instruction, CarryOut=1>,
VPatBinaryV_XM<intrinsic, instruction, CarryOut=1>;
multiclass VPatBinaryM_V_X<string intrinsic, string instruction>
: VPatBinaryV_V<intrinsic, instruction>,
VPatBinaryV_X<intrinsic, instruction>;
multiclass VPatTernaryWithPolicy<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> {
def : VPatTernaryNoMaskWithPolicy<intrinsic, inst, kind, result_type, op1_type,
op2_type, sew, vlmul, result_reg_class,
op1_reg_class, op2_kind>;
def : VPatTernaryMaskPolicy<intrinsic, inst, kind, result_type, op1_type, op2_type,
mask_type, sew, vlmul, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatTernaryWithPolicyRoundingMode<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind,
bit isSEWAware = 0> {
def : VPatTernaryNoMaskWithPolicyRoundingMode<intrinsic, inst, kind, result_type,
op1_type, op2_type, sew, vlmul,
result_reg_class, op1_reg_class,
op2_kind, isSEWAware>;
def : VPatTernaryMaskPolicyRoundingMode<intrinsic, inst, kind, result_type, op1_type,
op2_type, mask_type, sew, vlmul,
result_reg_class, op1_reg_class,
op2_kind, isSEWAware>;
}
multiclass VPatTernaryTU<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> {
def : VPatTernaryNoMaskTU<intrinsic, inst, kind, result_type, op1_type,
op2_type, log2sew, vlmul, result_reg_class,
op1_reg_class, op2_kind>;
def : VPatTernaryMaskTU<intrinsic, inst, kind, result_type, op1_type,
op2_type, mask_type, log2sew, vlmul,
result_reg_class, op1_reg_class, op2_kind>;
}
multiclass VPatTernaryTURoundingMode<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> {
def : VPatTernaryNoMaskTURoundingMode<intrinsic, inst, kind, result_type, op1_type,
op2_type, log2sew, vlmul, result_reg_class,
op1_reg_class, op2_kind>;
def : VPatTernaryMaskTURoundingMode<intrinsic, inst, kind, result_type, op1_type,
op2_type, mask_type, log2sew, vlmul,
result_reg_class, op1_reg_class, op2_kind>;
}
multiclass VPatTernaryV_VV_AAXA<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryWithPolicy<intrinsic, instruction, "VV",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
multiclass VPatTernaryV_VV_AAXA_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryWithPolicyRoundingMode<intrinsic, instruction, "VV",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.RegClass, isSEWAware>;
}
multiclass VPatTernaryV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryWithPolicy<intrinsic, instruction, "VX",
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, GPR>;
}
multiclass VPatTernaryV_VX_AAXA<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryWithPolicy<intrinsic, instruction,
"V"#vti.ScalarSuffix,
vti.Vector, vti.Scalar, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.ScalarRegClass, vti.RegClass>;
}
multiclass VPatTernaryV_VX_AAXA_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryWithPolicyRoundingMode<intrinsic, instruction,
"V"#vti.ScalarSuffix,
vti.Vector, vti.Scalar, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.ScalarRegClass, vti.RegClass, isSEWAware>;
}
multiclass VPatTernaryV_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand Imm_type> {
foreach vti = vtilist in
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryWithPolicy<intrinsic, instruction, "VI",
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, Imm_type>;
}
multiclass VPatTernaryW_VV<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach vtiToWti = vtilist in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in
defm : VPatTernaryWithPolicy<intrinsic, instruction, "VV",
wti.Vector, vti.Vector, vti.Vector,
vti.Mask, vti.Log2SEW, vti.LMul,
wti.RegClass, vti.RegClass, vti.RegClass>;
}
}
multiclass VPatTernaryW_VV_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> {
foreach vtiToWti = vtilist in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in
defm : VPatTernaryWithPolicyRoundingMode<intrinsic, instruction, "VV",
wti.Vector, vti.Vector, vti.Vector,
vti.Mask, vti.Log2SEW, vti.LMul,
wti.RegClass, vti.RegClass,
vti.RegClass, isSEWAware>;
}
}
multiclass VPatTernaryW_VX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach vtiToWti = vtilist in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in
defm : VPatTernaryWithPolicy<intrinsic, instruction,
"V"#vti.ScalarSuffix,
wti.Vector, vti.Scalar, vti.Vector,
vti.Mask, vti.Log2SEW, vti.LMul,
wti.RegClass, vti.ScalarRegClass, vti.RegClass>;
}
}
multiclass
VPatTernaryW_VX_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> {
foreach vtiToWti = vtilist in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in defm
: VPatTernaryWithPolicyRoundingMode<
intrinsic, instruction, "V" #vti.ScalarSuffix, wti.Vector,
vti.Scalar, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul,
wti.RegClass, vti.ScalarRegClass, vti.RegClass, isSEWAware>;
}
}
multiclass VPatTernaryV_VV_VX_AAXA<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatTernaryV_VV_AAXA<intrinsic, instruction, vtilist>,
VPatTernaryV_VX_AAXA<intrinsic, instruction, vtilist>;
multiclass VPatTernaryV_VV_VX_AAXA_RM<string intrinsic, string instruction,
list<VTypeInfo> vtilist, bit isSEWAware = 0>
: VPatTernaryV_VV_AAXA_RM<intrinsic, instruction, vtilist, isSEWAware>,
VPatTernaryV_VX_AAXA_RM<intrinsic, instruction, vtilist, isSEWAware>;
multiclass VPatTernaryV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand Imm_type>
: VPatTernaryV_VX<intrinsic, instruction, vtilist>,
VPatTernaryV_VI<intrinsic, instruction, vtilist, Imm_type>;
multiclass VPatBinaryM_VV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryM_VV<intrinsic, instruction, vtilist>,
VPatBinaryM_VX<intrinsic, instruction, vtilist>,
VPatBinaryM_VI<intrinsic, instruction, vtilist>;
multiclass VPatTernaryW_VV_VX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatTernaryW_VV<intrinsic, instruction, vtilist>,
VPatTernaryW_VX<intrinsic, instruction, vtilist>;
multiclass VPatTernaryW_VV_VX_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist, bit isSEWAware = 1>
: VPatTernaryW_VV_RM<intrinsic, instruction, vtilist, isSEWAware>,
VPatTernaryW_VX_RM<intrinsic, instruction, vtilist, isSEWAware>;
multiclass VPatBinaryM_VV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryM_VV<intrinsic, instruction, vtilist>,
VPatBinaryM_VX<intrinsic, instruction, vtilist>;
multiclass VPatBinaryM_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryM_VX<intrinsic, instruction, vtilist>,
VPatBinaryM_VI<intrinsic, instruction, vtilist>;
multiclass VPatBinaryV_VV_VX_VI_INT<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand ImmType>
: VPatBinaryV_VV_INT<intrinsic#"_vv", instruction, vtilist>,
VPatBinaryV_VX_INT<intrinsic#"_vx", instruction, vtilist>,
VPatBinaryV_VI<intrinsic#"_vx", instruction, vtilist, ImmType>;
multiclass VPatReductionV_VS<string intrinsic, string instruction, bit IsFloat = 0> {
foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in {
defvar vectorM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # vti.SEW # "M1");
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryTU<intrinsic, instruction, "VS",
vectorM1.Vector, vti.Vector,
vectorM1.Vector, vti.Mask,
vti.Log2SEW, vti.LMul,
VR, vti.RegClass, VR>;
}
foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in {
let Predicates = GetVTypePredicates<gvti>.Predicates in
defm : VPatTernaryTU<intrinsic, instruction, "VS",
gvti.VectorM1, gvti.Vector,
gvti.VectorM1, gvti.Mask,
gvti.Log2SEW, gvti.LMul,
VR, gvti.RegClass, VR>;
}
}
multiclass VPatReductionV_VS_RM<string intrinsic, string instruction, bit IsFloat = 0> {
foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in {
defvar vectorM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # vti.SEW # "M1");
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryTURoundingMode<intrinsic, instruction, "VS",
vectorM1.Vector, vti.Vector,
vectorM1.Vector, vti.Mask,
vti.Log2SEW, vti.LMul,
VR, vti.RegClass, VR>;
}
foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in {
let Predicates = GetVTypePredicates<gvti>.Predicates in
defm : VPatTernaryTURoundingMode<intrinsic, instruction, "VS",
gvti.VectorM1, gvti.Vector,
gvti.VectorM1, gvti.Mask,
gvti.Log2SEW, gvti.LMul,
VR, gvti.RegClass, VR>;
}
}
multiclass VPatReductionW_VS<string intrinsic, string instruction, bit IsFloat = 0> {
foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in {
defvar wtiSEW = !mul(vti.SEW, 2);
if !le(wtiSEW, 64) then {
defvar wtiM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # wtiSEW # "M1");
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryTU<intrinsic, instruction, "VS",
wtiM1.Vector, vti.Vector,
wtiM1.Vector, vti.Mask,
vti.Log2SEW, vti.LMul,
wtiM1.RegClass, vti.RegClass,
wtiM1.RegClass>;
}
}
}
multiclass VPatReductionW_VS_RM<string intrinsic, string instruction, bit IsFloat = 0> {
foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in {
defvar wtiSEW = !mul(vti.SEW, 2);
if !le(wtiSEW, 64) then {
defvar wtiM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # wtiSEW # "M1");
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatTernaryTURoundingMode<intrinsic, instruction, "VS",
wtiM1.Vector, vti.Vector,
wtiM1.Vector, vti.Mask,
vti.Log2SEW, vti.LMul,
wtiM1.RegClass, vti.RegClass,
wtiM1.RegClass>;
}
}
}
multiclass VPatConversionVI_VF<string intrinsic,
string instruction> {
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
defm : VPatConversion<intrinsic, instruction, "V",
ivti.Vector, fvti.Vector, ivti.Mask, fvti.Log2SEW,
fvti.LMul, ivti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionVI_VF_RM<string intrinsic,
string instruction> {
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
defm : VPatConversionRoundingMode<intrinsic, instruction, "V",
ivti.Vector, fvti.Vector, ivti.Mask, fvti.Log2SEW,
fvti.LMul, ivti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionVI_VF_RTZ<string intrinsic,
string instruction> {
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
defm : VPatConversionRTZ<intrinsic, instruction, "V",
ivti.Vector, fvti.Vector, ivti.Mask, fvti.Log2SEW,
fvti.LMul, ivti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionVF_VI_RM<string intrinsic, string instruction,
bit isSEWAware = 0> {
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
defm : VPatConversionRoundingMode<intrinsic, instruction, "V",
fvti.Vector, ivti.Vector, fvti.Mask, ivti.Log2SEW,
ivti.LMul, fvti.RegClass, ivti.RegClass,
isSEWAware>;
}
}
multiclass VPatConversionWI_VF<string intrinsic, string instruction> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<iwti>.Predicates) in
defm : VPatConversion<intrinsic, instruction, "V",
iwti.Vector, fvti.Vector, iwti.Mask, fvti.Log2SEW,
fvti.LMul, iwti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionWI_VF_RM<string intrinsic, string instruction> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<iwti>.Predicates) in
defm : VPatConversionRoundingMode<intrinsic, instruction, "V",
iwti.Vector, fvti.Vector, iwti.Mask, fvti.Log2SEW,
fvti.LMul, iwti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionWI_VF_RTZ<string intrinsic, string instruction> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<iwti>.Predicates) in
defm : VPatConversionRTZ<intrinsic, instruction, "V",
iwti.Vector, fvti.Vector, iwti.Mask, fvti.Log2SEW,
fvti.LMul, iwti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionWF_VI<string intrinsic, string instruction,
bit isSEWAware = 0> {
foreach vtiToWti = AllWidenableIntToFloatVectors in {
defvar vti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversion<intrinsic, instruction, "V",
fwti.Vector, vti.Vector, fwti.Mask, vti.Log2SEW,
vti.LMul, fwti.RegClass, vti.RegClass, isSEWAware>;
}
}
multiclass VPatConversionWF_VF<string intrinsic, string instruction,
bit isSEWAware = 0> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
// Define vfwcvt.f.f.v for f16 when Zvfhmin is enable.
