// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
// Kokkos v. 4.0
// Copyright (2022) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
//===---------------------------------------------------------------------===//
#ifndef _LIBCPP___ATOMIC_ATOMIC_REF_H
#define _LIBCPP___ATOMIC_ATOMIC_REF_H
#include <__assert>
#include <__atomic/atomic_sync.h>
#include <__atomic/check_memory_order.h>
#include <__atomic/memory_order.h>
#include <__atomic/to_gcc_order.h>
#include <__concepts/arithmetic.h>
#include <__concepts/same_as.h>
#include <__config>
#include <__memory/addressof.h>
#include <__type_traits/has_unique_object_representation.h>
#include <__type_traits/is_trivially_copyable.h>
#include <cstddef>
#include <cstdint>
#include <cstring>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
_LIBCPP_PUSH_MACROS
#include <__undef_macros>
_LIBCPP_BEGIN_NAMESPACE_STD
#if _LIBCPP_STD_VER >= 20
// These types are required to make __atomic_is_always_lock_free work across GCC and Clang.
// The purpose of this trick is to make sure that we provide an object with the correct alignment
// to __atomic_is_always_lock_free, since that answer depends on the alignment.
template <size_t _Alignment>
struct __alignment_checker_type {
alignas(_Alignment) char __data;
};
template <size_t _Alignment>
struct __get_aligner_instance {
static constexpr __alignment_checker_type<_Alignment> __instance{};
};
template <class _Tp>
struct __atomic_ref_base {
private:
_LIBCPP_HIDE_FROM_ABI static _Tp* __clear_padding(_Tp& __val) noexcept {
_Tp* __ptr = std::addressof(__val);
# if __has_builtin(__builtin_clear_padding)
__builtin_clear_padding(__ptr);
# endif
return __ptr;
}
_LIBCPP_HIDE_FROM_ABI static bool __compare_exchange(
_Tp* __ptr, _Tp* __expected, _Tp* __desired, bool __is_weak, int __success, int __failure) noexcept {
if constexpr (
# if __has_builtin(__builtin_clear_padding)
has_unique_object_representations_v<_Tp> || floating_point<_Tp>
# else
true // NOLINT(readability-simplify-boolean-expr)
# endif
) {
return __atomic_compare_exchange(__ptr, __expected, __desired, __is_weak, __success, __failure);
} else { // _Tp has padding bits and __builtin_clear_padding is available
__clear_padding(*__desired);
_Tp __copy = *__expected;
__clear_padding(__copy);
// The algorithm we use here is basically to perform `__atomic_compare_exchange` on the
// values until it has either succeeded, or failed because the value representation of the
// objects involved was different. This is why we loop around __atomic_compare_exchange:
// we basically loop until its failure is caused by the value representation of the objects
// being different, not only their object representation.
while (true) {
_Tp __prev = __copy;
if (__atomic_compare_exchange(__ptr, std::addressof(__copy), __desired, __is_weak, __success, __failure)) {
return true;
}
_Tp __curr = __copy;
if (std::memcmp(__clear_padding(__prev), __clear_padding(__curr), sizeof(_Tp)) != 0) {
// Value representation without padding bits do not compare equal ->
// write the current content of *ptr into *expected
std::memcpy(__expected, std::addressof(__copy), sizeof(_Tp));
return false;
}
}
}
}
friend struct __atomic_waitable_traits<__atomic_ref_base<_Tp>>;
// require types that are 1, 2, 4, 8, or 16 bytes in length to be aligned to at least their size to be potentially
// used lock-free
static constexpr size_t __min_alignment = (sizeof(_Tp) & (sizeof(_Tp) - 1)) || (sizeof(_Tp) > 16) ? 0 : sizeof(_Tp);
public:
using value_type = _Tp;
static constexpr size_t required_alignment = alignof(_Tp) > __min_alignment ? alignof(_Tp) : __min_alignment;
// The __atomic_always_lock_free builtin takes into account the alignment of the pointer if provided,
// so we create a fake pointer with a suitable alignment when querying it. Note that we are guaranteed
// that the pointer is going to be aligned properly at runtime because that is a (checked) precondition
// of atomic_ref's constructor.
