//=- X86ScheduleBdVer2.td - X86 BdVer2 (Piledriver) Scheduling * tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for AMD bdver2 (Piledriver) to support
// instruction scheduling and other instruction cost heuristics.
// Based on:
// * AMD Software Optimization Guide for AMD Family 15h Processors.
// https://support.amd.com/TechDocs/47414_15h_sw_opt_guide.pdf
// * The microarchitecture of Intel, AMD and VIA CPUs, By Agner Fog
// http://www.agner.org/optimize/microarchitecture.pdf
// * https://www.realworldtech.com/bulldozer/
// Yes, that is for Bulldozer aka bdver1, not Piledriver aka bdver2.
//
//===----------------------------------------------------------------------===//
def BdVer2Model : SchedMachineModel {
let IssueWidth = 4; // Up to 4 IPC can be decoded, issued, retired.
let MicroOpBufferSize = 128; // RCU reorder buffer size, which is unconfirmed.
let LoopMicroOpBufferSize = -1; // There does not seem to be a loop buffer.
let LoadLatency = 4; // L1 data cache has a 4-cycle load-to-use latency.
let HighLatency = 25; // FIXME: any better choice?
let MispredictPenalty = 20; // Minimum branch misdirection penalty.
let PostRAScheduler = 1; // Enable Post RegAlloc Scheduler pass.
// FIXME: Incomplete. This flag is set to allow the scheduler to assign
// a default model to unrecognized opcodes.
let CompleteModel = 0;
} // SchedMachineModel
let SchedModel = BdVer2Model in {
//===----------------------------------------------------------------------===//
// Pipes
//===----------------------------------------------------------------------===//
// There are total of eight pipes.
//===----------------------------------------------------------------------===//
// Integer execution pipes
//
// Two EX (ALU) pipes.
def PdEX0 : ProcResource<1>; // ALU, Integer Pipe0
def PdEX1 : ProcResource<1>; // ALU, Integer Pipe1
def PdEX01 : ProcResGroup<[PdEX0, PdEX1]>;
// Two AGLU pipes, identical.
def PdAGLU01 : ProcResource<2>; // AGU, Integer Pipe[23]
//===----------------------------------------------------------------------===//
// Floating point execution pipes
//
// Four FPU pipes.
def PdFPU0 : ProcResource<1>; // Vector/FPU Pipe0
def PdFPU1 : ProcResource<1>; // Vector/FPU Pipe1
def PdFPU2 : ProcResource<1>; // Vector/FPU Pipe2
def PdFPU3 : ProcResource<1>; // Vector/FPU Pipe3
// FPU grouping
def PdFPU01 : ProcResGroup<[PdFPU0, PdFPU1]>;
def PdFPU23 : ProcResGroup<[PdFPU2, PdFPU3]>;
//===----------------------------------------------------------------------===//
// RCU
//===----------------------------------------------------------------------===//
// The Retire Control Unit on Piledriver can retire up to 4 macro-ops per cycle.
// On the other hand, the RCU reorder buffer size for Piledriver does not
// seem be specified in any trustworthy source.
// But as per https://www.realworldtech.com/bulldozer/6/ the Bulldozer had
// RCU reorder buffer size of 128. So that is a good guess for now.
def PdRCU : RetireControlUnit<128, 4>;
//===----------------------------------------------------------------------===//
// Pipelines
//===----------------------------------------------------------------------===//
// There are total of two pipelines, each one with it's own scheduler.
//===----------------------------------------------------------------------===//
// Integer Pipeline Scheduling
//
// There is one Integer Scheduler per core.
// Integer physical register file has 96 registers of 64-bit.
def PdIntegerPRF : RegisterFile<96, [GR64, CCR]>;
// Unified Integer, Memory Scheduler has 40 entries.
def PdEX : ProcResGroup<[PdEX0, PdEX1, PdAGLU01]> {
// Up to 4 IPC can be decoded, issued, retired.
let BufferSize = 40;
}
//===----------------------------------------------------------------------===//
// FPU Pipeline Scheduling
//
// The FPU unit is shared between the two cores.
// FP physical register file has 160 registers of 128-bit.
// Operations on 256-bit data types are cracked into two COPs.
def PdFpuPRF : RegisterFile<160, [VR64, VR128, VR256], [1, 1, 2]>;
// Unified FP Scheduler has 64 entries,
def PdFPU : ProcResGroup<[PdFPU0, PdFPU1, PdFPU2, PdFPU3]> {
// Up to 4 IPC can be decoded, issued, retired.
let BufferSize = 64;
}
//===----------------------------------------------------------------------===//
// Functional units
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Load-Store Units
//
let Super = PdAGLU01 in
def PdLoad : ProcResource<2> {
// For Piledriver, the load queue is 40 entries deep.
let BufferSize = 40;
}
def PdLoadQueue : LoadQueue<PdLoad>;
let Super = PdAGLU01 in
def PdStore : ProcResource<1> {
// For Piledriver, the store queue is 24 entries deep.
let BufferSize = 24;
}
def PdStoreQueue : StoreQueue<PdStore>;
//===----------------------------------------------------------------------===//
// Integer Execution Units
//
def PdDiv : ProcResource<1>; // PdEX0; unpipelined integer division
def PdCount : ProcResource<1>; // PdEX0; POPCNT, LZCOUNT
def PdMul : ProcResource<1>; // PdEX1; integer multiplication
def PdBranch : ProcResource<1>; // PdEX1; JMP, fused branches
//===----------------------------------------------------------------------===//
// Floating-Point Units
//
// Two FMAC/FPFMA units.
def PdFPFMA : ProcResource<2>; // PdFPU0, PdFPU1
// One 128-bit integer multiply-accumulate unit.
def PdFPMMA : ProcResource<1>; // PdFPU0
// One fp conversion unit.
def PdFPCVT : ProcResource<1>; // PdFPU0
// One unit for shuffles, packs, permutes, shifts.
def PdFPXBR : ProcResource<1>; // PdFPU1
// Two 128-bit packed integer units.
def PdFPMAL : ProcResource<2>; // PdFPU2, PdFPU3
// One FP store unit.
def PdFPSTO : ProcResource<1>; // PdFPU3
//===----------------------------------------------------------------------===//
// Basic helper classes.
//===----------------------------------------------------------------------===//
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass PdWriteRes<SchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1> {
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ReleaseAtCycles = Res;
let NumMicroOps = UOps;
}
}
multiclass __pdWriteResPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat,
list<int> Res, int UOps,
int LoadLat, int LoadRes, int LoadUOps> {
defm : PdWriteRes<SchedRW, ExePorts, Lat, Res, UOps>;
defm : PdWriteRes<SchedRW.Folded,
!listconcat([PdLoad], ExePorts),
!add(Lat, LoadLat),
!if(!and(!empty(Res), !eq(LoadRes, 1)),
[],
!listconcat([LoadRes],
!if(!empty(Res),
!listsplat(1, !size(ExePorts)),
Res))),
!add(UOps, LoadUOps)>;
}
multiclass PdWriteResExPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1,
int LoadUOps = 0> {
defm : __pdWriteResPair<SchedRW, ExePorts, Lat, Res, UOps,
/*LoadLat*/4, /*LoadRes*/3, LoadUOps>;
}
multiclass PdWriteResXMMPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1,
int LoadUOps = 0> {
defm : __pdWriteResPair<SchedRW, ExePorts, Lat, Res, UOps,
/*LoadLat*/5, /*LoadRes*/3, LoadUOps>;
}
multiclass PdWriteResYMMPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat,
list<int> Res = [], int UOps = 2,
int LoadUOps = 0> {
defm : __pdWriteResPair<SchedRW, ExePorts, Lat, Res, UOps,
/*LoadLat*/5, /*LoadRes*/3, LoadUOps>;
}
//===----------------------------------------------------------------------===//
// Here be dragons.
//===----------------------------------------------------------------------===//
// L1 data cache has a 4-cycle load-to-use latency, so ReadAfterLd registers
// needn't be available until 4 cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 4>;
// Vector loads are 5 cycles, so ReadAfterVec*Ld registers needn't be available
// until 5 cycles after the memory operand.
def : ReadAdvance<ReadAfterVecLd, 5>;
def : ReadAdvance<ReadAfterVecXLd, 5>;
def : ReadAdvance<ReadAfterVecYLd, 5>;
// Transfer from int domain to ivec domain incurs additional latency of 8..10cy
// Reference: Agner, Microarchitecture, "AMD Bulldozer, Piledriver, Steamroller
// and Excavator pipeline", "Data delay between different execution domains"
def : ReadAdvance<ReadInt2Fpu, -10>;
// A folded store needs a cycle on the PdStore for the store data.
def : WriteRes<WriteRMW, [PdStore]>;
////////////////////////////////////////////////////////////////////////////////
// Loads, stores, and moves, not folded with other operations.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteLoad, [PdLoad]> { let Latency = 5; let ReleaseAtCycles = [2]; }
def : WriteRes<WriteStore, [PdStore]>;
def : WriteRes<WriteStoreNT, [PdStore]>;
def : WriteRes<WriteMove, [PdEX01]> { let ReleaseAtCycles = [2]; }
defm : X86WriteResUnsupported<WriteVecMaskedGatherWriteback>;
// Load/store MXCSR.