let Predicates = !if(!eq(fvti.Scalar, f16), [HasVInstructionsF16Minimal],
!listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<fwti>.Predicates)) in
defm : VPatConversion<intrinsic, instruction, "V",
fwti.Vector, fvti.Vector, fwti.Mask, fvti.Log2SEW,
fvti.LMul, fwti.RegClass, fvti.RegClass, isSEWAware>;
}
}
multiclass VPatConversionWF_VF_BF<string intrinsic, string instruction,
bit isSEWAware = 0> {
foreach fvtiToFWti = AllWidenableBFloatToFloatVectors in
{
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversion<intrinsic, instruction, "V",
fwti.Vector, fvti.Vector, fwti.Mask, fvti.Log2SEW,
fvti.LMul, fwti.RegClass, fvti.RegClass, isSEWAware>;
}
}
multiclass VPatConversionVI_WF<string intrinsic, string instruction> {
foreach vtiToWti = AllWidenableIntToFloatVectors in {
defvar vti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversion<intrinsic, instruction, "W",
vti.Vector, fwti.Vector, vti.Mask, vti.Log2SEW,
vti.LMul, vti.RegClass, fwti.RegClass>;
}
}
multiclass VPatConversionVI_WF_RM <string intrinsic, string instruction> {
foreach vtiToWti = AllWidenableIntToFloatVectors in {
defvar vti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversionRoundingMode<intrinsic, instruction, "W",
vti.Vector, fwti.Vector, vti.Mask, vti.Log2SEW,
vti.LMul, vti.RegClass, fwti.RegClass>;
}
}
multiclass VPatConversionVI_WF_RTZ <string intrinsic, string instruction> {
foreach vtiToWti = AllWidenableIntToFloatVectors in {
defvar vti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversionRTZ<intrinsic, instruction, "W",
vti.Vector, fwti.Vector, vti.Mask, vti.Log2SEW,
vti.LMul, vti.RegClass, fwti.RegClass>;
}
}
multiclass VPatConversionVF_WI_RM <string intrinsic, string instruction,
bit isSEWAware = 0> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<iwti>.Predicates) in
defm : VPatConversionRoundingMode<intrinsic, instruction, "W",
fvti.Vector, iwti.Vector, fvti.Mask, fvti.Log2SEW,
fvti.LMul, fvti.RegClass, iwti.RegClass,
isSEWAware>;
}
}
multiclass VPatConversionVF_WF<string intrinsic, string instruction,
bit isSEWAware = 0> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversion<intrinsic, instruction, "W",
fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW,
fvti.LMul, fvti.RegClass, fwti.RegClass, isSEWAware>;
}
}
multiclass VPatConversionVF_WF_RM<string intrinsic, string instruction,
list<VTypeInfoToWide> wlist = AllWidenableFloatVectors,
bit isSEWAware = 0> {
foreach fvtiToFWti = wlist in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversionRoundingMode<intrinsic, instruction, "W",
fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW,
fvti.LMul, fvti.RegClass, fwti.RegClass,
isSEWAware>;
}
}
multiclass VPatConversionVF_WF_RTZ<string intrinsic, string instruction,
list<VTypeInfoToWide> wlist = AllWidenableFloatVectors,
bit isSEWAware = 0> {
foreach fvtiToFWti = wlist in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversionRTZ<intrinsic, instruction, "W",
fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW,
fvti.LMul, fvti.RegClass, fwti.RegClass, isSEWAware>;
}
}
multiclass VPatConversionVF_WF_BF_RM<string intrinsic, string instruction,
bit isSEWAware = 0> {
foreach fvtiToFWti = AllWidenableBFloatToFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
defm : VPatConversionRoundingMode<intrinsic, instruction, "W",
fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW,
fvti.LMul, fvti.RegClass, fwti.RegClass,
isSEWAware>;
}
}
multiclass VPatCompare_VI<string intrinsic, string inst,
ImmLeaf ImmType> {
foreach vti = AllIntegerVectors in {
defvar Intr = !cast<Intrinsic>(intrinsic);
defvar Pseudo = !cast<Instruction>(inst#"_VI_"#vti.LMul.MX);
let Predicates = GetVTypePredicates<vti>.Predicates in
def : Pat<(vti.Mask (Intr (vti.Vector vti.RegClass:$rs1),
(vti.Scalar ImmType:$rs2),
VLOpFrag)),
(Pseudo vti.RegClass:$rs1, (DecImm ImmType:$rs2),
GPR:$vl, vti.Log2SEW)>;
defvar IntrMask = !cast<Intrinsic>(intrinsic # "_mask");
defvar PseudoMask = !cast<Instruction>(inst#"_VI_"#vti.LMul.MX#"_MASK");
let Predicates = GetVTypePredicates<vti>.Predicates in
def : Pat<(vti.Mask (IntrMask (vti.Mask VR:$passthru),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar ImmType:$rs2),
(vti.Mask V0),
VLOpFrag)),
(PseudoMask VR:$passthru, vti.RegClass:$rs1, (DecImm ImmType:$rs2),
(vti.Mask V0), GPR:$vl, vti.Log2SEW)>;
}
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasVInstructions] in {
//===----------------------------------------------------------------------===//
// Pseudo Instructions for CodeGen
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1 in {
def PseudoReadVLENB : Pseudo<(outs GPR:$rd), (ins),
[(set GPR:$rd, (riscv_read_vlenb))]>,
PseudoInstExpansion<(CSRRS GPR:$rd, SysRegVLENB.Encoding, X0)>,
Sched<[WriteRdVLENB]>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1,
Uses = [VL] in
def PseudoReadVL : Pseudo<(outs GPR:$rd), (ins), []>,
PseudoInstExpansion<(CSRRS GPR:$rd, SysRegVL.Encoding, X0)>;
foreach lmul = MxList in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
let hasSideEffects = 0, mayLoad = 0, mayStore = 1, isCodeGenOnly = 1,
Size = !mul(4, !sub(!mul(nf, 2), 1)) in {
def "PseudoVSPILL" # nf # "_" # lmul.MX :
Pseudo<(outs), (ins vreg:$rs1, GPR:$rs2), []>;
}
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 1,
Size = !mul(4, !sub(!mul(nf, 2), 1)) in {
def "PseudoVRELOAD" # nf # "_" # lmul.MX :
Pseudo<(outs vreg:$rs1), (ins GPR:$rs2), []>;
}
}
}
//===----------------------------------------------------------------------===//
// 6. Configuration-Setting Instructions
//===----------------------------------------------------------------------===//
// Pseudos.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Defs = [VL, VTYPE] in {
// Due to rs1=X0 having special meaning, we need a GPRNoX0 register class for
// the when we aren't using one of the special X0 encodings. Otherwise it could
// be accidentally be made X0 by MachineIR optimizations. To satisfy the
// verifier, we also need a GPRX0 instruction for the special encodings.