static constexpr bool is_always_lock_free =
__atomic_always_lock_free(sizeof(_Tp), &__get_aligner_instance<required_alignment>::__instance);
_LIBCPP_HIDE_FROM_ABI bool is_lock_free() const noexcept { return __atomic_is_lock_free(sizeof(_Tp), __ptr_); }
_LIBCPP_HIDE_FROM_ABI void store(_Tp __desired, memory_order __order = memory_order::seq_cst) const noexcept
_LIBCPP_CHECK_STORE_MEMORY_ORDER(__order) {
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
__order == memory_order::relaxed || __order == memory_order::release || __order == memory_order::seq_cst,
"atomic_ref: memory order argument to atomic store operation is invalid");
__atomic_store(__ptr_, __clear_padding(__desired), std::__to_gcc_order(__order));
}
_LIBCPP_HIDE_FROM_ABI _Tp operator=(_Tp __desired) const noexcept {
store(__desired);
return __desired;
}
_LIBCPP_HIDE_FROM_ABI _Tp load(memory_order __order = memory_order::seq_cst) const noexcept
_LIBCPP_CHECK_LOAD_MEMORY_ORDER(__order) {
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
__order == memory_order::relaxed || __order == memory_order::consume || __order == memory_order::acquire ||
__order == memory_order::seq_cst,
"atomic_ref: memory order argument to atomic load operation is invalid");
alignas(_Tp) byte __mem[sizeof(_Tp)];
auto* __ret = reinterpret_cast<_Tp*>(__mem);
__atomic_load(__ptr_, __ret, std::__to_gcc_order(__order));
return *__ret;
}
_LIBCPP_HIDE_FROM_ABI operator _Tp() const noexcept { return load(); }
_LIBCPP_HIDE_FROM_ABI _Tp exchange(_Tp __desired, memory_order __order = memory_order::seq_cst) const noexcept {
alignas(_Tp) byte __mem[sizeof(_Tp)];
auto* __ret = reinterpret_cast<_Tp*>(__mem);
__atomic_exchange(__ptr_, __clear_padding(__desired), __ret, std::__to_gcc_order(__order));
return *__ret;
}
_LIBCPP_HIDE_FROM_ABI bool
compare_exchange_weak(_Tp& __expected, _Tp __desired, memory_order __success, memory_order __failure) const noexcept
_LIBCPP_CHECK_EXCHANGE_MEMORY_ORDER(__success, __failure) {
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
__failure == memory_order::relaxed || __failure == memory_order::consume ||
__failure == memory_order::acquire || __failure == memory_order::seq_cst,
"atomic_ref: failure memory order argument to weak atomic compare-and-exchange operation is invalid");
return __compare_exchange(
__ptr_,
std::addressof(__expected),
std::addressof(__desired),
true,
std::__to_gcc_order(__success),
std::__to_gcc_order(__failure));
}
_LIBCPP_HIDE_FROM_ABI bool
compare_exchange_strong(_Tp& __expected, _Tp __desired, memory_order __success, memory_order __failure) const noexcept
_LIBCPP_CHECK_EXCHANGE_MEMORY_ORDER(__success, __failure) {
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
__failure == memory_order::relaxed || __failure == memory_order::consume ||
__failure == memory_order::acquire || __failure == memory_order::seq_cst,
"atomic_ref: failure memory order argument to strong atomic compare-and-exchange operation is invalid");
return __compare_exchange(
__ptr_,
std::addressof(__expected),
std::addressof(__desired),
false,
std::__to_gcc_order(__success),
std::__to_gcc_order(__failure));
}
_LIBCPP_HIDE_FROM_ABI bool
compare_exchange_weak(_Tp& __expected, _Tp __desired, memory_order __order = memory_order::seq_cst) const noexcept {
return __compare_exchange(
__ptr_,
std::addressof(__expected),
std::addressof(__desired),
true,
std::__to_gcc_order(__order),
std::__to_gcc_failure_order(__order));
}
_LIBCPP_HIDE_FROM_ABI bool
compare_exchange_strong(_Tp& __expected, _Tp __desired, memory_order __order = memory_order::seq_cst) const noexcept {
return __compare_exchange(
__ptr_,
std::addressof(__expected),
std::addressof(__desired),
false,
std::__to_gcc_order(__order),