// FIXME: These are copy and pasted from WriteLoad/Store.
def : WriteRes<WriteLDMXCSR, [PdLoad]> { let Latency = 5; }
def : WriteRes<WriteSTMXCSR, [PdStore]> { let NumMicroOps = 2; let ReleaseAtCycles = [18]; }
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
////////////////////////////////////////////////////////////////////////////////
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteZero, [/*No ExePorts*/]>;
////////////////////////////////////////////////////////////////////////////////
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteResExPair<WriteJump, [PdEX1, PdBranch]>;
////////////////////////////////////////////////////////////////////////////////
// Special case scheduling classes.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteSystem, [PdEX01]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [PdEX01]> { let Latency = 100; }
def : WriteRes<WriteFence, [PdStore]>;
def PdWriteXLAT : SchedWriteRes<[PdEX01]> {
let Latency = 6;
}
def : InstRW<[PdWriteXLAT], (instrs XLAT)>;
def PdWriteLARrr : SchedWriteRes<[PdEX01]> {
let Latency = 184;
let ReleaseAtCycles = [375];
let NumMicroOps = 45;
}
def : InstRW<[PdWriteLARrr], (instregex "LAR(16|32|64)rr",
"LSL(16|32|64)rr")>;
// Nops don't have dependencies, so there's no actual latency, but we set this
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
def : WriteRes<WriteNop, [PdEX01]> { let ReleaseAtCycles = [2]; }
////////////////////////////////////////////////////////////////////////////////
// Arithmetic.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteResExPair<WriteALU, [PdEX01], 1, [2]>;
def PdWriteALURMW : SchedWriteRes<[PdLoad, PdEX01, PdStore]> {
let Latency = 6;
let ReleaseAtCycles = [3, 2, 1];
let NumMicroOps = 1;
}
def : SchedAlias<WriteALURMW, PdWriteALURMW>;
def PdWriteLXADD : SchedWriteRes<[PdEX01]> {
let Latency = 6;
let ReleaseAtCycles = [88];
let NumMicroOps = 4;
}
def : InstRW<[PdWriteLXADD], (instrs LXADD8, LXADD16, LXADD32, LXADD64)>;
def PdWriteBMI1 : SchedWriteRes<[PdEX01]> {
let Latency = 2;
let ReleaseAtCycles = [2];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteBMI1],
(instrs BLCFILL32rr, BLCFILL64rr, BLCI32rr, BLCI64rr,
BLCIC32rr, BLCIC64rr, BLCMSK32rr, BLCMSK64rr,
BLCS32rr, BLCS64rr, BLSFILL32rr, BLSFILL64rr,
BLSIC32rr, BLSIC64rr, T1MSKC32rr, T1MSKC64rr,
TZMSK32rr, TZMSK64rr)>;
def PdWriteBMI1m : SchedWriteRes<[PdLoad, PdEX01]> {
let Latency = 6;
let ReleaseAtCycles = [3, 3];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteBMI1m],
(instrs BLCFILL32rm, BLCFILL64rm, BLCI32rm, BLCI64rm,
BLCIC32rm, BLCIC64rm, BLCMSK32rm, BLCMSK64rm,
BLCS32rm, BLCS64rm, BLSFILL32rm, BLSFILL64rm,
BLSIC32rm, BLSIC64rm, T1MSKC32rm, T1MSKC64rm,
TZMSK32rm, TZMSK64rm)>;
defm : PdWriteResExPair<WriteADC, [PdEX01], 1, [2]>;
def PdWriteADCSBB64ri32 : SchedWriteRes<[PdEX01]> {
let ReleaseAtCycles = [3];
}
def : InstRW<[PdWriteADCSBB64ri32], (instrs ADC64ri32, SBB64ri32)>;
defm : PdWriteRes<WriteBSWAP32, [PdEX01]>;
defm : PdWriteRes<WriteBSWAP64, [PdEX01]>;
defm : PdWriteRes<WriteCMPXCHG, [PdEX1], 3, [3], 5>;
defm : PdWriteRes<WriteCMPXCHGRMW, [PdEX1, PdStore, PdLoad], 3, [44, 1, 1], 2>;
defm : PdWriteRes<WriteXCHG, [PdEX1], 1, [], 2>;
def PdWriteCMPXCHG8rr : SchedWriteRes<[PdEX1]> {
let Latency = 3;
let ReleaseAtCycles = [3];
let NumMicroOps = 3;
}
def : InstRW<[PdWriteCMPXCHG8rr], (instrs CMPXCHG8rr)>;
def PdWriteCMPXCHG8rm : SchedWriteRes<[PdEX1]> {
let Latency = 3;
let ReleaseAtCycles = [23];
let NumMicroOps = 5;
}
def : InstRW<[PdWriteCMPXCHG8rm], (instrs CMPXCHG8rm)>;
def PdWriteCMPXCHG16rm_CMPXCHG32rm_CMPXCHG64rm : SchedWriteRes<[PdEX1]> {
let Latency = 3;
let ReleaseAtCycles = [21];
let NumMicroOps = 6;
}
def : InstRW<[PdWriteCMPXCHG16rm_CMPXCHG32rm_CMPXCHG64rm],
(instrs CMPXCHG16rm, CMPXCHG32rm, CMPXCHG64rm)>;
def PdWriteCMPXCHG8B : SchedWriteRes<[PdEX1]> {
let Latency = 3;
let ReleaseAtCycles = [26];
let NumMicroOps = 18;
}
def : InstRW<[PdWriteCMPXCHG8B], (instrs CMPXCHG8B)>;
def PdWriteCMPXCHG16B : SchedWriteRes<[PdEX1]> {
let Latency = 3;
let ReleaseAtCycles = [69];
let NumMicroOps = 22;
}
def : InstRW<[PdWriteCMPXCHG16B], (instrs CMPXCHG16B)>;
def PdWriteXADDm : SchedWriteRes<[PdEX1]> {
let Latency = 6;
let ReleaseAtCycles = [20];
let NumMicroOps = 4;
}
def : InstRW<[PdWriteXADDm], (instrs XADD8rm, XADD16rm, XADD32rm, XADD64rm)>;
defm : PdWriteResExPair<WriteIMul8, [PdEX1, PdMul], 4, [1, 4]>;
defm : PdWriteResExPair<WriteIMul16, [PdEX1, PdMul], 4, [1, 5], 2>;
defm : PdWriteResExPair<WriteIMul16Imm, [PdEX1, PdMul], 5, [1, 5], 2>;
defm : PdWriteResExPair<WriteIMul16Reg, [PdEX1, PdMul], 4, [1, 2]>;
defm : PdWriteResExPair<WriteIMul32, [PdEX1, PdMul], 4, [1, 4]>;
defm : PdWriteResExPair<WriteIMul32Imm, [PdEX1, PdMul], 4, [1, 2], 1, 1>;
defm : PdWriteResExPair<WriteIMul32Reg, [PdEX1, PdMul], 4, [1, 2]>;
defm : PdWriteResExPair<WriteIMul64, [PdEX1, PdMul], 6, [1, 6]>;
defm : PdWriteResExPair<WriteIMul64Imm, [PdEX1, PdMul], 6, [1, 4],1, 1>;
defm : PdWriteResExPair<WriteIMul64Reg, [PdEX1, PdMul], 6, [1, 4]>;
// BMI2 MULX
defm : X86WriteResUnsupported<WriteIMulH>;
defm : X86WriteResUnsupported<WriteIMulHLd>;
defm : X86WriteResPairUnsupported<WriteMULX32>;
defm : X86WriteResPairUnsupported<WriteMULX64>;
defm : PdWriteResExPair<WriteDiv8, [PdEX1, PdDiv], 12, [1, 12]>;
defm : PdWriteResExPair<WriteDiv16, [PdEX1, PdDiv], 15, [1, 15], 2>;
defm : PdWriteResExPair<WriteDiv32, [PdEX1, PdDiv], 14, [1, 14], 2>;
defm : PdWriteResExPair<WriteDiv64, [PdEX1, PdDiv], 14, [1, 14], 2>;
defm : PdWriteResExPair<WriteIDiv8, [PdEX1, PdDiv], 12, [1, 12]>;
defm : PdWriteResExPair<WriteIDiv16, [PdEX1, PdDiv], 15, [1, 17], 2>;
defm : PdWriteResExPair<WriteIDiv32, [PdEX1, PdDiv], 14, [1, 25], 2>;
defm : PdWriteResExPair<WriteIDiv64, [PdEX1, PdDiv], 14, [1, 14], 2>;
defm : PdWriteResExPair<WriteCRC32, [PdEX01], 2, [4], 3>;
def PdWriteCRC32r32r16 : SchedWriteRes<[PdEX01]> {
let Latency = 5;
let ReleaseAtCycles = [10];
let NumMicroOps = 5;
}
def : InstRW<[PdWriteCRC32r32r16], (instrs CRC32r32r16)>;
def PdWriteCRC32r32r32 : SchedWriteRes<[PdEX01]> {
let Latency = 6;
let ReleaseAtCycles = [12];
let NumMicroOps = 7;
}
def : InstRW<[PdWriteCRC32r32r32], (instrs CRC32r32r32)>;
def PdWriteCRC32r64r64 : SchedWriteRes<[PdEX01]> {
let Latency = 10;
let ReleaseAtCycles = [17];
let NumMicroOps = 11;
}
def : InstRW<[PdWriteCRC32r64r64], (instrs CRC32r64r64)>;
defm : PdWriteResExPair<WriteCMOV, [PdEX01]>; // Conditional move.