def PseudoVSETVLI : Pseudo<(outs GPR:$rd), (ins GPRNoX0:$rs1, VTypeIOp11:$vtypei), []>,
PseudoInstExpansion<(VSETVLI GPR:$rd, GPR:$rs1, VTypeIOp11:$vtypei)>,
Sched<[WriteVSETVLI, ReadVSETVLI]>;
def PseudoVSETVLIX0 : Pseudo<(outs GPR:$rd), (ins GPRX0:$rs1, VTypeIOp11:$vtypei), []>,
PseudoInstExpansion<(VSETVLI GPR:$rd, GPR:$rs1, VTypeIOp11:$vtypei)>,
Sched<[WriteVSETVLI, ReadVSETVLI]>;
def PseudoVSETIVLI : Pseudo<(outs GPR:$rd), (ins uimm5:$rs1, VTypeIOp10:$vtypei), []>,
PseudoInstExpansion<(VSETIVLI GPR:$rd, uimm5:$rs1, VTypeIOp10:$vtypei)>,
Sched<[WriteVSETIVLI]>;
}
//===----------------------------------------------------------------------===//
// 7. Vector Loads and Stores
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 7.4 Vector Unit-Stride Instructions
//===----------------------------------------------------------------------===//
// Pseudos Unit-Stride Loads and Stores
defm PseudoVL : VPseudoUSLoad;
defm PseudoVS : VPseudoUSStore;
defm PseudoVLM : VPseudoLoadMask;
defm PseudoVSM : VPseudoStoreMask;
//===----------------------------------------------------------------------===//
// 7.5 Vector Strided Instructions
//===----------------------------------------------------------------------===//
// Vector Strided Loads and Stores
defm PseudoVLS : VPseudoSLoad;
defm PseudoVSS : VPseudoSStore;
//===----------------------------------------------------------------------===//
// 7.6 Vector Indexed Instructions
//===----------------------------------------------------------------------===//
// Vector Indexed Loads and Stores
defm PseudoVLUX : VPseudoILoad<Ordered=false>;
defm PseudoVLOX : VPseudoILoad<Ordered=true>;
defm PseudoVSOX : VPseudoIStore<Ordered=true>;
defm PseudoVSUX : VPseudoIStore<Ordered=false>;
//===----------------------------------------------------------------------===//
// 7.7. Unit-stride Fault-Only-First Loads
//===----------------------------------------------------------------------===//
// vleff may update VL register
let Defs = [VL] in
defm PseudoVL : VPseudoFFLoad;
//===----------------------------------------------------------------------===//
// 7.8. Vector Load/Store Segment Instructions
//===----------------------------------------------------------------------===//
defm PseudoVLSEG : VPseudoUSSegLoad;
defm PseudoVLSSEG : VPseudoSSegLoad;
defm PseudoVLOXSEG : VPseudoISegLoad<Ordered=true>;
defm PseudoVLUXSEG : VPseudoISegLoad<Ordered=false>;
defm PseudoVSSEG : VPseudoUSSegStore;
defm PseudoVSSSEG : VPseudoSSegStore;
defm PseudoVSOXSEG : VPseudoISegStore<Ordered=true>;
defm PseudoVSUXSEG : VPseudoISegStore<Ordered=false>;
// vlseg<nf>e<eew>ff.v may update VL register
let Defs = [VL] in {
defm PseudoVLSEG : VPseudoUSSegLoadFF;
}
//===----------------------------------------------------------------------===//
// 11. Vector Integer Arithmetic Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 11.1. Vector Single-Width Integer Add and Subtract
//===----------------------------------------------------------------------===//
defm PseudoVADD : VPseudoVALU_VV_VX_VI<Commutable=1>;
defm PseudoVSUB : VPseudoVALU_VV_VX;
defm PseudoVRSUB : VPseudoVALU_VX_VI;
foreach vti = AllIntegerVectors in {
// Match vrsub with 2 vector operands to vsub.vv by swapping operands. This
// Occurs when legalizing vrsub.vx intrinsics for i64 on RV32 since we need
// to use a more complex splat sequence. Add the pattern for all VTs for
// consistency.
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (int_riscv_vrsub (vti.Vector vti.RegClass:$passthru),
(vti.Vector vti.RegClass:$rs2),
(vti.Vector vti.RegClass:$rs1),
VLOpFrag)),
(!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX)
vti.RegClass:$passthru,
vti.RegClass:$rs1,
vti.RegClass:$rs2,
GPR:$vl,
vti.Log2SEW, TU_MU)>;
def : Pat<(vti.Vector (int_riscv_vrsub_mask (vti.Vector vti.RegClass:$passthru),
(vti.Vector vti.RegClass:$rs2),
(vti.Vector vti.RegClass:$rs1),
(vti.Mask V0),
VLOpFrag,
(XLenVT timm:$policy))),
(!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX#"_MASK")
vti.RegClass:$passthru,
vti.RegClass:$rs1,
vti.RegClass:$rs2,
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW,
(XLenVT timm:$policy))>;
// Match VSUB with a small immediate to vadd.vi by negating the immediate.
def : Pat<(vti.Vector (int_riscv_vsub (vti.Vector vti.RegClass:$passthru),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
VLOpFrag)),
(!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX)
vti.RegClass:$passthru,
vti.RegClass:$rs1,
(NegImm simm5_plus1:$rs2),
GPR:$vl,
vti.Log2SEW, TU_MU)>;
def : Pat<(vti.Vector (int_riscv_vsub_mask (vti.Vector vti.RegClass:$passthru),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
(vti.Mask V0),
VLOpFrag,
(XLenVT timm:$policy))),
(!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX#"_MASK")
vti.RegClass:$passthru,
vti.RegClass:$rs1,
(NegImm simm5_plus1:$rs2),
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW,
(XLenVT timm:$policy))>;
}
}
//===----------------------------------------------------------------------===//
// 11.2. Vector Widening Integer Add/Subtract
//===----------------------------------------------------------------------===//
defm PseudoVWADDU : VPseudoVWALU_VV_VX<Commutable=1>;
defm PseudoVWSUBU : VPseudoVWALU_VV_VX;
defm PseudoVWADD : VPseudoVWALU_VV_VX<Commutable=1>;
defm PseudoVWSUB : VPseudoVWALU_VV_VX;
defm PseudoVWADDU : VPseudoVWALU_WV_WX;
defm PseudoVWSUBU : VPseudoVWALU_WV_WX;
defm PseudoVWADD : VPseudoVWALU_WV_WX;
defm PseudoVWSUB : VPseudoVWALU_WV_WX;
//===----------------------------------------------------------------------===//
// 11.3. Vector Integer Extension
//===----------------------------------------------------------------------===//
defm PseudoVZEXT_VF2 : PseudoVEXT_VF2;
defm PseudoVZEXT_VF4 : PseudoVEXT_VF4;
defm PseudoVZEXT_VF8 : PseudoVEXT_VF8;
defm PseudoVSEXT_VF2 : PseudoVEXT_VF2;
defm PseudoVSEXT_VF4 : PseudoVEXT_VF4;
defm PseudoVSEXT_VF8 : PseudoVEXT_VF8;
//===----------------------------------------------------------------------===//
// 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
//===----------------------------------------------------------------------===//
defm PseudoVADC : VPseudoVCALU_VM_XM_IM;
defm PseudoVMADC : VPseudoVCALUM_VM_XM_IM;
defm PseudoVMADC : VPseudoVCALUM_V_X_I;
defm PseudoVSBC : VPseudoVCALU_VM_XM;
defm PseudoVMSBC : VPseudoVCALUM_VM_XM;
defm PseudoVMSBC : VPseudoVCALUM_V_X;
//===----------------------------------------------------------------------===//
// 11.5. Vector Bitwise Logical Instructions
//===----------------------------------------------------------------------===//
defm PseudoVAND : VPseudoVALU_VV_VX_VI<Commutable=1>;
defm PseudoVOR : VPseudoVALU_VV_VX_VI<Commutable=1>;
defm PseudoVXOR : VPseudoVALU_VV_VX_VI<Commutable=1>;
//===----------------------------------------------------------------------===//
// 11.6. Vector Single-Width Bit Shift Instructions
//===----------------------------------------------------------------------===//
defm PseudoVSLL : VPseudoVSHT_VV_VX_VI;
defm PseudoVSRL : VPseudoVSHT_VV_VX_VI;
defm PseudoVSRA : VPseudoVSHT_VV_VX_VI;
//===----------------------------------------------------------------------===//
// 11.7. Vector Narrowing Integer Right Shift Instructions
//===----------------------------------------------------------------------===//
defm PseudoVNSRL : VPseudoVNSHT_WV_WX_WI;
defm PseudoVNSRA : VPseudoVNSHT_WV_WX_WI;
//===----------------------------------------------------------------------===//
// 11.8. Vector Integer Comparison Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMSEQ : VPseudoVCMPM_VV_VX_VI<Commutable=1>;
defm PseudoVMSNE : VPseudoVCMPM_VV_VX_VI<Commutable=1>;
defm PseudoVMSLTU : VPseudoVCMPM_VV_VX;
defm PseudoVMSLT : VPseudoVCMPM_VV_VX;
defm PseudoVMSLEU : VPseudoVCMPM_VV_VX_VI;
defm PseudoVMSLE : VPseudoVCMPM_VV_VX_VI;
defm PseudoVMSGTU : VPseudoVCMPM_VX_VI;
defm PseudoVMSGT : VPseudoVCMPM_VX_VI;
//===----------------------------------------------------------------------===//
// 11.9. Vector Integer Min/Max Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMINU : VPseudoVMINMAX_VV_VX;
defm PseudoVMIN : VPseudoVMINMAX_VV_VX;
defm PseudoVMAXU : VPseudoVMINMAX_VV_VX;
defm PseudoVMAX : VPseudoVMINMAX_VV_VX;
//===----------------------------------------------------------------------===//
// 11.10. Vector Single-Width Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMUL : VPseudoVMUL_VV_VX<Commutable=1>;
defm PseudoVMULH : VPseudoVMUL_VV_VX<Commutable=1>;
defm PseudoVMULHU : VPseudoVMUL_VV_VX<Commutable=1>;
defm PseudoVMULHSU : VPseudoVMUL_VV_VX;
//===----------------------------------------------------------------------===//
// 11.11. Vector Integer Divide Instructions
//===----------------------------------------------------------------------===//
defm PseudoVDIVU : VPseudoVDIV_VV_VX;
defm PseudoVDIV : VPseudoVDIV_VV_VX;
defm PseudoVREMU : VPseudoVDIV_VV_VX;
defm PseudoVREM : VPseudoVDIV_VV_VX;
//===----------------------------------------------------------------------===//
// 11.12. Vector Widening Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm PseudoVWMUL : VPseudoVWMUL_VV_VX<Commutable=1>;
defm PseudoVWMULU : VPseudoVWMUL_VV_VX<Commutable=1>;
defm PseudoVWMULSU : VPseudoVWMUL_VV_VX;
//===----------------------------------------------------------------------===//
// 11.13. Vector Single-Width Integer Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMACC : VPseudoVMAC_VV_VX_AAXA;