std::__to_gcc_failure_order(__order));
}
_LIBCPP_HIDE_FROM_ABI void wait(_Tp __old, memory_order __order = memory_order::seq_cst) const noexcept
_LIBCPP_CHECK_WAIT_MEMORY_ORDER(__order) {
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
__order == memory_order::relaxed || __order == memory_order::consume || __order == memory_order::acquire ||
__order == memory_order::seq_cst,
"atomic_ref: memory order argument to atomic wait operation is invalid");
std::__atomic_wait(*this, __old, __order);
}
_LIBCPP_HIDE_FROM_ABI void notify_one() const noexcept { std::__atomic_notify_one(*this); }
_LIBCPP_HIDE_FROM_ABI void notify_all() const noexcept { std::__atomic_notify_all(*this); }
protected:
using _Aligned_Tp [[__gnu__::__aligned__(required_alignment)]] = _Tp;
_Aligned_Tp* __ptr_;
_LIBCPP_HIDE_FROM_ABI __atomic_ref_base(_Tp& __obj) : __ptr_(std::addressof(__obj)) {}
};
template <class _Tp>
struct __atomic_waitable_traits<__atomic_ref_base<_Tp>> {
static _LIBCPP_HIDE_FROM_ABI _Tp __atomic_load(const __atomic_ref_base<_Tp>& __a, memory_order __order) {
return __a.load(__order);
}
static _LIBCPP_HIDE_FROM_ABI const _Tp* __atomic_contention_address(const __atomic_ref_base<_Tp>& __a) {
return __a.__ptr_;
}
};
template <class _Tp>
struct atomic_ref : public __atomic_ref_base<_Tp> {
static_assert(is_trivially_copyable_v<_Tp>, "std::atomic_ref<T> requires that 'T' be a trivially copyable type");
using __base = __atomic_ref_base<_Tp>;
_LIBCPP_HIDE_FROM_ABI explicit atomic_ref(_Tp& __obj) : __base(__obj) {
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
reinterpret_cast<uintptr_t>(std::addressof(__obj)) % __base::required_alignment == 0,
"atomic_ref ctor: referenced object must be aligned to required_alignment");
}
_LIBCPP_HIDE_FROM_ABI atomic_ref(const atomic_ref&) noexcept = default;
_LIBCPP_HIDE_FROM_ABI _Tp operator=(_Tp __desired) const noexcept { return __base::operator=(__desired); }
atomic_ref& operator=(const atomic_ref&) = delete;
};
template <class _Tp>
requires(std::integral<_Tp> && !std::same_as<bool, _Tp>)
struct atomic_ref<_Tp> : public __atomic_ref_base<_Tp> {
using __base = __atomic_ref_base<_Tp>;
using difference_type = __base::value_type;
_LIBCPP_HIDE_FROM_ABI explicit atomic_ref(_Tp& __obj) : __base(__obj) {
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
reinterpret_cast<uintptr_t>(std::addressof(__obj)) % __base::required_alignment == 0,
"atomic_ref ctor: referenced object must be aligned to required_alignment");
}
_LIBCPP_HIDE_FROM_ABI atomic_ref(const atomic_ref&) noexcept = default;
_LIBCPP_HIDE_FROM_ABI _Tp operator=(_Tp __desired) const noexcept { return __base::operator=(__desired); }
atomic_ref& operator=(const atomic_ref&) = delete;
_LIBCPP_HIDE_FROM_ABI _Tp fetch_add(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept {
return __atomic_fetch_add(this->__ptr_, __arg, std::__to_gcc_order(__order));
}
_LIBCPP_HIDE_FROM_ABI _Tp fetch_sub(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept {
return __atomic_fetch_sub(this->__ptr_, __arg, std::__to_gcc_order(__order));
}
_LIBCPP_HIDE_FROM_ABI _Tp fetch_and(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept {
return __atomic_fetch_and(this->__ptr_, __arg, std::__to_gcc_order(__order));
}
_LIBCPP_HIDE_FROM_ABI _Tp fetch_or(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept {
return __atomic_fetch_or(this->__ptr_, __arg, std::__to_gcc_order(__order));
}
_LIBCPP_HIDE_FROM_ABI _Tp fetch_xor(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept {
return __atomic_fetch_xor(this->__ptr_, __arg, std::__to_gcc_order(__order));
}
_LIBCPP_HIDE_FROM_ABI _Tp operator++(int) const noexcept { return fetch_add(_Tp(1)); }
_LIBCPP_HIDE_FROM_ABI _Tp operator--(int) const noexcept { return fetch_sub(_Tp(1)); }