def PdWriteCMOVm : SchedWriteRes<[PdLoad, PdEX01]> {
let Latency = 5;
let ReleaseAtCycles = [3, 3];
let NumMicroOps = 2;
}
def PdWriteCMOVmVar : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckImmOperand_s<7, "X86::COND_BE">>, [PdWriteCMOVm]>,
SchedVar<MCSchedPredicate<CheckImmOperand_s<7, "X86::COND_A">>, [PdWriteCMOVm]>,
SchedVar<MCSchedPredicate<CheckImmOperand_s<7, "X86::COND_L">>, [PdWriteCMOVm]>,
SchedVar<MCSchedPredicate<CheckImmOperand_s<7, "X86::COND_GE">>, [PdWriteCMOVm]>,
SchedVar<MCSchedPredicate<CheckImmOperand_s<7, "X86::COND_LE">>, [PdWriteCMOVm]>,
SchedVar<MCSchedPredicate<CheckImmOperand_s<7, "X86::COND_G">>, [PdWriteCMOVm]>,
SchedVar<NoSchedPred, [WriteCMOV.Folded]>
]>;
def : InstRW<[PdWriteCMOVmVar], (instrs CMOV16rm, CMOV32rm, CMOV64rm)>;
defm : PdWriteRes<WriteFCMOV, [PdFPU0, PdFPFMA]>; // x87 conditional move.
def : WriteRes<WriteSETCC, [PdEX01]>; // Setcc.
def : WriteRes<WriteSETCCStore, [PdEX01, PdStore]>;
def PdWriteSETGEmSETGmSETLEmSETLm : SchedWriteRes<[PdEX01]> {
let ReleaseAtCycles = [2];
let NumMicroOps = 2;
}
def PdSETGEmSETGmSETLEmSETLm : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckImmOperand_s<5, "X86::COND_GE">>, [PdWriteSETGEmSETGmSETLEmSETLm]>,
SchedVar<MCSchedPredicate<CheckImmOperand_s<5, "X86::COND_G">>, [PdWriteSETGEmSETGmSETLEmSETLm]>,
SchedVar<MCSchedPredicate<CheckImmOperand_s<5, "X86::COND_LE">>, [PdWriteSETGEmSETGmSETLEmSETLm]>,
SchedVar<MCSchedPredicate<CheckImmOperand_s<5, "X86::COND_L">>, [PdWriteSETGEmSETGmSETLEmSETLm]>,
SchedVar<NoSchedPred, [WriteSETCCStore]>
]>;
def : InstRW<[PdSETGEmSETGmSETLEmSETLm], (instrs SETCCm)>;
defm : PdWriteRes<WriteLAHFSAHF, [PdEX01], 2, [4], 2>;
def PdWriteLAHF : SchedWriteRes<[PdEX01]> {
let Latency = 2;
let ReleaseAtCycles = [4];
let NumMicroOps = 4;
}
def : InstRW<[PdWriteLAHF], (instrs LAHF)>;
def PdWriteSAHF : SchedWriteRes<[PdEX01]> {
let Latency = 2;
let ReleaseAtCycles = [2];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteSAHF], (instrs SAHF)>;
defm : PdWriteRes<WriteBitTest, [PdEX01], 1, [2], 1>;
defm : PdWriteRes<WriteBitTestImmLd, [PdEX01, PdLoad], 5, [2, 3], 1>;
defm : PdWriteRes<WriteBitTestRegLd, [PdEX01, PdLoad], 5, [7, 2], 7>;
defm : PdWriteRes<WriteBitTestSet, [PdEX01], 2, [2], 2>;
defm : PdWriteRes<WriteBitTestSetImmLd, [PdEX01, PdLoad], 6, [1, 1], 4>;
defm : PdWriteRes<WriteBitTestSetRegLd, [PdEX01, PdLoad], 6, [1, 1], 10>;
def PdWriteBTSIm : SchedWriteRes<[PdEX01, PdLoad]> {
let Latency = 7;
let ReleaseAtCycles = [42, 1];
let NumMicroOps = 4;
}
def : SchedAlias<WriteBitTestSetImmRMW, PdWriteBTSIm>;
def PdWriteBTSRm : SchedWriteRes<[PdEX01, PdLoad]> {
let Latency = 7;
let ReleaseAtCycles = [44, 1];
let NumMicroOps = 10;
}
def : SchedAlias<WriteBitTestSetRegRMW, PdWriteBTSRm>;
// This is for simple LEAs with one or two input operands.
def : WriteRes<WriteLEA, [PdEX01]> { let ReleaseAtCycles = [2]; }
// This write is used for slow LEA instructions.
def PdWrite3OpsLEA : SchedWriteRes<[PdEX01]> {
let Latency = 2;
let ReleaseAtCycles = [2];
}
// On Piledriver, a slow LEA is either a 3Ops LEA (base, index, offset),
// or an LEA with a `Scale` value different than 1.
def PdSlowLEAPredicate : MCSchedPredicate<
CheckAny<[
// A 3-operand LEA (base, index, offset).
IsThreeOperandsLEAFn,
// An LEA with a "Scale" different than 1.
CheckAll<[
CheckIsImmOperand<2>,
CheckNot<CheckImmOperand<2, 1>>
]>
]>
>;
def PdWriteLEA : SchedWriteVariant<[
SchedVar<PdSlowLEAPredicate, [PdWrite3OpsLEA]>,
SchedVar<NoSchedPred, [WriteLEA]>
]>;
def : InstRW<[PdWriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>;
def PdWriteLEA16r : SchedWriteRes<[PdEX01]> {
let ReleaseAtCycles = [3];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteLEA16r], (instrs LEA16r)>;
// Bit counts.
defm : PdWriteResExPair<WriteBSF, [PdEX01], 3, [6], 6, 2>;
defm : PdWriteResExPair<WriteBSR, [PdEX01], 4, [8], 7, 2>;
defm : PdWriteResExPair<WritePOPCNT, [PdEX01], 4, [4]>;
defm : PdWriteResExPair<WriteLZCNT, [PdEX0], 2, [2], 2>;
defm : PdWriteResExPair<WriteTZCNT, [PdEX0], 2, [2], 2>;
// BMI1 BEXTR, BMI2 BZHI
defm : PdWriteResExPair<WriteBEXTR, [PdEX01], 2, [2], 2>;
defm : PdWriteResExPair<WriteBLS, [PdEX01], 2, [2], 2>;
defm : PdWriteResExPair<WriteBZHI, [PdEX01]>;
def PdWriteBEXTRI : SchedWriteRes<[PdEX01]> {
let Latency = 2;
let ReleaseAtCycles = [4];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteBEXTRI], (instrs BEXTRI32ri, BEXTRI64ri)>;
def PdWriteBEXTRIm : SchedWriteRes<[PdEX01]> {
let Latency = 2;
let ReleaseAtCycles = [5];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteBEXTRIm], (instrs BEXTRI32mi, BEXTRI64mi)>;
////////////////////////////////////////////////////////////////////////////////
// Integer shifts and rotates.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteResExPair<WriteShift, [PdEX01], 1, [2]>;
defm : PdWriteResExPair<WriteShiftCL, [PdEX01]>;
defm : PdWriteResExPair<WriteRotate, [PdEX01], 1, [2]>;
defm : PdWriteResExPair<WriteRotateCL, [PdEX01]>;
def PdWriteRCL8rCL : SchedWriteRes<[PdEX01]> {
let Latency = 12;
let ReleaseAtCycles = [24];
let NumMicroOps = 26;
}
def : InstRW<[PdWriteRCL8rCL], (instrs RCL8rCL)>;
def PdWriteRCR8ri : SchedWriteRes<[PdEX01]> {
let Latency = 12;
let ReleaseAtCycles = [23];
let NumMicroOps = 23;
}
def : InstRW<[PdWriteRCR8ri], (instrs RCR8ri)>;
def PdWriteRCR8rCL : SchedWriteRes<[PdEX01]> {
let Latency = 11;
let ReleaseAtCycles = [22];
let NumMicroOps = 24;
}
def : InstRW<[PdWriteRCR8rCL], (instrs RCR8rCL)>;
def PdWriteRCL16rCL : SchedWriteRes<[PdEX01]> {
let Latency = 10;
let ReleaseAtCycles = [20];
let NumMicroOps = 22;
}
def : InstRW<[PdWriteRCL16rCL], (instrs RCL16rCL)>;
def PdWriteRCR16ri : SchedWriteRes<[PdEX01]> {
let Latency = 10;
let ReleaseAtCycles = [19];
let NumMicroOps = 19;
}
def : InstRW<[PdWriteRCR16ri], (instrs RCR16ri)>;
def PdWriteRCL3264rCL : SchedWriteRes<[PdEX01]> {
let Latency = 7;
let ReleaseAtCycles = [14];
let NumMicroOps = 17;
}
def : InstRW<[PdWriteRCL3264rCL], (instrs RCL32rCL, RCL64rCL)>;
def PdWriteRCR3264rCL : SchedWriteRes<[PdEX01]> {
let Latency = 7;
let ReleaseAtCycles = [13];
let NumMicroOps = 16;
}
def : InstRW<[PdWriteRCR3264rCL], (instrs RCR32rCL, RCR64rCL)>;
def PdWriteRCR32riRCR64ri : SchedWriteRes<[PdEX01]> {
let Latency = 7;
let ReleaseAtCycles = [14];
let NumMicroOps = 15;
}
def : InstRW<[PdWriteRCR32riRCR64ri], (instrs RCR32ri, RCR64ri)>;
def PdWriteRCR16rCL : SchedWriteRes<[PdEX01]> {
let Latency = 9;
let ReleaseAtCycles = [18];
let NumMicroOps = 20;
}
def : InstRW<[PdWriteRCR16rCL], (instrs RCR16rCL)>;
def PdWriteRCL16ri : SchedWriteRes<[PdEX01]> {
let Latency = 11;
let ReleaseAtCycles = [21];
let NumMicroOps = 21;
}
def : InstRW<[PdWriteRCL16ri], (instrs RCL16ri)>;
def PdWriteRCL3264ri : SchedWriteRes<[PdEX01]> {
let Latency = 8;
let ReleaseAtCycles = [15];
let NumMicroOps = 16;
}
def : InstRW<[PdWriteRCL3264ri], (instrs RCL32ri, RCL64ri)>;
def PdWriteRCL8ri : SchedWriteRes<[PdEX01]> {
let Latency = 13;
let ReleaseAtCycles = [25];
let NumMicroOps = 25;
}
def : InstRW<[PdWriteRCL8ri], (instrs RCL8ri)>;
// SHLD/SHRD.