defm PseudoVNMSAC : VPseudoVMAC_VV_VX_AAXA;
defm PseudoVMADD : VPseudoVMAC_VV_VX_AAXA;
defm PseudoVNMSUB : VPseudoVMAC_VV_VX_AAXA;
//===----------------------------------------------------------------------===//
// 11.14. Vector Widening Integer Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm PseudoVWMACCU : VPseudoVWMAC_VV_VX<Commutable=1>;
defm PseudoVWMACC : VPseudoVWMAC_VV_VX<Commutable=1>;
defm PseudoVWMACCSU : VPseudoVWMAC_VV_VX;
defm PseudoVWMACCUS : VPseudoVWMAC_VX;
//===----------------------------------------------------------------------===//
// 11.15. Vector Integer Merge Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMERGE : VPseudoVMRG_VM_XM_IM;
//===----------------------------------------------------------------------===//
// 11.16. Vector Integer Move Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMV_V : VPseudoUnaryVMV_V_X_I;
//===----------------------------------------------------------------------===//
// 12. Vector Fixed-Point Arithmetic Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 12.1. Vector Single-Width Saturating Add and Subtract
//===----------------------------------------------------------------------===//
let Defs = [VXSAT] in {
defm PseudoVSADDU : VPseudoVSALU_VV_VX_VI<Commutable=1>;
defm PseudoVSADD : VPseudoVSALU_VV_VX_VI<Commutable=1>;
defm PseudoVSSUBU : VPseudoVSALU_VV_VX;
defm PseudoVSSUB : VPseudoVSALU_VV_VX;
}
//===----------------------------------------------------------------------===//
// 12.2. Vector Single-Width Averaging Add and Subtract
//===----------------------------------------------------------------------===//
defm PseudoVAADDU : VPseudoVAALU_VV_VX_RM<Commutable=1>;
defm PseudoVAADD : VPseudoVAALU_VV_VX_RM<Commutable=1>;
defm PseudoVASUBU : VPseudoVAALU_VV_VX_RM;
defm PseudoVASUB : VPseudoVAALU_VV_VX_RM;
//===----------------------------------------------------------------------===//
// 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
//===----------------------------------------------------------------------===//
let Defs = [VXSAT] in {
defm PseudoVSMUL : VPseudoVSMUL_VV_VX_RM;
}
//===----------------------------------------------------------------------===//
// 12.4. Vector Single-Width Scaling Shift Instructions
//===----------------------------------------------------------------------===//
defm PseudoVSSRL : VPseudoVSSHT_VV_VX_VI_RM;
defm PseudoVSSRA : VPseudoVSSHT_VV_VX_VI_RM;
//===----------------------------------------------------------------------===//
// 12.5. Vector Narrowing Fixed-Point Clip Instructions
//===----------------------------------------------------------------------===//
let Defs = [VXSAT] in {
defm PseudoVNCLIP : VPseudoVNCLP_WV_WX_WI_RM;
defm PseudoVNCLIPU : VPseudoVNCLP_WV_WX_WI_RM;
}
} // Predicates = [HasVInstructions]
//===----------------------------------------------------------------------===//
// 13. Vector Floating-Point Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasVInstructionsAnyF] in {
//===----------------------------------------------------------------------===//
// 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true, hasPostISelHook = 1 in {
defm PseudoVFADD : VPseudoVALU_VV_VF_RM;
defm PseudoVFSUB : VPseudoVALU_VV_VF_RM;
defm PseudoVFRSUB : VPseudoVALU_VF_RM;
}
//===----------------------------------------------------------------------===//
// 13.3. Vector Widening Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFWADD : VPseudoVFWALU_VV_VF_RM;
defm PseudoVFWSUB : VPseudoVFWALU_VV_VF_RM;
defm PseudoVFWADD : VPseudoVFWALU_WV_WF_RM;
defm PseudoVFWSUB : VPseudoVFWALU_WV_WF_RM;
}
//===----------------------------------------------------------------------===//
// 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFMUL : VPseudoVFMUL_VV_VF_RM;
defm PseudoVFDIV : VPseudoVFDIV_VV_VF_RM;
defm PseudoVFRDIV : VPseudoVFRDIV_VF_RM;
}
//===----------------------------------------------------------------------===//
// 13.5. Vector Widening Floating-Point Multiply
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true, hasSideEffects = 0 in {
defm PseudoVFWMUL : VPseudoVWMUL_VV_VF_RM;
}
//===----------------------------------------------------------------------===//
// 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFMACC : VPseudoVMAC_VV_VF_AAXA_RM;
defm PseudoVFNMACC : VPseudoVMAC_VV_VF_AAXA_RM;
defm PseudoVFMSAC : VPseudoVMAC_VV_VF_AAXA_RM;
defm PseudoVFNMSAC : VPseudoVMAC_VV_VF_AAXA_RM;
defm PseudoVFMADD : VPseudoVMAC_VV_VF_AAXA_RM;
defm PseudoVFNMADD : VPseudoVMAC_VV_VF_AAXA_RM;
defm PseudoVFMSUB : VPseudoVMAC_VV_VF_AAXA_RM;
defm PseudoVFNMSUB : VPseudoVMAC_VV_VF_AAXA_RM;
}
//===----------------------------------------------------------------------===//
// 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFWMACC : VPseudoVWMAC_VV_VF_RM;
defm PseudoVFWNMACC : VPseudoVWMAC_VV_VF_RM;
defm PseudoVFWMSAC : VPseudoVWMAC_VV_VF_RM;
defm PseudoVFWNMSAC : VPseudoVWMAC_VV_VF_RM;
let Predicates = [HasStdExtZvfbfwma] in
defm PseudoVFWMACCBF16 : VPseudoVWMAC_VV_VF_BF_RM;
}
//===----------------------------------------------------------------------===//
// 13.8. Vector Floating-Point Square-Root Instruction
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true, hasSideEffects = 0 in
defm PseudoVFSQRT : VPseudoVSQR_V_RM;
//===----------------------------------------------------------------------===//
// 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true in
defm PseudoVFRSQRT7 : VPseudoVRCP_V;
//===----------------------------------------------------------------------===//
// 13.10. Vector Floating-Point Reciprocal Estimate Instruction
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true, hasSideEffects = 0 in
defm PseudoVFREC7 : VPseudoVRCP_V_RM;
//===----------------------------------------------------------------------===//
// 13.11. Vector Floating-Point Min/Max Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true in {
defm PseudoVFMIN : VPseudoVMAX_VV_VF;
defm PseudoVFMAX : VPseudoVMAX_VV_VF;
}
//===----------------------------------------------------------------------===//
// 13.12. Vector Floating-Point Sign-Injection Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFSGNJ : VPseudoVSGNJ_VV_VF;
defm PseudoVFSGNJN : VPseudoVSGNJ_VV_VF;
defm PseudoVFSGNJX : VPseudoVSGNJ_VV_VF;
//===----------------------------------------------------------------------===//
// 13.13. Vector Floating-Point Compare Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true in {
defm PseudoVMFEQ : VPseudoVCMPM_VV_VF;
defm PseudoVMFNE : VPseudoVCMPM_VV_VF;
defm PseudoVMFLT : VPseudoVCMPM_VV_VF;
defm PseudoVMFLE : VPseudoVCMPM_VV_VF;
defm PseudoVMFGT : VPseudoVCMPM_VF;
defm PseudoVMFGE : VPseudoVCMPM_VF;
}
//===----------------------------------------------------------------------===//
// 13.14. Vector Floating-Point Classify Instruction
//===----------------------------------------------------------------------===//
defm PseudoVFCLASS : VPseudoVCLS_V;
//===----------------------------------------------------------------------===//
// 13.15. Vector Floating-Point Merge Instruction
//===----------------------------------------------------------------------===//
defm PseudoVFMERGE : VPseudoVMRG_FM;
//===----------------------------------------------------------------------===//
// 13.16. Vector Floating-Point Move Instruction
//===----------------------------------------------------------------------===//
let isReMaterializable = 1 in
defm PseudoVFMV_V : VPseudoVMV_F;
//===----------------------------------------------------------------------===//
// 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true in {
let hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFCVT_XU_F : VPseudoVCVTI_V_RM;
defm PseudoVFCVT_X_F : VPseudoVCVTI_V_RM;
}
defm PseudoVFCVT_RM_XU_F : VPseudoVCVTI_RM_V;
defm PseudoVFCVT_RM_X_F : VPseudoVCVTI_RM_V;
defm PseudoVFCVT_RTZ_XU_F : VPseudoVCVTI_V;
defm PseudoVFCVT_RTZ_X_F : VPseudoVCVTI_V;
defm PseudoVFROUND_NOEXCEPT : VPseudoVFROUND_NOEXCEPT_V;
let hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFCVT_F_XU : VPseudoVCVTF_V_RM;
defm PseudoVFCVT_F_X : VPseudoVCVTF_V_RM;
}
defm PseudoVFCVT_RM_F_XU : VPseudoVCVTF_RM_V;
defm PseudoVFCVT_RM_F_X : VPseudoVCVTF_RM_V;
} // mayRaiseFPException = true
//===----------------------------------------------------------------------===//
// 13.18. Widening Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true in {
let hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFWCVT_XU_F : VPseudoVWCVTI_V_RM;
defm PseudoVFWCVT_X_F : VPseudoVWCVTI_V_RM;
}
defm PseudoVFWCVT_RM_XU_F : VPseudoVWCVTI_RM_V;
defm PseudoVFWCVT_RM_X_F : VPseudoVWCVTI_RM_V;
defm PseudoVFWCVT_RTZ_XU_F : VPseudoVWCVTI_V;
defm PseudoVFWCVT_RTZ_X_F : VPseudoVWCVTI_V;
defm PseudoVFWCVT_F_XU : VPseudoVWCVTF_V;
defm PseudoVFWCVT_F_X : VPseudoVWCVTF_V;
defm PseudoVFWCVT_F_F : VPseudoVWCVTD_V;
defm PseudoVFWCVTBF16_F_F : VPseudoVWCVTD_V;
} // mayRaiseFPException = true
//===----------------------------------------------------------------------===//
// 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true in {
let hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFNCVT_XU_F : VPseudoVNCVTI_W_RM;
defm PseudoVFNCVT_X_F : VPseudoVNCVTI_W_RM;
}
defm PseudoVFNCVT_RM_XU_F : VPseudoVNCVTI_RM_W;
defm PseudoVFNCVT_RM_X_F : VPseudoVNCVTI_RM_W;
defm PseudoVFNCVT_RTZ_XU_F : VPseudoVNCVTI_W;
defm PseudoVFNCVT_RTZ_X_F : VPseudoVNCVTI_W;
let hasSideEffects = 0, hasPostISelHook = 1 in {
defm PseudoVFNCVT_F_XU : VPseudoVNCVTF_W_RM;