_LIBCPP_HIDE_FROM_ABI _Tp operator++() const noexcept { return fetch_add(_Tp(1)) + _Tp(1); }
_LIBCPP_HIDE_FROM_ABI _Tp operator--() const noexcept { return fetch_sub(_Tp(1)) - _Tp(1); }
_LIBCPP_HIDE_FROM_ABI _Tp operator+=(_Tp __arg) const noexcept { return fetch_add(__arg) + __arg; }
_LIBCPP_HIDE_FROM_ABI _Tp operator-=(_Tp __arg) const noexcept { return fetch_sub(__arg) - __arg; }
_LIBCPP_HIDE_FROM_ABI _Tp operator&=(_Tp __arg) const noexcept { return fetch_and(__arg) & __arg; }
_LIBCPP_HIDE_FROM_ABI _Tp operator|=(_Tp __arg) const noexcept { return fetch_or(__arg) | __arg; }
_LIBCPP_HIDE_FROM_ABI _Tp operator^=(_Tp __arg) const noexcept { return fetch_xor(__arg) ^ __arg; }
};
template <class _Tp>
requires std::floating_point<_Tp>
struct atomic_ref<_Tp> : public __atomic_ref_base<_Tp> {
using __base = __atomic_ref_base<_Tp>;
using difference_type = __base::value_type;
_LIBCPP_HIDE_FROM_ABI explicit atomic_ref(_Tp& __obj) : __base(__obj) {
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
reinterpret_cast<uintptr_t>(std::addressof(__obj)) % __base::required_alignment == 0,
"atomic_ref ctor: referenced object must be aligned to required_alignment");
}
_LIBCPP_HIDE_FROM_ABI atomic_ref(const atomic_ref&) noexcept = default;
_LIBCPP_HIDE_FROM_ABI _Tp operator=(_Tp __desired) const noexcept { return __base::operator=(__desired); }
atomic_ref& operator=(const atomic_ref&) = delete;
_LIBCPP_HIDE_FROM_ABI _Tp fetch_add(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept {
_Tp __old = this->load(memory_order_relaxed);
_Tp __new = __old + __arg;
while (!this->compare_exchange_weak(__old, __new, __order, memory_order_relaxed)) {
__new = __old + __arg;
}
return __old;
}
_LIBCPP_HIDE_FROM_ABI _Tp fetch_sub(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept {
_Tp __old = this->load(memory_order_relaxed);
_Tp __new = __old - __arg;
while (!this->compare_exchange_weak(__old, __new, __order, memory_order_relaxed)) {
__new = __old - __arg;
}
return __old;
}
_LIBCPP_HIDE_FROM_ABI _Tp operator+=(_Tp __arg) const noexcept { return fetch_add(__arg) + __arg; }
_LIBCPP_HIDE_FROM_ABI _Tp operator-=(_Tp __arg) const noexcept { return fetch_sub(__arg) - __arg; }
};
template <class _Tp>
struct atomic_ref<_Tp*> : public __atomic_ref_base<_Tp*> {
using __base = __atomic_ref_base<_Tp*>;
using difference_type = ptrdiff_t;
_LIBCPP_HIDE_FROM_ABI explicit atomic_ref(_Tp*& __ptr) : __base(__ptr) {}
_LIBCPP_HIDE_FROM_ABI _Tp* operator=(_Tp* __desired) const noexcept { return __base::operator=(__desired); }
atomic_ref& operator=(const atomic_ref&) = delete;
_LIBCPP_HIDE_FROM_ABI _Tp* fetch_add(ptrdiff_t __arg, memory_order __order = memory_order_seq_cst) const noexcept {
return __atomic_fetch_add(this->__ptr_, __arg * sizeof(_Tp), std::__to_gcc_order(__order));
}
_LIBCPP_HIDE_FROM_ABI _Tp* fetch_sub(ptrdiff_t __arg, memory_order __order = memory_order_seq_cst) const noexcept {
return __atomic_fetch_sub(this->__ptr_, __arg * sizeof(_Tp), std::__to_gcc_order(__order));
}
_LIBCPP_HIDE_FROM_ABI _Tp* operator++(int) const noexcept { return fetch_add(1); }
_LIBCPP_HIDE_FROM_ABI _Tp* operator--(int) const noexcept { return fetch_sub(1); }
_LIBCPP_HIDE_FROM_ABI _Tp* operator++() const noexcept { return fetch_add(1) + 1; }
_LIBCPP_HIDE_FROM_ABI _Tp* operator--() const noexcept { return fetch_sub(1) - 1; }
_LIBCPP_HIDE_FROM_ABI _Tp* operator+=(ptrdiff_t __arg) const noexcept { return fetch_add(__arg) + __arg; }
_LIBCPP_HIDE_FROM_ABI _Tp* operator-=(ptrdiff_t __arg) const noexcept { return fetch_sub(__arg) - __arg; }
};
_LIBCPP_CTAD_SUPPORTED_FOR_TYPE(atomic_ref);
#endif // _LIBCPP_STD_VER >= 20
_LIBCPP_END_NAMESPACE_STD
_LIBCPP_POP_MACROS
#endif // _LIBCPP__ATOMIC_ATOMIC_REF_H