defm : PdWriteRes<WriteSHDrri, [PdEX01], 3, [6], 6>;
defm : PdWriteRes<WriteSHDrrcl, [PdEX01], 3, [8], 7>;
def PdWriteSHLD16rrCLSHLD32rrCLSHRD32rrCL : SchedWriteRes<[PdEX01]> {
let Latency = 3;
let ReleaseAtCycles = [6];
let NumMicroOps = 7;
}
def : InstRW<[PdWriteSHLD16rrCLSHLD32rrCLSHRD32rrCL], (instrs SHLD16rrCL,
SHLD32rrCL,
SHRD32rrCL)>;
defm : PdWriteRes<WriteSHDmri, [PdLoad, PdEX01], 4, [1, 22], 8>;
defm : PdWriteRes<WriteSHDmrcl, [PdLoad, PdEX01], 4, [1, 22], 8>;
////////////////////////////////////////////////////////////////////////////////
// Floating point. This covers both scalar and vector operations.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteRes<WriteFLD0, [PdFPU1, PdFPSTO], 3>;
defm : PdWriteRes<WriteFLD1, [PdFPU1, PdFPSTO], 3>;
defm : PdWriteRes<WriteFLDC, [PdFPU1, PdFPSTO], 3>;
defm : PdWriteRes<WriteFLoad, [PdLoad, PdFPU01, PdFPFMA], 5, [3, 1, 3]>;
defm : PdWriteRes<WriteFLoadX, [PdLoad, PdFPU01, PdFPFMA], 5, [3, 1, 3]>;
defm : PdWriteRes<WriteFLoadY, [PdLoad, PdFPU01, PdFPFMA], 5, [3, 1, 3], 2>;
defm : PdWriteRes<WriteFMaskedLoad, [PdLoad, PdFPU01, PdFPFMA], 6, [3, 1, 4]>;
defm : PdWriteRes<WriteFMaskedLoadY, [PdLoad, PdFPU01, PdFPFMA], 6, [3, 2, 4], 2>;
defm : PdWriteRes<WriteFStore, [PdStore, PdFPU23, PdFPSTO], 2, [1, 3, 1]>;
defm : PdWriteRes<WriteFStoreX, [PdStore, PdFPU23, PdFPSTO], 1, [1, 3, 1]>;
defm : PdWriteRes<WriteFStoreY, [PdStore, PdFPU23, PdFPSTO], 1, [1, 36, 2], 4>;
def PdWriteMOVHPm : SchedWriteRes<[PdStore, PdFPU23, PdFPSTO]> {
let Latency = 2;
let ReleaseAtCycles = [1, 3, 1];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteMOVHPm], (instrs MOVHPDmr, MOVHPSmr, VMOVHPDmr, VMOVHPSmr)>;
def PdWriteVMOVUPDYmrVMOVUPSYmr : SchedWriteRes<[PdStore, PdFPU1, PdFPSTO]> {
let NumMicroOps = 8;
}
def : InstRW<[PdWriteVMOVUPDYmrVMOVUPSYmr], (instrs VMOVUPDYmr, VMOVUPSYmr)>;
defm : PdWriteRes<WriteFStoreNT, [PdStore, PdFPU1, PdFPSTO], 3>;
defm : PdWriteRes<WriteFStoreNTX, [PdStore, PdFPU1, PdFPSTO], 3>;
defm : PdWriteRes<WriteFStoreNTY, [PdStore, PdFPU1, PdFPSTO], 3, [2, 2, 2], 4>;
defm : PdWriteRes<WriteFMaskedStore32, [PdStore, PdFPU01, PdFPFMA], 6, [1, 1, 188], 18>;
defm : PdWriteRes<WriteFMaskedStore64, [PdStore, PdFPU01, PdFPFMA], 6, [1, 1, 188], 18>;
defm : PdWriteRes<WriteFMaskedStore32Y, [PdStore, PdFPU01, PdFPFMA], 6, [2, 2, 376], 34>;
defm : PdWriteRes<WriteFMaskedStore64Y, [PdStore, PdFPU01, PdFPFMA], 6, [2, 2, 376], 34>;
defm : PdWriteRes<WriteFMove, [PdFPU01, PdFPFMA]>;
defm : PdWriteRes<WriteFMoveX, [PdFPU01, PdFPFMA], 1, [1, 2]>;
defm : PdWriteRes<WriteFMoveY, [PdFPU01, PdFPFMA], 2, [2, 2], 2>;
defm : X86WriteResUnsupported<WriteFMoveZ>;
defm : PdWriteRes<WriteEMMS, [PdFPU01, PdFPFMA], 2>;
defm : PdWriteResXMMPair<WriteFAdd, [PdFPU0, PdFPFMA], 5>;
defm : PdWriteResXMMPair<WriteFAddX, [PdFPU0, PdFPFMA], 5>;
defm : PdWriteResYMMPair<WriteFAddY, [PdFPU0, PdFPFMA], 5, [1, 2]>;
defm : X86WriteResPairUnsupported<WriteFAddZ>;
def PdWriteX87Add: SchedWriteRes<[PdLoad, PdFPU0, PdFPFMA]> {
let Latency = 5;
let ReleaseAtCycles = [3, 1, 10];
}
def : InstRW<[PdWriteX87Add], (instrs ADD_FI16m, ADD_FI32m, ADD_F32m, ADD_F64m,
SUB_FI16m, SUB_FI32m, SUB_F32m, SUB_F64m,
SUBR_FI16m, SUBR_FI32m, SUBR_F32m, SUBR_F64m)>;
defm : PdWriteResXMMPair<WriteFAdd64, [PdFPU0, PdFPFMA], 5>;
defm : PdWriteResXMMPair<WriteFAdd64X, [PdFPU0, PdFPFMA], 5>;
defm : PdWriteResYMMPair<WriteFAdd64Y, [PdFPU0, PdFPFMA], 5, [1, 2]>;
defm : X86WriteResPairUnsupported<WriteFAdd64Z>;
defm : PdWriteResXMMPair<WriteFCmp, [PdFPU0, PdFPFMA], 2>;
defm : PdWriteResXMMPair<WriteFCmpX, [PdFPU0, PdFPFMA], 2>;
defm : PdWriteResYMMPair<WriteFCmpY, [PdFPU0, PdFPFMA], 2, [1, 2]>;
defm : X86WriteResPairUnsupported<WriteFCmpZ>;
defm : PdWriteResXMMPair<WriteFCmp64, [PdFPU0, PdFPFMA], 2>;
defm : PdWriteResXMMPair<WriteFCmp64X, [PdFPU0, PdFPFMA], 2>;
defm : PdWriteResYMMPair<WriteFCmp64Y, [PdFPU0, PdFPFMA], 2, [1, 2]>;
defm : X86WriteResPairUnsupported<WriteFCmp64Z>;
defm : PdWriteResXMMPair<WriteFCom, [PdFPU0, PdFPFMA, PdEX0], 1, [], 2>;
defm : PdWriteResXMMPair<WriteFComX, [PdFPU0, PdFPFMA, PdEX0], 1, [], 2>;
def PdWriteFCOMPm : SchedWriteRes<[PdFPU1, PdFPFMA]> {
let Latency = 6;
}
def : InstRW<[PdWriteFCOMPm], (instrs FCOM32m, FCOM64m, FCOMP32m, FCOMP64m)>;
def PdWriteTST_F_UCOM_FPPr : SchedWriteRes<[PdFPU1, PdFPFMA]>;
def : InstRW<[PdWriteTST_F_UCOM_FPPr], (instrs TST_F, UCOM_FPPr)>;
defm : PdWriteResXMMPair<WriteFMul, [PdFPU1, PdFPFMA], 5>;
defm : PdWriteResXMMPair<WriteFMulX, [PdFPU1, PdFPFMA], 5>;
defm : PdWriteResYMMPair<WriteFMulY, [PdFPU1, PdFPFMA], 5, [1, 2]>;
defm : X86WriteResPairUnsupported<WriteFMulZ>;
def PdWriteX87Mul: SchedWriteRes<[PdLoad, PdFPU1, PdFPFMA]> {
let Latency = 5;
let ReleaseAtCycles = [3, 1, 10];
}
def : InstRW<[PdWriteX87Mul], (instrs MUL_FI16m, MUL_FI32m, MUL_F32m, MUL_F64m)>;
defm : PdWriteResXMMPair<WriteFMul64, [PdFPU1, PdFPFMA], 5>;
defm : PdWriteResXMMPair<WriteFMul64X, [PdFPU1, PdFPFMA], 5>;
defm : PdWriteResYMMPair<WriteFMul64Y, [PdFPU1, PdFPFMA], 5, [1, 2]>;
defm : X86WriteResPairUnsupported<WriteFMul64Z>;
defm : PdWriteResXMMPair<WriteFMA, [PdFPU, PdFPFMA], 5, [1, 3]>;
defm : PdWriteResXMMPair<WriteFMAX, [PdFPU, PdFPFMA], 5, [1, 3]>;
defm : PdWriteResYMMPair<WriteFMAY, [PdFPU, PdFPFMA], 5, [1, 3]>;
defm : X86WriteResPairUnsupported<WriteFMAZ>;
defm : PdWriteResXMMPair<WriteDPPD, [PdFPU1, PdFPFMA], 15, [1, 10], 15, 2>;
defm : PdWriteResXMMPair<WriteDPPS, [PdFPU1, PdFPFMA], 25, [1, 14], 16, 2>;
defm : PdWriteResYMMPair<WriteDPPSY, [PdFPU1, PdFPFMA], 27, [2, 25], /*or 29*/ 25, 4>;
def PdWriteVDPPSrri : SchedWriteRes<[PdFPU1, PdFPFMA]> {
let Latency = 27;
let ReleaseAtCycles = [1, 14];
let NumMicroOps = 17;
}
def : InstRW<[PdWriteVDPPSrri], (instrs VDPPSrri)>;
defm : PdWriteResXMMPair<WriteFRcp, [PdFPU1, PdFPFMA], 5>;
defm : PdWriteResXMMPair<WriteFRcpX, [PdFPU1, PdFPFMA], 5>;
defm : PdWriteResYMMPair<WriteFRcpY, [PdFPU1, PdFPFMA], 5, [2, 1]>;
defm : X86WriteResPairUnsupported<WriteFRcpZ>;
defm : PdWriteResXMMPair<WriteFRsqrt, [PdFPU1, PdFPFMA], 5, [1, 2]>;
defm : PdWriteResXMMPair<WriteFRsqrtX, [PdFPU1, PdFPFMA], 5>;