defm PseudoVFNCVT_F_X : VPseudoVNCVTF_W_RM;
}
defm PseudoVFNCVT_RM_F_XU : VPseudoVNCVTF_RM_W;
defm PseudoVFNCVT_RM_F_X : VPseudoVNCVTF_RM_W;
let hasSideEffects = 0, hasPostISelHook = 1 in
defm PseudoVFNCVT_F_F : VPseudoVNCVTD_W_RM;
defm PseudoVFNCVTBF16_F_F : VPseudoVNCVTD_W_RM;
defm PseudoVFNCVT_ROD_F_F : VPseudoVNCVTD_W;
} // mayRaiseFPException = true
} // Predicates = [HasVInstructionsAnyF]
//===----------------------------------------------------------------------===//
// 14. Vector Reduction Operations
//===----------------------------------------------------------------------===//
let Predicates = [HasVInstructions] in {
//===----------------------------------------------------------------------===//
// 14.1. Vector Single-Width Integer Reduction Instructions
//===----------------------------------------------------------------------===//
defm PseudoVREDSUM : VPseudoVRED_VS;
defm PseudoVREDAND : VPseudoVRED_VS;
defm PseudoVREDOR : VPseudoVRED_VS;
defm PseudoVREDXOR : VPseudoVRED_VS;
defm PseudoVREDMINU : VPseudoVREDMINMAX_VS;
defm PseudoVREDMIN : VPseudoVREDMINMAX_VS;
defm PseudoVREDMAXU : VPseudoVREDMINMAX_VS;
defm PseudoVREDMAX : VPseudoVREDMINMAX_VS;
//===----------------------------------------------------------------------===//
// 14.2. Vector Widening Integer Reduction Instructions
//===----------------------------------------------------------------------===//
let IsRVVWideningReduction = 1 in {
defm PseudoVWREDSUMU : VPseudoVWRED_VS;
defm PseudoVWREDSUM : VPseudoVWRED_VS;
}
} // Predicates = [HasVInstructions]
let Predicates = [HasVInstructionsAnyF] in {
//===----------------------------------------------------------------------===//
// 14.3. Vector Single-Width Floating-Point Reduction Instructions
//===----------------------------------------------------------------------===//
let mayRaiseFPException = true,
hasSideEffects = 0 in {
defm PseudoVFREDOSUM : VPseudoVFREDO_VS_RM;
defm PseudoVFREDUSUM : VPseudoVFRED_VS_RM;
}
let mayRaiseFPException = true in {
defm PseudoVFREDMIN : VPseudoVFREDMINMAX_VS;
defm PseudoVFREDMAX : VPseudoVFREDMINMAX_VS;
}
//===----------------------------------------------------------------------===//
// 14.4. Vector Widening Floating-Point Reduction Instructions
//===----------------------------------------------------------------------===//
let IsRVVWideningReduction = 1,
hasSideEffects = 0,
mayRaiseFPException = true in {
defm PseudoVFWREDUSUM : VPseudoVFWRED_VS_RM;
defm PseudoVFWREDOSUM : VPseudoVFWREDO_VS_RM;
}
} // Predicates = [HasVInstructionsAnyF]
//===----------------------------------------------------------------------===//
// 15. Vector Mask Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasVInstructions] in {
//===----------------------------------------------------------------------===//
// 15.1 Vector Mask-Register Logical Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMAND: VPseudoVALU_MM<Commutable=1>;
defm PseudoVMNAND: VPseudoVALU_MM<Commutable=1>;
defm PseudoVMANDN: VPseudoVALU_MM;
defm PseudoVMXOR: VPseudoVALU_MM<Commutable=1>;
defm PseudoVMOR: VPseudoVALU_MM<Commutable=1>;
defm PseudoVMNOR: VPseudoVALU_MM<Commutable=1>;
defm PseudoVMORN: VPseudoVALU_MM;
defm PseudoVMXNOR: VPseudoVALU_MM<Commutable=1>;
// Pseudo instructions
defm PseudoVMCLR : VPseudoNullaryPseudoM<"VMXOR">;
defm PseudoVMSET : VPseudoNullaryPseudoM<"VMXNOR">;
//===----------------------------------------------------------------------===//
// 15.2. Vector mask population count vcpop
//===----------------------------------------------------------------------===//
let IsSignExtendingOpW = 1 in
defm PseudoVCPOP: VPseudoVPOP_M;
//===----------------------------------------------------------------------===//
// 15.3. vfirst find-first-set mask bit
//===----------------------------------------------------------------------===//
let IsSignExtendingOpW = 1 in
defm PseudoVFIRST: VPseudoV1ST_M;
//===----------------------------------------------------------------------===//
// 15.4. vmsbf.m set-before-first mask bit
//===----------------------------------------------------------------------===//
defm PseudoVMSBF: VPseudoVSFS_M;
//===----------------------------------------------------------------------===//
// 15.5. vmsif.m set-including-first mask bit
//===----------------------------------------------------------------------===//
defm PseudoVMSIF: VPseudoVSFS_M;
//===----------------------------------------------------------------------===//
// 15.6. vmsof.m set-only-first mask bit
//===----------------------------------------------------------------------===//
defm PseudoVMSOF: VPseudoVSFS_M;
//===----------------------------------------------------------------------===//
// 15.8. Vector Iota Instruction
//===----------------------------------------------------------------------===//
defm PseudoVIOTA_M: VPseudoVIOTA_M;
//===----------------------------------------------------------------------===//
// 15.9. Vector Element Index Instruction
//===----------------------------------------------------------------------===//
let isReMaterializable = 1 in
defm PseudoVID : VPseudoVID_V;
} // Predicates = [HasVInstructions]
//===----------------------------------------------------------------------===//
// 16. Vector Permutation Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 16.1. Integer Scalar Move Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasVInstructions] in {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
let HasSEWOp = 1, BaseInstr = VMV_X_S in
def PseudoVMV_X_S:
Pseudo<(outs GPR:$rd), (ins VR:$rs2, ixlenimm:$sew), []>,
Sched<[WriteVMovXS, ReadVMovXS]>,
RISCVVPseudo;
let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VMV_S_X, isReMaterializable = 1,
Constraints = "$rd = $rs1" in
def PseudoVMV_S_X: Pseudo<(outs VR:$rd),
(ins VR:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew),
[]>,
Sched<[WriteVMovSX, ReadVMovSX_V, ReadVMovSX_X]>,
RISCVVPseudo;
}
} // Predicates = [HasVInstructions]
//===----------------------------------------------------------------------===//
// 16.2. Floating-Point Scalar Move Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasVInstructionsAnyF] in {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
foreach f = FPList in {
let HasSEWOp = 1, BaseInstr = VFMV_F_S in
def "PseudoVFMV_" # f.FX # "_S" :
Pseudo<(outs f.fprclass:$rd),
(ins VR:$rs2, ixlenimm:$sew), []>,
Sched<[WriteVMovFS, ReadVMovFS]>,
RISCVVPseudo;
let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VFMV_S_F, isReMaterializable = 1,
Constraints = "$rd = $rs1" in
def "PseudoVFMV_S_" # f.FX :
Pseudo<(outs VR:$rd),
(ins VR:$rs1, f.fprclass:$rs2, AVL:$vl, ixlenimm:$sew),
[]>,
Sched<[WriteVMovSF, ReadVMovSF_V, ReadVMovSF_F]>,
RISCVVPseudo;
}
}
} // Predicates = [HasVInstructionsAnyF]
//===----------------------------------------------------------------------===//
// 16.3. Vector Slide Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasVInstructions] in {
defm PseudoVSLIDEUP : VPseudoVSLD_VX_VI</*slidesUp=*/true, "@earlyclobber $rd">;
defm PseudoVSLIDEDOWN : VPseudoVSLD_VX_VI</*slidesUp=*/false>;
defm PseudoVSLIDE1UP : VPseudoVSLD1_VX<"@earlyclobber $rd">;
defm PseudoVSLIDE1DOWN : VPseudoVSLD1_VX;
} // Predicates = [HasVInstructions]
let Predicates = [HasVInstructionsAnyF] in {
defm PseudoVFSLIDE1UP : VPseudoVSLD1_VF<"@earlyclobber $rd">;
defm PseudoVFSLIDE1DOWN : VPseudoVSLD1_VF;
} // Predicates = [HasVInstructionsAnyF]
//===----------------------------------------------------------------------===//
// 16.4. Vector Register Gather Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasVInstructions] in {
defm PseudoVRGATHER : VPseudoVGTR_VV_VX_VI;
defm PseudoVRGATHEREI16 : VPseudoVGTR_EI16_VV;
//===----------------------------------------------------------------------===//
// 16.5. Vector Compress Instruction
//===----------------------------------------------------------------------===//
defm PseudoVCOMPRESS : VPseudoVCPR_V;
} // Predicates = [HasVInstructions]
//===----------------------------------------------------------------------===//
// Patterns.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 11. Vector Integer Arithmetic Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 11.1. Vector Single-Width Integer Add and Subtract
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vadd", "PseudoVADD", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vsub", "PseudoVSUB", AllIntegerVectors>;
defm : VPatBinaryV_VX_VI<"int_riscv_vrsub", "PseudoVRSUB", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 11.2. Vector Widening Integer Add/Subtract
//===----------------------------------------------------------------------===//
defm : VPatBinaryW_VV_VX<"int_riscv_vwaddu", "PseudoVWADDU", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwsubu", "PseudoVWSUBU", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwadd", "PseudoVWADD", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwsub", "PseudoVWSUB", AllWidenableIntVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vwaddu_w", "PseudoVWADDU", AllWidenableIntVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vwsubu_w", "PseudoVWSUBU", AllWidenableIntVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vwadd_w", "PseudoVWADD", AllWidenableIntVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vwsub_w", "PseudoVWSUB", AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 11.3. Vector Integer Extension