defm : PdWriteResYMMPair<WriteFRsqrtY, [PdFPU1, PdFPFMA], 5, [2, 2]>;
defm : X86WriteResPairUnsupported<WriteFRsqrtZ>;
defm : PdWriteResXMMPair<WriteFDiv, [PdFPU1, PdFPFMA], 9, [1, 9]>;
defm : PdWriteResXMMPair<WriteFDivX, [PdFPU1, PdFPFMA], 9, [1, 9]>;
defm : PdWriteResYMMPair<WriteFDivY, [PdFPU1, PdFPFMA], 9, [2, 18]>;
defm : X86WriteResPairUnsupported<WriteFDivZ>;
def PdWriteX87Div: SchedWriteRes<[PdLoad, PdFPU0, PdFPFMA]> {
let Latency = 9;
let ReleaseAtCycles = [3, 1, 18];
}
def : InstRW<[PdWriteX87Div], (instrs DIV_FI16m, DIV_FI32m,
DIVR_FI16m, DIVR_FI32m,
DIV_F32m, DIV_F64m,
DIVR_F32m, DIVR_F64m)>;
defm : PdWriteResXMMPair<WriteFDiv64, [PdFPU1, PdFPFMA], 9, [1, 9]>;
defm : PdWriteResXMMPair<WriteFDiv64X, [PdFPU1, PdFPFMA], 9, [1, 9]>;
defm : PdWriteResYMMPair<WriteFDiv64Y, [PdFPU1, PdFPFMA], 9, [2, 18]>;
defm : X86WriteResPairUnsupported<WriteFDiv64Z>;
defm : PdWriteResXMMPair<WriteFSqrt, [PdFPU1, PdFPFMA], 9, [1, 9]>;
defm : PdWriteResXMMPair<WriteFSqrtX, [PdFPU1, PdFPFMA], 9, [1, 9]>;
defm : PdWriteResYMMPair<WriteFSqrtY, [PdFPU1, PdFPFMA], 9, [2, 18]>;
defm : X86WriteResPairUnsupported<WriteFSqrtZ>;
defm : PdWriteResXMMPair<WriteFSqrt64, [PdFPU1, PdFPFMA], 9, [1, 9]>;
defm : PdWriteResXMMPair<WriteFSqrt64X, [PdFPU1, PdFPFMA], 9, [1, 9]>;
defm : PdWriteResYMMPair<WriteFSqrt64Y, [PdFPU1, PdFPFMA], 9, [2, 18]>;
defm : X86WriteResPairUnsupported<WriteFSqrt64Z>;
defm : PdWriteResXMMPair<WriteFSqrt80, [PdFPU1, PdFPFMA], 1, [1, 18]>;
defm : PdWriteResXMMPair<WriteFSign, [PdFPU1, PdFPFMA], 1, [1, 4]>;
defm : PdWriteResXMMPair<WriteFRnd, [PdFPU1, PdFPSTO], 4, []>;
defm : PdWriteResYMMPair<WriteFRndY, [PdFPU1, PdFPSTO], 4, [2, 1], 2>;
defm : X86WriteResPairUnsupported<WriteFRndZ>;
def PdWriteVFRCZP : SchedWriteRes<[PdFPU1, PdFPSTO]> {
let Latency = 10;
let ReleaseAtCycles = [2, 1];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteVFRCZP], (instrs VFRCZPDrr, VFRCZPSrr)>;
def PdWriteVFRCZS : SchedWriteRes<[PdFPU1, PdFPSTO]> {
let Latency = 10;
let ReleaseAtCycles = [10, 1];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteVFRCZS], (instrs VFRCZSDrr, VFRCZSSrr)>;
def PdWriteVFRCZm : SchedWriteRes<[PdFPU1, PdFPSTO]> {
let Latency = 15;
let ReleaseAtCycles = [2, 1];
let NumMicroOps = 3;
}
def : InstRW<[PdWriteVFRCZm], (instrs VFRCZPDrm, VFRCZPSrm,
VFRCZSDrm, VFRCZSSrm)>;
def PdWriteVFRCZY : SchedWriteRes<[PdFPU1, PdFPSTO]> {
let Latency = 10;
let ReleaseAtCycles = [3, 1];
let NumMicroOps = 4;
}
def : InstRW<[PdWriteVFRCZY], (instrs VFRCZPSYrr, VFRCZPDYrr)>;
def PdWriteVFRCZYm : SchedWriteRes<[PdFPU1, PdFPSTO]> {
let Latency = 15;
let ReleaseAtCycles = [4, 1];
let NumMicroOps = 8;
}
def : InstRW<[PdWriteVFRCZYm], (instrs VFRCZPSYrm, VFRCZPDYrm)>;
defm : PdWriteResXMMPair<WriteFLogic, [PdFPU23, PdFPMAL], 2>;
defm : PdWriteResYMMPair<WriteFLogicY, [PdFPU23, PdFPMAL], 2, [2, 2]>;
defm : X86WriteResPairUnsupported<WriteFLogicZ>;
defm : PdWriteResXMMPair<WriteFTest, [PdFPU0, PdFPFMA, PdEX0], 1, [], 2>;
defm : PdWriteResYMMPair<WriteFTestY, [PdFPU01, PdFPFMA, PdEX0], 1, [4, 4, 1], 4, 2>;
defm : X86WriteResPairUnsupported<WriteFTestZ>;
defm : PdWriteResXMMPair<WriteFShuffle, [PdFPU01, PdFPFMA], 2, [1, 2]>;
defm : PdWriteResYMMPair<WriteFShuffleY, [PdFPU01, PdFPFMA], 2, [2, 4], 2>;
defm : X86WriteResPairUnsupported<WriteFShuffleZ>;
def PdWriteVBROADCASTF128 : SchedWriteRes<[PdFPU01, PdFPFMA]> {
let Latency = 7;
let ReleaseAtCycles = [1, 3];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteVBROADCASTF128], (instrs VBROADCASTF128rm)>;
defm : PdWriteResXMMPair<WriteFVarShuffle, [PdFPU1, PdFPXBR], 3>;
defm : PdWriteResYMMPair<WriteFVarShuffleY, [PdFPU1, PdFPXBR], 3, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>;
defm : PdWriteResXMMPair<WriteFBlend, [PdFPU23, PdFPMAL], 2>;
defm : PdWriteResYMMPair<WriteFBlendY, [PdFPU23, PdFPMAL], 2, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFBlendZ>;
defm : PdWriteResXMMPair<WriteFVarBlend, [PdFPU1, PdFPXBR], 2>;
defm : PdWriteResYMMPair<WriteFVarBlendY, [PdFPU1, PdFPXBR], 2, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFVarBlendZ>;
defm : PdWriteResXMMPair<WriteFShuffle256, [PdFPU01, PdFPFMA], 2, [1, 3], 2>;
defm : X86WriteResPairUnsupported<WriteFVarShuffle256>;
def PdWriteVEXTRACTF128rr : SchedWriteRes<[PdFPU01, PdFPFMA]> {
let Latency = 2;
let ReleaseAtCycles = [1, 2];
}
def : InstRW<[PdWriteVEXTRACTF128rr], (instrs VEXTRACTF128rri)>;
def PdWriteVEXTRACTF128mr : SchedWriteRes<[PdFPU01, PdFPFMA]> {
let Latency = 7;
let ReleaseAtCycles = [1, 4];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteVEXTRACTF128mr], (instrs VEXTRACTF128mri)>;
def PdWriteVPERM2F128rr : SchedWriteRes<[PdFPU01, PdFPFMA]> {
let Latency = 4;
let ReleaseAtCycles = [1, 6];
let NumMicroOps = 8;
}
def : InstRW<[PdWriteVPERM2F128rr], (instrs VPERM2F128rri)>;
def PdWriteVPERM2F128rm : SchedWriteRes<[PdFPU01, PdFPFMA]> {
let Latency = 8; // 4 + 4
let ReleaseAtCycles = [1, 8];
let NumMicroOps = 10;
}
def : InstRW<[PdWriteVPERM2F128rm], (instrs VPERM2F128rmi)>;
////////////////////////////////////////////////////////////////////////////////
// Conversions.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteResXMMPair<WriteCvtSS2I, [PdFPU0, PdFPCVT, PdFPSTO, PdFPFMA, PdEX0], 13, [], 2>;
defm : PdWriteResXMMPair<WriteCvtPS2I, [PdFPU0, PdFPCVT, PdFPSTO], 4>;
defm : PdWriteResYMMPair<WriteCvtPS2IY, [PdFPU0, PdFPCVT, PdFPSTO], 4, [1, 2, 1]>;
defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>;
defm : PdWriteResXMMPair<WriteCvtSD2I, [PdFPU0, PdFPCVT, PdFPSTO, PdFPFMA, PdEX0], 13, [], 2>;
defm : PdWriteResXMMPair<WriteCvtPD2I, [PdFPU0, PdFPCVT, PdFPSTO], 8, [], 2>;
defm : PdWriteResYMMPair<WriteCvtPD2IY, [PdFPU0, PdFPCVT, PdFPSTO, PdFPFMA], 8, [1, 2, 1, 1], 4>;
defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>;
def PdWriteMMX_CVTTPD2PIrr : SchedWriteRes<[PdFPU0, PdFPCVT, PdFPSTO]> {
let Latency = 6;
let NumMicroOps = 2;
}
def : InstRW<[PdWriteMMX_CVTTPD2PIrr], (instrs MMX_CVTTPD2PIrr)>;
// FIXME: f+3 ST, LD+STC latency
defm : PdWriteResXMMPair<WriteCvtI2SS, [PdFPU0, PdFPCVT, PdFPSTO], 4, [], 2>;
// FIXME: .Folded version is one NumMicroOp *less*..