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF2",
AllFractionableVF2IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF4",
AllFractionableVF4IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF8",
AllFractionableVF8IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF2",
AllFractionableVF2IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF4",
AllFractionableVF4IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF8",
AllFractionableVF8IntVectors>;
//===----------------------------------------------------------------------===//
// 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VM_XM_IM<"int_riscv_vadc", "PseudoVADC">;
defm : VPatBinaryM_VM_XM_IM<"int_riscv_vmadc_carry_in", "PseudoVMADC">;
defm : VPatBinaryM_V_X_I<"int_riscv_vmadc", "PseudoVMADC">;
defm : VPatBinaryV_VM_XM<"int_riscv_vsbc", "PseudoVSBC">;
defm : VPatBinaryM_VM_XM<"int_riscv_vmsbc_borrow_in", "PseudoVMSBC">;
defm : VPatBinaryM_V_X<"int_riscv_vmsbc", "PseudoVMSBC">;
//===----------------------------------------------------------------------===//
// 11.5. Vector Bitwise Logical Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vand", "PseudoVAND", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vor", "PseudoVOR", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vxor", "PseudoVXOR", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 11.6. Vector Single-Width Bit Shift Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsll", "PseudoVSLL", AllIntegerVectors,
uimm5>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsrl", "PseudoVSRL", AllIntegerVectors,
uimm5>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsra", "PseudoVSRA", AllIntegerVectors,
uimm5>;
foreach vti = AllIntegerVectors in {
// Emit shift by 1 as an add since it might be faster.
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (int_riscv_vsll (vti.Vector vti.RegClass:$passthru),
(vti.Vector vti.RegClass:$rs1),
(XLenVT 1), VLOpFrag)),
(!cast<Instruction>("PseudoVADD_VV_"#vti.LMul.MX)
vti.RegClass:$passthru, vti.RegClass:$rs1,
vti.RegClass:$rs1, GPR:$vl, vti.Log2SEW, TU_MU)>;
def : Pat<(vti.Vector (int_riscv_vsll_mask (vti.Vector vti.RegClass:$passthru),
(vti.Vector vti.RegClass:$rs1),
(XLenVT 1),
(vti.Mask V0),
VLOpFrag,
(XLenVT timm:$policy))),
(!cast<Instruction>("PseudoVADD_VV_"#vti.LMul.MX#"_MASK")
vti.RegClass:$passthru,
vti.RegClass:$rs1,
vti.RegClass:$rs1,
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW,
(XLenVT timm:$policy))>;
}
}
//===----------------------------------------------------------------------===//
// 11.7. Vector Narrowing Integer Right Shift Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsrl", "PseudoVNSRL", AllWidenableIntVectors>;
defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsra", "PseudoVNSRA", AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 11.8. Vector Integer Comparison Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmseq", "PseudoVMSEQ", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsne", "PseudoVMSNE", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmsltu", "PseudoVMSLTU", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmslt", "PseudoVMSLT", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsleu", "PseudoVMSLEU", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsle", "PseudoVMSLE", AllIntegerVectors>;
defm : VPatBinaryM_VX_VI<"int_riscv_vmsgtu", "PseudoVMSGTU", AllIntegerVectors>;
defm : VPatBinaryM_VX_VI<"int_riscv_vmsgt", "PseudoVMSGT", AllIntegerVectors>;
// Match vmsgt with 2 vector operands to vmslt with the operands swapped.
defm : VPatBinarySwappedM_VV<"int_riscv_vmsgtu", "PseudoVMSLTU", AllIntegerVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmsgt", "PseudoVMSLT", AllIntegerVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmsgeu", "PseudoVMSLEU", AllIntegerVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmsge", "PseudoVMSLE", AllIntegerVectors>;
// Match vmslt(u).vx intrinsics to vmsle(u).vi if the scalar is -15 to 16 and
// non-zero. Zero can be .vx with x0. This avoids the user needing to know that
// there is no vmslt(u).vi instruction. Similar for vmsge(u).vx intrinsics
// using vmslt(u).vi.
defm : VPatCompare_VI<"int_riscv_vmslt", "PseudoVMSLE", simm5_plus1_nonzero>;
defm : VPatCompare_VI<"int_riscv_vmsltu", "PseudoVMSLEU", simm5_plus1_nonzero>;
// We need to handle 0 for vmsge.vi using vmslt.vi because there is no vmsge.vx.
defm : VPatCompare_VI<"int_riscv_vmsge", "PseudoVMSGT", simm5_plus1>;
defm : VPatCompare_VI<"int_riscv_vmsgeu", "PseudoVMSGTU", simm5_plus1_nonzero>;
//===----------------------------------------------------------------------===//
// 11.9. Vector Integer Min/Max Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vminu", "PseudoVMINU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmin", "PseudoVMIN", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmaxu", "PseudoVMAXU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmax", "PseudoVMAX", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 11.10. Vector Single-Width Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vmul", "PseudoVMUL", AllIntegerVectors>;
defvar IntegerVectorsExceptI64 = !filter(vti, AllIntegerVectors,
!ne(vti.SEW, 64));
defm : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH",
IntegerVectorsExceptI64>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU",
IntegerVectorsExceptI64>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU",
IntegerVectorsExceptI64>;
// vmulh, vmulhu, vmulhsu are not included for EEW=64 in Zve64*.
defvar I64IntegerVectors = !filter(vti, AllIntegerVectors, !eq(vti.SEW, 64));
let Predicates = [HasVInstructionsFullMultiply] in {
defm : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH",
I64IntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU",
I64IntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU",
I64IntegerVectors>;
}
//===----------------------------------------------------------------------===//
// 11.11. Vector Integer Divide Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vdivu", "PseudoVDIVU", AllIntegerVectors, isSEWAware=1>;
defm : VPatBinaryV_VV_VX<"int_riscv_vdiv", "PseudoVDIV", AllIntegerVectors, isSEWAware=1>;
defm : VPatBinaryV_VV_VX<"int_riscv_vremu", "PseudoVREMU", AllIntegerVectors, isSEWAware=1>;
defm : VPatBinaryV_VV_VX<"int_riscv_vrem", "PseudoVREM", AllIntegerVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 11.12. Vector Widening Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryW_VV_VX<"int_riscv_vwmul", "PseudoVWMUL", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwmulu", "PseudoVWMULU", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwmulsu", "PseudoVWMULSU", AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 11.13. Vector Single-Width Integer Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmadd", "PseudoVMADD", AllIntegerVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsub", "PseudoVNMSUB", AllIntegerVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmacc", "PseudoVMACC", AllIntegerVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsac", "PseudoVNMSAC", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 11.14. Vector Widening Integer Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccu", "PseudoVWMACCU", AllWidenableIntVectors>;
defm : VPatTernaryW_VV_VX<"int_riscv_vwmacc", "PseudoVWMACC", AllWidenableIntVectors>;
defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccsu", "PseudoVWMACCSU", AllWidenableIntVectors>;
defm : VPatTernaryW_VX<"int_riscv_vwmaccus", "PseudoVWMACCUS", AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 11.15. Vector Integer Merge Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VM_XM_IM<"int_riscv_vmerge", "PseudoVMERGE">;
//===----------------------------------------------------------------------===//
// 11.16. Vector Integer Move Instructions
//===----------------------------------------------------------------------===//
foreach vti = AllVectors in {
let Predicates = !if(!eq(vti.Scalar, f16), [HasVInstructionsF16Minimal],
GetVTypePredicates<vti>.Predicates) in {
def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector vti.RegClass:$passthru),
(vti.Vector vti.RegClass:$rs1),
VLOpFrag)),
(!cast<Instruction>("PseudoVMV_V_V_"#vti.LMul.MX)
$passthru, $rs1, GPR:$vl, vti.Log2SEW, TU_MU)>;
// vmv.v.x/vmv.v.i are handled in RISCInstrVInstrInfoVVLPatterns.td
}
}
//===----------------------------------------------------------------------===//
// 12. Vector Fixed-Point Arithmetic Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 12.1. Vector Single-Width Saturating Add and Subtract
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsaddu", "PseudoVSADDU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsadd", "PseudoVSADD", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vssubu", "PseudoVSSUBU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vssub", "PseudoVSSUB", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.2. Vector Single-Width Averaging Add and Subtract
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vaaddu", "PseudoVAADDU",
AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vasubu", "PseudoVASUBU",
AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vasub", "PseudoVASUB",
AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vaadd", "PseudoVAADD",
AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vsmul", "PseudoVSMUL",
IntegerVectorsExceptI64>;
// vsmul.vv and vsmul.vx are not included in EEW=64 in Zve64*.