defm : PdWriteResXMMPair<WriteCvtI2PS, [PdFPU0, PdFPCVT, PdFPSTO], 4>;
defm : PdWriteResYMMPair<WriteCvtI2PSY, [PdFPU0, PdFPCVT, PdFPSTO], 4, [1, 2, 1]>;
defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>;
defm : PdWriteResXMMPair<WriteCvtI2SD, [PdFPU0, PdFPCVT, PdFPSTO], 4, [], 2>;
// FIXME: .Folded version is one NumMicroOp *less*..
def PdWriteCVTSI642SDrr_CVTSI642SSrr_CVTSI2SDr_CVTSI2SSrr : SchedWriteRes<[PdFPU0, PdFPCVT, PdFPSTO]> {
let Latency = 13;
let ReleaseAtCycles = [1, 3, 1];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteCVTSI642SDrr_CVTSI642SSrr_CVTSI2SDr_CVTSI2SSrr], (instrs CVTSI642SDrr, CVTSI642SSrr, CVTSI2SDrr, CVTSI2SSrr)>;
defm : PdWriteResXMMPair<WriteCvtI2PD, [PdFPU0, PdFPCVT, PdFPSTO], 8, [], 2>;
defm : PdWriteResYMMPair<WriteCvtI2PDY, [PdFPU0, PdFPCVT, PdFPSTO], 8, [1, 2, 1], 4, 1>;
defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>;
defm : PdWriteResXMMPair<WriteCvtSS2SD, [PdFPU0, PdFPCVT, PdFPSTO], 4, [1, 2, 1]>;
defm : PdWriteResXMMPair<WriteCvtPS2PD, [PdFPU0, PdFPCVT, PdFPSTO], 8, [], 2>;
defm : PdWriteResYMMPair<WriteCvtPS2PDY, [PdFPU0, PdFPCVT, PdFPSTO], 8, [1, 2, 1], 4, 1>;
defm : X86WriteResPairUnsupported<WriteCvtPS2PDZ>;
defm : PdWriteResXMMPair<WriteCvtSD2SS, [PdFPU0, PdFPCVT, PdFPSTO], 4, [1, 2, 1]>;
defm : PdWriteResXMMPair<WriteCvtPD2PS, [PdFPU0, PdFPCVT, PdFPSTO], 8, [], 2>;
defm : PdWriteResYMMPair<WriteCvtPD2PSY, [PdFPU0, PdFPCVT, PdFPSTO, PdFPFMA], 8, [1, 2, 1, 1], 4>;
defm : X86WriteResPairUnsupported<WriteCvtPD2PSZ>;
def PdWriteMMX_CVTPD2PIrrMMX_CVTPI2PDrr : SchedWriteRes<[PdFPU0, PdFPCVT, PdFPSTO]> {
let Latency = 6;
let NumMicroOps = 2;
}
def : InstRW<[PdWriteMMX_CVTPD2PIrrMMX_CVTPI2PDrr], (instrs MMX_CVTPD2PIrr,
MMX_CVTPI2PDrr)>;
def PdWriteMMX_CVTPI2PSrr : SchedWriteRes<[PdFPU0, PdFPCVT, PdFPSTO]> {
let Latency = 4;
let NumMicroOps = 2;
}
def : InstRW<[PdWriteMMX_CVTPI2PSrr], (instrs MMX_CVTPI2PSrr)>;
defm : PdWriteResXMMPair<WriteCvtPH2PS, [PdFPU0, PdFPCVT, PdFPSTO], 8, [1, 2, 1], 2, 1>;
defm : PdWriteResYMMPair<WriteCvtPH2PSY, [PdFPU0, PdFPCVT, PdFPSTO], 8, [1, 2, 1], 4, 3>;
defm : X86WriteResPairUnsupported<WriteCvtPH2PSZ>;
defm : PdWriteRes<WriteCvtPS2PH, [PdFPU0, PdFPCVT, PdFPSTO], 8, [1, 2, 1], 2>;
defm : PdWriteRes<WriteCvtPS2PHY, [PdFPU0, PdFPCVT, PdFPSTO, PdFPFMA], 8, [1, 2, 1, 1], 4>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZ>;
defm : PdWriteRes<WriteCvtPS2PHSt, [PdFPU0, PdFPCVT, PdFPSTO, PdStore], 4, [1, 2, 1, 1], 3>;
defm : PdWriteRes<WriteCvtPS2PHYSt, [PdFPU0, PdFPCVT, PdFPSTO, PdFPFMA, PdStore], 4, [1, 2, 1, 1, 1], 4>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>;
////////////////////////////////////////////////////////////////////////////////
// Vector integer operations.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteRes<WriteVecLoad, [PdLoad, PdFPU01, PdFPMAL], 5, [3, 1, 3]>;
defm : PdWriteRes<WriteVecLoadX, [PdLoad, PdFPU01, PdFPMAL], 5, [3, 1, 3]>;
defm : PdWriteRes<WriteVecLoadY, [PdLoad, PdFPU01, PdFPMAL], 5, [3, 2, 3], 2>;
defm : PdWriteRes<WriteVecLoadNT, [PdLoad, PdFPU01, PdFPMAL], 5, [3, 1, 4]>;
defm : PdWriteRes<WriteVecLoadNTY, [PdLoad, PdFPU01, PdFPMAL], 5, [3, 2, 4]>;
defm : PdWriteRes<WriteVecMaskedLoad, [PdLoad, PdFPU01, PdFPMAL], 6, [3, 1, 2]>;
defm : PdWriteRes<WriteVecMaskedLoadY, [PdLoad, PdFPU01, PdFPMAL], 6, [3, 2, 4], 2>;
defm : PdWriteRes<WriteVecStore, [PdStore, PdFPU23, PdFPSTO], 2, [1, 3, 1]>;
defm : PdWriteRes<WriteVecStoreX, [PdStore, PdFPU23, PdFPSTO], 1, [1, 3, 1]>;
defm : PdWriteRes<WriteVecStoreY, [PdStore, PdFPU23, PdFPSTO], 1, [2, 36, 2], 4>;
def PdWriteVMOVDQUYmr : SchedWriteRes<[PdStore, PdFPU1, PdFPSTO]> {
let NumMicroOps = 8;
}
def : InstRW<[PdWriteVMOVDQUYmr], (instrs VMOVDQUYmr)>;
defm : PdWriteRes<WriteVecStoreNT, [PdStore, PdFPU1, PdFPSTO], 2>;
defm : PdWriteRes<WriteVecStoreNTY, [PdStore, PdFPU1, PdFPSTO], 2, [2, 2, 2], 4>;
defm : X86WriteResUnsupported<WriteVecMaskedStore32>;
defm : X86WriteResUnsupported<WriteVecMaskedStore32Y>;
defm : X86WriteResUnsupported<WriteVecMaskedStore64>;
defm : X86WriteResUnsupported<WriteVecMaskedStore64Y>;
defm : PdWriteRes<WriteVecMove, [PdFPU01, PdFPMAL], 2>;
defm : PdWriteRes<WriteVecMoveX, [PdFPU01, PdFPMAL], 1, [1, 2]>;
defm : PdWriteRes<WriteVecMoveY, [PdFPU01, PdFPMAL], 2, [2, 2], 2>;
defm : X86WriteResUnsupported<WriteVecMoveZ>;
def PdWriteMOVDQArr : SchedWriteRes<[PdFPU01, PdFPMAL]> {
}
def : InstRW<[PdWriteMOVDQArr], (instrs MOVDQArr)>;
def PdWriteMOVQ2DQrr : SchedWriteRes<[PdFPU01, PdFPMAL]> {
let Latency = 4;
}
def : InstRW<[PdWriteMOVQ2DQrr], (instrs MMX_MOVQ2DQrr)>;
defm : PdWriteRes<WriteVecMoveToGpr, [PdFPU0, PdFPFMA, PdEX0], 11>;
defm : PdWriteRes<WriteVecMoveFromGpr, [PdFPU01, PdFPFMA], 11, [1, 2], 2>;
defm : PdWriteResXMMPair<WriteVecALU, [PdFPU23, PdFPMAL], 2>;
defm : PdWriteResXMMPair<WriteVecALUX, [PdFPU23, PdFPMAL], 2>;
defm : X86WriteResPairUnsupported<WriteVecALUY>;
defm : X86WriteResPairUnsupported<WriteVecALUZ>;
defm : PdWriteResXMMPair<WriteVecShift, [PdFPU1, PdFPXBR], 3>;
defm : PdWriteResXMMPair<WriteVecShiftX, [PdFPU1, PdFPXBR], 3>;
defm : X86WriteResPairUnsupported<WriteVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVecShiftZ>;
defm : PdWriteResXMMPair<WriteVecShiftImm, [PdFPU1, PdFPXBR], 2>;
defm : PdWriteResXMMPair<WriteVecShiftImmX, [PdFPU1, PdFPXBR], 2>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmY>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>;
defm : PdWriteResXMMPair<WriteVecIMul, [PdFPU0, PdFPMMA], 4>;
defm : PdWriteResXMMPair<WriteVecIMulX, [PdFPU0, PdFPMMA], 4>;
defm : X86WriteResPairUnsupported<WriteVecIMulY>;
defm : X86WriteResPairUnsupported<WriteVecIMulZ>;
defm : PdWriteResXMMPair<WritePMULLD, [PdFPU0, PdFPU01, PdFPMMA, PdFPMAL], 5, [2, 1, 2, 1]>;
defm : X86WriteResPairUnsupported<WritePMULLDY>;
defm : X86WriteResPairUnsupported<WritePMULLDZ>;
def PdWriteVPMACS : SchedWriteRes<[PdFPU0, PdFPMMA, PdFPMAL]> {
let Latency = 4;
}
def : InstRW<[PdWriteVPMACS], (instrs VPMACSDQHrr, VPMACSDQLrr, VPMACSSDQHrr,
VPMACSSDQLrr)>;
// FIXME: Investigate RR vs RM differences.
defm : PdWriteRes<WriteMPSAD, [PdFPU0, PdFPMMA], 8, [1, 4], 8>;
defm : PdWriteRes<WriteMPSADLd, [PdFPU0, PdFPMMA, PdLoad], 14, [1, 4, 3], 8>;
defm : X86WriteResPairUnsupported<WriteMPSADY>;
defm : X86WriteResPairUnsupported<WriteMPSADZ>;
defm : PdWriteResXMMPair<WritePSADBW, [PdFPU01, PdFPMAL], 4, [1, 2], 2>;
defm : PdWriteResXMMPair<WritePSADBWX, [PdFPU01, PdFPMAL], 4, [1, 2], 2>;
defm : X86WriteResPairUnsupported<WritePSADBWY>;
defm : X86WriteResPairUnsupported<WritePSADBWZ>;
defm : PdWriteResXMMPair<WritePHMINPOS, [PdFPU0, PdFPMAL], 4, [], 2>;
defm : PdWriteResXMMPair<WriteShuffle, [PdFPU1, PdFPXBR], 2>;
defm : PdWriteResXMMPair<WriteShuffleX, [PdFPU1, PdFPXBR], 2>;
defm : PdWriteResYMMPair<WriteShuffleY, [PdFPU1, PdFPXBR], 2, [2, 2]>;
defm : X86WriteResPairUnsupported<WriteShuffleZ>;
defm : PdWriteResXMMPair<WriteVarShuffle, [PdFPU1, PdFPXBR], 3>;
defm : PdWriteResXMMPair<WriteVarShuffleX, [PdFPU1, PdFPXBR], 3>;
defm : X86WriteResPairUnsupported<WriteVarShuffleY>;
defm : X86WriteResPairUnsupported<WriteVarShuffleZ>;
def PdWriteVPPERM : SchedWriteRes<[PdFPU1, PdFPXBR]> {
let Latency = 2;
let ReleaseAtCycles = [1, 1];
}
def : InstRW<[PdWriteVPPERM], (instrs VPPERMrrr, VPPERMrrr_REV)>;
def PdWriteVPPERMLd : SchedWriteRes<[PdFPU1, PdFPXBR, PdLoad]> {
let Latency = 7;
let ReleaseAtCycles = [1, 1, 3];
}
def : InstRW<[PdWriteVPPERMLd], (instrs VPPERMrrm, VPPERMrmr)>;
defm : PdWriteResXMMPair<WriteBlend, [PdFPU23, PdFPMAL], 2>;
defm : X86WriteResPairUnsupported<WriteBlendY>;
defm : X86WriteResPairUnsupported<WriteBlendZ>;
defm : PdWriteResXMMPair<WriteVarBlend, [PdFPU1, PdFPXBR], 2>;
defm : X86WriteResPairUnsupported<WriteVarBlendY>;
defm : X86WriteResPairUnsupported<WriteVarBlendZ>;
defm : PdWriteResXMMPair<WriteVecLogic, [PdFPU23, PdFPMAL], 2>;
defm : PdWriteResXMMPair<WriteVecLogicX, [PdFPU23, PdFPMAL], 2>;
defm : X86WriteResPairUnsupported<WriteVecLogicY>;
defm : X86WriteResPairUnsupported<WriteVecLogicZ>;
defm : PdWriteResXMMPair<WriteVecTest, [PdFPU0, PdFPFMA, PdEX0], 1, [], 2>;
defm : PdWriteResYMMPair<WriteVecTestY, [PdFPU01, PdFPFMA, PdEX0], 1, [2, 4, 1], 4, 2>;
defm : X86WriteResPairUnsupported<WriteVecTestZ>;
defm : PdWriteResXMMPair<WriteShuffle256, [PdFPU01, PdFPMAL]>;
defm : PdWriteResXMMPair<WriteVPMOV256, [PdFPU01, PdFPMAL]>;
defm : PdWriteResXMMPair<WriteVarShuffle256, [PdFPU01, PdFPMAL]>;
defm : PdWriteResXMMPair<WriteVarVecShift, [PdFPU1, PdFPXBR], 3>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>;
////////////////////////////////////////////////////////////////////////////////
// Vector insert/extract operations.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteRes<WriteVecInsert, [PdFPU01, PdFPMAL], 2, [1, 3], 2>;
defm : PdWriteRes<WriteVecInsertLd, [PdFPU01, PdFPMAL, PdLoad], 6, [1, 4, 3], 2>;
defm : PdWriteRes<WriteVecExtract, [PdFPU0, PdFPFMA, PdEX0], 12, [1, 3, 1], 2>;
defm : PdWriteRes<WriteVecExtractSt, [PdFPU1, PdFPSTO, PdStore], 13, [2, 1, 1], 2>;
def PdWriteEXTRQ : SchedWriteRes<[PdFPU01, PdFPMAL]> {
let Latency = 3;
let ReleaseAtCycles = [1, 3];
}
def : InstRW<[PdWriteEXTRQ], (instrs EXTRQ, EXTRQI)>;
////////////////////////////////////////////////////////////////////////////////
// SSE42 String instructions.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteResXMMPair<WritePCmpIStrI, [PdFPU1, PdFPFMA, PdEX0], 11, [1, 6, 1], 7, 1>;
defm : PdWriteResXMMPair<WritePCmpIStrM, [PdFPU1, PdFPFMA, PdEX0], 7, [1, 8, 1], 7, 2>;
defm : PdWriteResXMMPair<WritePCmpEStrI, [PdFPU1, PdStore, PdLoad, PdFPMAL, PdFPFMA, PdEX0], 14, [1, 10, 10, 10, 1, 1], 27, 1>;
defm : PdWriteResXMMPair<WritePCmpEStrM, [PdFPU1, PdStore, PdLoad, PdFPMAL, PdFPFMA, PdEX0], 10, [1, 10, 10, 10, 1, 1], 27, 1>;
////////////////////////////////////////////////////////////////////////////////
// MOVMSK Instructions.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteRes<WriteFMOVMSK, [PdFPU0, PdFPFMA, PdEX0], 12, [], 2>;
defm : PdWriteRes<WriteVecMOVMSK, [PdFPU0, PdFPFMA, PdEX0], 12, [], 2>;
defm : X86WriteResUnsupported<WriteVecMOVMSKY>;
// defm : X86WriteResUnsupported<WriteVecMOVMSKZ>;
defm : PdWriteRes<WriteMMXMOVMSK, [PdFPU0, PdFPFMA, PdEX0], 10, [], 2>;
////////////////////////////////////////////////////////////////////////////////
// AES Instructions.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteResXMMPair<WriteAESIMC, [PdFPU0, PdFPMMA], 5>;
defm : PdWriteResXMMPair<WriteAESKeyGen, [PdFPU0, PdFPMMA], 5>;
defm : PdWriteResXMMPair<WriteAESDecEnc, [PdFPU0, PdFPMMA], 9, [], 2>;
////////////////////////////////////////////////////////////////////////////////
// Horizontal add/sub instructions.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteResXMMPair<WriteFHAdd, [PdFPU0, PdFPFMA], 11, [1, 5], 3, 1>;
defm : PdWriteResYMMPair<WriteFHAddY, [PdFPU0, PdFPFMA], 11, [1, 8], 8, 2>;
defm : X86WriteResPairUnsupported<WriteFHAddZ>;
defm : PdWriteResXMMPair<WritePHAdd, [PdFPU01, PdFPMAL], 5, [1, 4], 3, 1>;
defm : PdWriteResXMMPair<WritePHAddX, [PdFPU01, PdFPMAL], 2, [1, 2]>;
defm : X86WriteResPairUnsupported<WritePHAddY>;
defm : X86WriteResPairUnsupported<WritePHAddZ>;
def : InstRW<[WritePHAdd], (instrs PHADDDrr, PHSUBDrr,
PHADDWrr, PHSUBWrr,
PHADDSWrr, PHSUBSWrr,
VPHADDDrr, VPHSUBDrr,
VPHADDWrr, VPHSUBWrr,
VPHADDSWrr, VPHSUBSWrr)>;
def : InstRW<[WritePHAdd.Folded], (instrs PHADDDrm, PHSUBDrm,
PHADDWrm, PHSUBWrm,
PHADDSWrm, PHSUBSWrm,
VPHADDDrm, VPHSUBDrm,
VPHADDWrm, VPHSUBWrm,
VPHADDSWrm, VPHSUBSWrm)>;
////////////////////////////////////////////////////////////////////////////////
// Carry-less multiplication instructions.