let Predicates = [HasVInstructionsFullMultiply] in
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vsmul", "PseudoVSMUL",
I64IntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.4. Vector Single-Width Scaling Shift Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI_RM<"int_riscv_vssrl", "PseudoVSSRL",
AllIntegerVectors, uimm5>;
defm : VPatBinaryV_VV_VX_VI_RM<"int_riscv_vssra", "PseudoVSSRA",
AllIntegerVectors, uimm5>;
//===----------------------------------------------------------------------===//
// 12.5. Vector Narrowing Fixed-Point Clip Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_WV_WX_WI_RM<"int_riscv_vnclipu", "PseudoVNCLIPU",
AllWidenableIntVectors>;
defm : VPatBinaryV_WV_WX_WI_RM<"int_riscv_vnclip", "PseudoVNCLIP",
AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 13. Vector Floating-Point Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfadd", "PseudoVFADD", AllFloatVectors,
isSEWAware = 1>;
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfsub", "PseudoVFSUB", AllFloatVectors,
isSEWAware = 1>;
defm : VPatBinaryV_VX_RM<"int_riscv_vfrsub", "PseudoVFRSUB", AllFloatVectors,
isSEWAware = 1>;
//===----------------------------------------------------------------------===//
// 13.3. Vector Widening Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwadd", "PseudoVFWADD",
AllWidenableFloatVectors, isSEWAware=1>;
defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwsub", "PseudoVFWSUB",
AllWidenableFloatVectors, isSEWAware=1>;
defm : VPatBinaryW_WV_WX_RM<"int_riscv_vfwadd_w", "PseudoVFWADD",
AllWidenableFloatVectors, isSEWAware=1>;
defm : VPatBinaryW_WV_WX_RM<"int_riscv_vfwsub_w", "PseudoVFWSUB",
AllWidenableFloatVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfmul", "PseudoVFMUL",
AllFloatVectors, isSEWAware=1>;
defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfdiv", "PseudoVFDIV",
AllFloatVectors, isSEWAware=1>;
defm : VPatBinaryV_VX_RM<"int_riscv_vfrdiv", "PseudoVFRDIV",
AllFloatVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.5. Vector Widening Floating-Point Multiply
//===----------------------------------------------------------------------===//
defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwmul", "PseudoVFWMUL",
AllWidenableFloatVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmacc", "PseudoVFMACC",
AllFloatVectors, isSEWAware=1>;
defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmacc", "PseudoVFNMACC",
AllFloatVectors, isSEWAware=1>;
defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmsac", "PseudoVFMSAC",
AllFloatVectors, isSEWAware=1>;
defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmsac", "PseudoVFNMSAC",
AllFloatVectors, isSEWAware=1>;
defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmadd", "PseudoVFMADD",
AllFloatVectors, isSEWAware=1>;
defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmadd", "PseudoVFNMADD",
AllFloatVectors, isSEWAware=1>;
defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmsub", "PseudoVFMSUB",
AllFloatVectors, isSEWAware=1>;
defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmsub", "PseudoVFNMSUB",
AllFloatVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmacc", "PseudoVFWMACC",
AllWidenableFloatVectors, isSEWAware=1>;
defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwnmacc", "PseudoVFWNMACC",
AllWidenableFloatVectors, isSEWAware=1>;
defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmsac", "PseudoVFWMSAC",
AllWidenableFloatVectors, isSEWAware=1>;
defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwnmsac", "PseudoVFWNMSAC",
AllWidenableFloatVectors, isSEWAware=1>;
let Predicates = [HasStdExtZvfbfwma] in
defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmaccbf16", "PseudoVFWMACCBF16",
AllWidenableBFloatToFloatVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.8. Vector Floating-Point Square-Root Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_V_RM<"int_riscv_vfsqrt", "PseudoVFSQRT", AllFloatVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_V<"int_riscv_vfrsqrt7", "PseudoVFRSQRT7", AllFloatVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.10. Vector Floating-Point Reciprocal Estimate Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_V_RM<"int_riscv_vfrec7", "PseudoVFREC7", AllFloatVectors, isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.11. Vector Floating-Point Min/Max Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vfmin", "PseudoVFMIN", AllFloatVectors,
isSEWAware=1>;
defm : VPatBinaryV_VV_VX<"int_riscv_vfmax", "PseudoVFMAX", AllFloatVectors,
isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.12. Vector Floating-Point Sign-Injection Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnj", "PseudoVFSGNJ", AllFloatVectors,
isSEWAware=1>;
defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjn", "PseudoVFSGNJN", AllFloatVectors,
isSEWAware=1>;
defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjx", "PseudoVFSGNJX", AllFloatVectors,
isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.13. Vector Floating-Point Compare Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryM_VV_VX<"int_riscv_vmfeq", "PseudoVMFEQ", AllFloatVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmfle", "PseudoVMFLE", AllFloatVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmflt", "PseudoVMFLT", AllFloatVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmfne", "PseudoVMFNE", AllFloatVectors>;
defm : VPatBinaryM_VX<"int_riscv_vmfgt", "PseudoVMFGT", AllFloatVectors>;
defm : VPatBinaryM_VX<"int_riscv_vmfge", "PseudoVMFGE", AllFloatVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmfgt", "PseudoVMFLT", AllFloatVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmfge", "PseudoVMFLE", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 13.14. Vector Floating-Point Classify Instruction
//===----------------------------------------------------------------------===//
defm : VPatConversionVI_VF<"int_riscv_vfclass", "PseudoVFCLASS">;
//===----------------------------------------------------------------------===//
// 13.15. Vector Floating-Point Merge Instruction
//===----------------------------------------------------------------------===//
// We can use vmerge.vvm to support vector-vector vfmerge.
// NOTE: Clang previously used int_riscv_vfmerge for vector-vector, but now uses
// int_riscv_vmerge. Support both for compatibility.
foreach vti = AllFloatVectors in {
let Predicates = !if(!eq(vti.Scalar, f16), [HasVInstructionsF16Minimal],
GetVTypePredicates<vti>.Predicates) in
defm : VPatBinaryCarryInTAIL<"int_riscv_vmerge", "PseudoVMERGE", "VVM",
vti.Vector,
vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.RegClass>;
let Predicates = GetVTypePredicates<vti>.Predicates in
defm : VPatBinaryCarryInTAIL<"int_riscv_vfmerge", "PseudoVFMERGE",
"V"#vti.ScalarSuffix#"M",
vti.Vector,
vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.ScalarRegClass>;
}
foreach vti = AllBFloatVectors in
let Predicates = [HasVInstructionsBF16Minimal] in
defm : VPatBinaryCarryInTAIL<"int_riscv_vmerge", "PseudoVMERGE", "VVM",
vti.Vector,
vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.RegClass>;
foreach fvti = AllFloatVectors in {
defvar instr = !cast<Instruction>("PseudoVMERGE_VIM_"#fvti.LMul.MX);
let Predicates = GetVTypePredicates<fvti>.Predicates in
def : Pat<(fvti.Vector (int_riscv_vfmerge (fvti.Vector fvti.RegClass:$passthru),
(fvti.Vector fvti.RegClass:$rs2),
(fvti.Scalar (fpimm0)),
(fvti.Mask V0), VLOpFrag)),
(instr fvti.RegClass:$passthru, fvti.RegClass:$rs2, 0,
(fvti.Mask V0), GPR:$vl, fvti.Log2SEW)>;
}
//===----------------------------------------------------------------------===//
// 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm : VPatConversionVI_VF_RTZ<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_RTZ_X_F">;
defm : VPatConversionVI_VF_RTZ<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_RTZ_XU_F">;
defm : VPatConversionVI_VF_RM<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_X_F">;
defm : VPatConversionVI_VF_RM<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_XU_F">;
defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_xu_f_v", "PseudoVFCVT_RTZ_XU_F">;
defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_x_f_v", "PseudoVFCVT_RTZ_X_F">;
defm : VPatConversionVF_VI_RM<"int_riscv_vfcvt_f_x_v", "PseudoVFCVT_F_X",
isSEWAware=1>;
defm : VPatConversionVF_VI_RM<"int_riscv_vfcvt_f_xu_v", "PseudoVFCVT_F_XU",
isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.18. Widening Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm : VPatConversionWI_VF_RTZ<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">;
defm : VPatConversionWI_VF_RTZ<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_RTZ_X_F">;
defm : VPatConversionWI_VF_RM<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_XU_F">;
defm : VPatConversionWI_VF_RM<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_X_F">;
defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">;
defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_x_f_v", "PseudoVFWCVT_RTZ_X_F">;
defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_xu_v", "PseudoVFWCVT_F_XU",
isSEWAware=1>;
defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_x_v", "PseudoVFWCVT_F_X",
isSEWAware=1>;
defm : VPatConversionWF_VF<"int_riscv_vfwcvt_f_f_v", "PseudoVFWCVT_F_F",
isSEWAware=1>;
defm : VPatConversionWF_VF_BF<"int_riscv_vfwcvtbf16_f_f_v",
"PseudoVFWCVTBF16_F_F", isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm : VPatConversionVI_WF_RTZ<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">;
defm : VPatConversionVI_WF_RTZ<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_RTZ_X_F">;
defm : VPatConversionVI_WF_RM<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_XU_F">;
defm : VPatConversionVI_WF_RM<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_X_F">;
defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">;
defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_x_f_w", "PseudoVFNCVT_RTZ_X_F">;
defm : VPatConversionVF_WI_RM<"int_riscv_vfncvt_f_xu_w", "PseudoVFNCVT_F_XU",
isSEWAware=1>;
defm : VPatConversionVF_WI_RM<"int_riscv_vfncvt_f_x_w", "PseudoVFNCVT_F_X",
isSEWAware=1>;
defvar WidenableFloatVectorsExceptF16 = !filter(fvtiToFWti, AllWidenableFloatVectors,
!ne(fvtiToFWti.Vti.Scalar, f16));
defm : VPatConversionVF_WF_RM<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F",
WidenableFloatVectorsExceptF16, isSEWAware=1>;
// Define vfncvt.f.f.w for f16 when Zvfhmin is enable.
defvar F16WidenableFloatVectors = !filter(fvtiToFWti, AllWidenableFloatVectors,
!eq(fvtiToFWti.Vti.Scalar, f16));
let Predicates = [HasVInstructionsF16Minimal] in
defm : VPatConversionVF_WF_RM<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F",
F16WidenableFloatVectors, isSEWAware=1>;
defm : VPatConversionVF_WF_BF_RM<"int_riscv_vfncvtbf16_f_f_w",
"PseudoVFNCVTBF16_F_F", isSEWAware=1>;
defm : VPatConversionVF_WF<"int_riscv_vfncvt_rod_f_f_w", "PseudoVFNCVT_ROD_F_F",
isSEWAware=1>;
//===----------------------------------------------------------------------===//
// 14. Vector Reduction Operations
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 14.1. Vector Single-Width Integer Reduction Instructions
//===----------------------------------------------------------------------===//
defm : VPatReductionV_VS<"int_riscv_vredsum", "PseudoVREDSUM">;
defm : VPatReductionV_VS<"int_riscv_vredand", "PseudoVREDAND">;
defm : VPatReductionV_VS<"int_riscv_vredor", "PseudoVREDOR">;
defm : VPatReductionV_VS<"int_riscv_vredxor", "PseudoVREDXOR">;
defm : VPatReductionV_VS<"int_riscv_vredminu", "PseudoVREDMINU">;
defm : VPatReductionV_VS<"int_riscv_vredmin", "PseudoVREDMIN">;
defm : VPatReductionV_VS<"int_riscv_vredmaxu", "PseudoVREDMAXU">;
defm : VPatReductionV_VS<"int_riscv_vredmax", "PseudoVREDMAX">;
//===----------------------------------------------------------------------===//
// 14.2. Vector Widening Integer Reduction Instructions
//===----------------------------------------------------------------------===//
defm : VPatReductionW_VS<"int_riscv_vwredsumu", "PseudoVWREDSUMU">;
defm : VPatReductionW_VS<"int_riscv_vwredsum", "PseudoVWREDSUM">;
//===----------------------------------------------------------------------===//
// 14.3. Vector Single-Width Floating-Point Reduction Instructions
//===----------------------------------------------------------------------===//
defm : VPatReductionV_VS_RM<"int_riscv_vfredosum", "PseudoVFREDOSUM", IsFloat=1>;
defm : VPatReductionV_VS_RM<"int_riscv_vfredusum", "PseudoVFREDUSUM", IsFloat=1>;
defm : VPatReductionV_VS<"int_riscv_vfredmin", "PseudoVFREDMIN", IsFloat=1>;
defm : VPatReductionV_VS<"int_riscv_vfredmax", "PseudoVFREDMAX", IsFloat=1>;
//===----------------------------------------------------------------------===//
// 14.4. Vector Widening Floating-Point Reduction Instructions
//===----------------------------------------------------------------------===//
defm : VPatReductionW_VS_RM<"int_riscv_vfwredusum", "PseudoVFWREDUSUM", IsFloat=1>;
defm : VPatReductionW_VS_RM<"int_riscv_vfwredosum", "PseudoVFWREDOSUM", IsFloat=1>;
//===----------------------------------------------------------------------===//
// 15. Vector Mask Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 15.1 Vector Mask-Register Logical Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryM_MM<"int_riscv_vmand", "PseudoVMAND">;
defm : VPatBinaryM_MM<"int_riscv_vmnand", "PseudoVMNAND">;
defm : VPatBinaryM_MM<"int_riscv_vmandn", "PseudoVMANDN">;
defm : VPatBinaryM_MM<"int_riscv_vmxor", "PseudoVMXOR">;
defm : VPatBinaryM_MM<"int_riscv_vmor", "PseudoVMOR">;
defm : VPatBinaryM_MM<"int_riscv_vmnor", "PseudoVMNOR">;
defm : VPatBinaryM_MM<"int_riscv_vmorn", "PseudoVMORN">;
defm : VPatBinaryM_MM<"int_riscv_vmxnor", "PseudoVMXNOR">;
// pseudo instructions
defm : VPatNullaryM<"int_riscv_vmclr", "PseudoVMCLR">;
defm : VPatNullaryM<"int_riscv_vmset", "PseudoVMSET">;
//===----------------------------------------------------------------------===//
// 15.2. Vector count population in mask vcpop.m
//===----------------------------------------------------------------------===//
defm : VPatUnaryS_M<"int_riscv_vcpop", "PseudoVCPOP">;
//===----------------------------------------------------------------------===//
// 15.3. vfirst find-first-set mask bit
//===----------------------------------------------------------------------===//
defm : VPatUnaryS_M<"int_riscv_vfirst", "PseudoVFIRST">;
//===----------------------------------------------------------------------===//
// 15.4. vmsbf.m set-before-first mask bit
//===----------------------------------------------------------------------===//
defm : VPatUnaryM_M<"int_riscv_vmsbf", "PseudoVMSBF">;
//===----------------------------------------------------------------------===//
// 15.5. vmsif.m set-including-first mask bit
//===----------------------------------------------------------------------===//
defm : VPatUnaryM_M<"int_riscv_vmsif", "PseudoVMSIF">;
//===----------------------------------------------------------------------===//
// 15.6. vmsof.m set-only-first mask bit
//===----------------------------------------------------------------------===//
defm : VPatUnaryM_M<"int_riscv_vmsof", "PseudoVMSOF">;
//===----------------------------------------------------------------------===//
// 15.8. Vector Iota Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_M<"int_riscv_viota", "PseudoVIOTA">;
//===----------------------------------------------------------------------===//
// 15.9. Vector Element Index Instruction
//===----------------------------------------------------------------------===//
defm : VPatNullaryV<"int_riscv_vid", "PseudoVID">;
//===----------------------------------------------------------------------===//
// 16. Vector Permutation Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 16.1. Integer Scalar Move Instructions
//===----------------------------------------------------------------------===//
foreach vti = NoGroupIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in
def : Pat<(XLenVT (riscv_vmv_x_s (vti.Vector vti.RegClass:$rs2))),
(PseudoVMV_X_S $rs2, vti.Log2SEW)>;
// vmv.s.x is handled with a custom node in RISCVInstrInfoVVLPatterns.td
}
//===----------------------------------------------------------------------===//
// 16.3. Vector Slide Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllIntegerVectors, uimm5>;
defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllIntegerVectors, uimm5>;
defm : VPatBinaryV_VX<"int_riscv_vslide1up", "PseudoVSLIDE1UP", AllIntegerVectors>;
defm : VPatBinaryV_VX<"int_riscv_vslide1down", "PseudoVSLIDE1DOWN", AllIntegerVectors>;
defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllFloatVectors, uimm5>;
defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllFloatVectors, uimm5>;
defm : VPatBinaryV_VX<"int_riscv_vfslide1up", "PseudoVFSLIDE1UP", AllFloatVectors>;
defm : VPatBinaryV_VX<"int_riscv_vfslide1down", "PseudoVFSLIDE1DOWN", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 16.4. Vector Register Gather Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER",
AllIntegerVectors, uimm5>;
defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16",
eew=16, vtilist=AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER",
AllFloatVectorsExceptFP16, uimm5>;
let Predicates = [HasVInstructionsF16Minimal] in
defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER",
AllFP16Vectors, uimm5>;
defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER",
AllBFloatVectors, uimm5>;
defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16",
eew=16, vtilist=AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 16.5. Vector Compress Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllIntegerVectors>;
defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllFloatVectorsExceptFP16>;
let Predicates = [HasVInstructionsF16Minimal] in
defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllFP16Vectors>;
defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllBFloatVectors>;
// Include the non-intrinsic ISel patterns
include "RISCVInstrInfoVVLPatterns.td"
include "RISCVInstrInfoVSDPatterns.td"