////////////////////////////////////////////////////////////////////////////////
defm : PdWriteResXMMPair<WriteCLMul, [PdFPU0, PdFPMMA], 12, [1, 7], 5, 1>;
def PdWriteVPCLMULQDQrri : SchedWriteRes<[PdFPU0, PdFPMMA]> {
let Latency = 12;
let ReleaseAtCycles = [1, 7];
let NumMicroOps = 6;
}
def : InstRW<[PdWriteVPCLMULQDQrri], (instrs VPCLMULQDQrri)>;
////////////////////////////////////////////////////////////////////////////////
// SSE4A instructions.
////////////////////////////////////////////////////////////////////////////////
def PdWriteINSERTQ : SchedWriteRes<[PdFPU01, PdFPMAL]> {
let Latency = 3;
let ReleaseAtCycles = [1, 2];
}
def : InstRW<[PdWriteINSERTQ], (instrs INSERTQ)>;
def PdWriteINSERTQI : SchedWriteRes<[PdFPU01, PdFPMAL]> {
let Latency = 3;
let ReleaseAtCycles = [1, 3];
}
def : InstRW<[PdWriteINSERTQI], (instrs INSERTQI)>;
////////////////////////////////////////////////////////////////////////////////
// AVX instructions.
////////////////////////////////////////////////////////////////////////////////
def PdWriteVBROADCASTYLd : SchedWriteRes<[PdLoad, PdFPU01, PdFPFMA]> {
let Latency = 6;
let ReleaseAtCycles = [1, 2, 4];
let NumMicroOps = 2;
}
def : InstRW<[PdWriteVBROADCASTYLd, ReadAfterLd], (instrs VBROADCASTSDYrm,
VBROADCASTSSYrm)>;
def PdWriteVZEROALL : SchedWriteRes<[]> {
let Latency = 90;
let NumMicroOps = 32;
}
def : InstRW<[PdWriteVZEROALL], (instrs VZEROALL)>;
def PdWriteVZEROUPPER : SchedWriteRes<[]> {
let Latency = 46;
let NumMicroOps = 16;
}
def : InstRW<[PdWriteVZEROUPPER], (instrs VZEROUPPER)>;
///////////////////////////////////////////////////////////////////////////////
// SchedWriteVariant definitions.
///////////////////////////////////////////////////////////////////////////////
def PdWriteZeroLatency : SchedWriteRes<[]> {
let Latency = 0;
}
def PdWriteZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [PdWriteZeroLatency]>,
SchedVar<MCSchedPredicate<TruePred>, [WriteALU]>
]>;
def : InstRW<[PdWriteZeroIdiom], (instrs SUB32rr, SUB64rr,
XOR32rr, XOR64rr)>;
def PdWriteFZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [PdWriteZeroLatency]>,
SchedVar<MCSchedPredicate<TruePred>, [WriteFLogic]>
]>;
def : InstRW<[PdWriteFZeroIdiom], (instrs XORPSrr, VXORPSrr,
XORPDrr, VXORPDrr,
ANDNPSrr, VANDNPSrr,
ANDNPDrr, VANDNPDrr)>;
// VXORPSYrr, VXORPDYrr, VANDNPSYrr, VANDNPDYrr "zero-idioms" have latency of 1.
def PdWriteVZeroIdiomLogic : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [PdWriteZeroLatency]>,
SchedVar<MCSchedPredicate<TruePred>, [WriteVecLogic]>
]>;
def : InstRW<[PdWriteVZeroIdiomLogic], (instrs MMX_PXORrr, MMX_PANDNrr)>;
def PdWriteVZeroIdiomLogicX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [PdWriteZeroLatency]>,
SchedVar<MCSchedPredicate<TruePred>, [WriteVecLogicX]>
]>;
def : InstRW<[PdWriteVZeroIdiomLogicX], (instrs PXORrr, VPXORrr,
PANDNrr, VPANDNrr)>;
def PdWriteVZeroIdiomALU : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [PdWriteZeroLatency]>,
SchedVar<MCSchedPredicate<TruePred>, [WriteVecALU]>
]>;
def : InstRW<[PdWriteVZeroIdiomALU], (instrs MMX_PSUBBrr, MMX_PSUBDrr,
MMX_PSUBQrr, MMX_PSUBWrr,
MMX_PCMPGTBrr,
MMX_PCMPGTDrr,
MMX_PCMPGTWrr)>;
def PdWriteVZeroIdiomALUX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [PdWriteZeroLatency]>,
SchedVar<MCSchedPredicate<TruePred>, [WriteVecALUX]>
]>;
def : InstRW<[PdWriteVZeroIdiomALUX], (instrs PSUBBrr, VPSUBBrr,
PSUBDrr, VPSUBDrr,
PSUBQrr, VPSUBQrr,
PSUBWrr, VPSUBWrr,
PCMPGTBrr, VPCMPGTBrr,
PCMPGTDrr, VPCMPGTDrr,
PCMPGTWrr, VPCMPGTWrr)>;
///////////////////////////////////////////////////////////////////////////////
// Dependency breaking instructions.
///////////////////////////////////////////////////////////////////////////////
// VPCMPGTQ, but not PCMPGTQ!
def : IsZeroIdiomFunction<[
// GPR Zero-idioms.
DepBreakingClass<[ SUB32rr, SUB64rr, XOR32rr, XOR64rr ], ZeroIdiomPredicate>,
// MMX Zero-idioms.
DepBreakingClass<[
MMX_PXORrr, MMX_PANDNrr, MMX_PSUBBrr,
MMX_PSUBDrr, MMX_PSUBQrr, MMX_PSUBWrr,
MMX_PSUBSBrr, MMX_PSUBSWrr, MMX_PSUBUSBrr, MMX_PSUBUSWrr,
MMX_PCMPGTBrr, MMX_PCMPGTDrr, MMX_PCMPGTWrr
], ZeroIdiomPredicate>,
// SSE Zero-idioms.
DepBreakingClass<[
// fp variants.
XORPSrr, XORPDrr, ANDNPSrr, ANDNPDrr,
// int variants.
PXORrr, PANDNrr,
PSUBBrr, PSUBWrr, PSUBDrr, PSUBQrr,
PSUBSBrr, PSUBSWrr, PSUBUSBrr, PSUBUSWrr,
PCMPGTBrr, PCMPGTDrr, PCMPGTWrr
], ZeroIdiomPredicate>,
// AVX Zero-idioms.
DepBreakingClass<[
// xmm fp variants.
VXORPSrr, VXORPDrr, VANDNPSrr, VANDNPDrr,
// xmm int variants.
VPXORrr, VPANDNrr,
VPSUBBrr, VPSUBWrr, VPSUBDrr, VPSUBQrr,
VPSUBSBrr, VPSUBSWrr, VPSUBUSBrr, VPSUBUSWrr,
VPCMPGTBrr, VPCMPGTWrr, VPCMPGTDrr, VPCMPGTQrr,
// ymm variants.
VXORPSYrr, VXORPDYrr, VANDNPSYrr, VANDNPDYrr
], ZeroIdiomPredicate>
]>;
def : IsDepBreakingFunction<[
// GPR
DepBreakingClass<[ SBB32rr, SBB64rr ], ZeroIdiomPredicate>,
DepBreakingClass<[ CMP32rr, CMP64rr ], CheckSameRegOperand<0, 1> >,
// MMX
DepBreakingClass<[
MMX_PCMPEQBrr, MMX_PCMPEQDrr, MMX_PCMPEQWrr
], ZeroIdiomPredicate>,
// SSE
DepBreakingClass<[
PCMPEQBrr, PCMPEQWrr, PCMPEQDrr
// But not PCMPEQQrr.
], ZeroIdiomPredicate>,
// AVX
DepBreakingClass<[
VPCMPEQBrr, VPCMPEQWrr, VPCMPEQDrr
// But not VPCMPEQQrr.
], ZeroIdiomPredicate>
]>;
} // SchedModel